Antibiotics Use in COVID-19 Patients: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Article Identification
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Data Synthesis
3. Results
3.1. Studies Description
3.2. Use of Antibiotics in COVID-19 Patients
3.2.1. Hospitalized Patients
Bacterial Infection and Antibiotics Use in Hospitalized COVID-19 Patients
Benefits of Antibiotic Use in Hospitalized COVID-19 Patients
Macrolides
Teicoplanin
Side Effects of Antibiotics Administration in Hospitalized COVID-19 Patients
3.2.2. COVID-19 Outpatients
Bacterial Coinfection and Benefit of Antibiotic Use in COVID-19 Patients in the Community
Doxycicline
4. Guidelines on Antibiotics Use in COVID-19 Patients
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Torres, V.; de Mendoza, C.; de la Fuente, S.; Sánchez, E.; Martínez-Urbistondo, M.; Herráiz, J.; Gutiérrez, A.; Gutiérrez, Á.; Hernández, C.; Callejas, A.; et al. Bacterial Infections in Patients Hospitalized with COVID-19. Intern. Emerg. Med. 2022, 17, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Sugden, R.; Kelly, R.; Davies, S. Combatting Antimicrobial Resistance Globally. Nat. Microbiol. 2016, 1, 16187. [Google Scholar] [CrossRef]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of Co-Infections and Superinfections in Hospitalized Patients with COVID-19: A Retrospective Cohort Study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Knoop, B.T.; Dofferhoff, A.S.M.; Blaauw, M.J.T.; Janssen, N.A.; van Apeldoorn, M.; Kerckhoffs, A.P.M.; van de Maat, J.S.; Hoogerwerf, J.J.; Ten Oever, J. Few Bacterial Co-Infections but Frequent Empiric Antibiotic Use in the Early Phase of Hospitalized Patients with COVID-19: Results from a Multicentre Retrospective Cohort Study in The Netherlands. Infect. Dis. 2021, 53, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Amin, A.K.; Khanna, P.; Aali, A.; McGregor, A.; Bassett, P.; Gopal Rao, G. An Observational Cohort Study of Bacterial Co-Infection and Implications for Empirical Antibiotic Therapy in Patients Presenting with COVID-19 to Hospitals in North West London. J. Antimicrob. Chemother. 2021, 76, 796–803. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of Hospital-Acquired Bacterial and Fungal Superinfections in COVID-19: A Prospective Observational Study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef]
- Thoma, R.; Seneghini, M.; Seiffert, S.N.; Vuichard Gysin, D.; Scanferla, G.; Haller, S.; Flury, D.; Boggian, K.; Kleger, G.-R.; Filipovic, M.; et al. The Challenge of Preventing and Containing Outbreaks of Multidrug-Resistant Organisms and Candida Auris during the Coronavirus Disease 2019 Pandemic: Report of a Carbapenem-Resistant Acinetobacter Baumannii Outbreak and a Systematic Review of the Literature. Antimicrob. Resist. Infect. Control. 2022, 11, 12. [Google Scholar] [CrossRef]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Punjabi Katiyar, C.; Jain, R.; Aldrich, M.; Weston, G.; et al. Bacterial and Fungal Coinfections in COVID-19 Patients Hospitalized during the New York City Pandemic Surge. Infect. Control. Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef]
- Mustafa, L.; Tolaj, I.; Baftiu, N.; Fejza, H. Use of Antibiotics in COVID-19 ICU Patients. J. Infect. Dev. Ctries. 2021, 15, 501–505. [Google Scholar] [CrossRef]
- Thomsen, K.; Pedersen, H.P.; Iversen, S.; Wiese, L.; Fuursted, K.; Nielsen, H.V.; Christensen, J.J.E.; Nielsen, X.C. Extensive Microbiological Respiratory Tract Specimen Characterization in Critically Ill COVID-19 Patients. APMIS 2021, 129, 431–437. [Google Scholar] [CrossRef]
- Ruiz-Bastián, M.; Falces-Romero, I.; Ramos-Ramos, J.C.; de Pablos, M.; García-Rodríguez, J.; SARS-CoV-2 Working Group. Bacterial Co-Infections in COVID-19 Pneumonia in a Tertiary Care Hospital: Surfing the First Wave. Diagn. Microbiol. Infect. Dis. 2021, 101, 115477. [Google Scholar] [CrossRef]
- Karolyi, M.; Pawelka, E.; Hind, J.; Baumgartner, S.; Friese, E.; Hoepler, W.; Neuhold, S.; Omid, S.; Seitz, T.; Traugott, M.T.; et al. Detection of Bacteria via Multiplex PCR in Respiratory Samples of Critically Ill COVID-19 Patients with Suspected HAP/VAP in the ICU. Wien. Klin. Wochenschr. 2022, 134, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Odille, G.; Girard, N.; Sanchez, S.; Lelarge, S.; Mignot, A.; Putot, S.; Larosa, F.; Vovelle, J.; Nuss, V.; Da Silva, S.; et al. Should We Prescribe Antibiotics in Older Patients Presenting COVID-19 Pneumonia? J. Am. Med. Dir. Assoc. 2021, 22, 258–259. [Google Scholar] [CrossRef] [PubMed]
- Pafundi, P.C.; Galiero, R.; Simeon, V.; Rinaldi, L.; Perrella, A.; Vetrano, E.; Caturano, A.; Alfano, M.; Beccia, D.; Nevola, R.; et al. Lack of Effect on In-Hospital Mortality of Drugs Used during COVID-19 Pandemic: Findings of the Retrospective Multicenter COVOCA Study. PLoS ONE 2021, 16, e0256903. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Azithromycin in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised, Controlled, Open-Label, Platform Trial. Lancet 2021, 397, 605–612. [Google Scholar] [CrossRef]
- Rashad, A.; Nafady, A.; Hassan, M.H.; Mansour, H.; Taya, U.; Bazeed, S.E.S.; Aref, Z.F.; Sayed, M.A.A.; Nafady-Hego, H.; Abdelmaksoud, A.A. Therapeutic Efficacy of Macrolides in Management of Patients with Mild COVID-19. Sci. Rep. 2021, 11, 16361. [Google Scholar] [CrossRef]
- Gautret, P.; Hoang, V.T.; Lagier, J.-C.; Raoult, D. Effect of Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-Label Non-Randomized Clinical Trial, an Update with an Intention-to-Treat Analysis and Clinical Outcomes. Int. J. Antimicrob. Agents 2021, 57, 106239. [Google Scholar] [CrossRef]
- Furtado, R.H.M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; et al. Azithromycin in Addition to Standard of Care versus Standard of Care Alone in the Treatment of Patients Admitted to the Hospital with Severe COVID-19 in Brazil (COALITION II): A Randomised Clinical Trial. Lancet 2020, 396, 959–967. [Google Scholar] [CrossRef]
- Rodríguez-Molinero, A.; Pérez-López, C.; Gálvez-Barrón, C.; Miñarro, A.; Macho, O.; López, G.F.; Robles, M.T.; Dapena, M.D.; Martínez, S.; Rodríguez, E.; et al. Observational Study of Azithromycin in Hospitalized Patients with COVID-19. PLoS ONE 2020, 15, e0238681. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020, 323, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Arshad, S.; Kilgore, P.; Chaudhry, Z.S.; Jacobsen, G.; Wang, D.D.; Huitsing, K.; Brar, I.; Alangaden, G.J.; Ramesh, M.S.; McKinnon, J.E.; et al. Treatment with Hydroxychloroquine, Azithromycin, and Combination in Patients Hospitalized with COVID-19. Int. J. Infect. Dis. 2020, 97, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Sivapalan, P.; Ulrik, C.S.; Lapperre, T.S.; Bojesen, R.D.; Eklöf, J.; Browatzki, A.; Wilcke, J.T.; Gottlieb, V.; Håkansson, K.E.J.; Tidemandsen, C.; et al. Azithromycin and Hydroxychloroquine in Hospitalised Patients with Confirmed COVID-19: A Randomised Double-Blinded Placebo-Controlled Trial. Eur. Respir. J. 2022, 59, 2100752. [Google Scholar] [CrossRef]
- Lauriola, M.; Pani, A.; Ippoliti, G.; Mortara, A.; Milighetti, S.; Mazen, M.; Perseghin, G.; Pastori, D.; Grosso, P.; Scaglione, F. Effect of Combination Therapy of Hydroxychloroquine and Azithromycin on Mortality in Patients With COVID-19. Clin. Transl. Sci. 2020, 13, 1071–1076. [Google Scholar] [CrossRef]
- Saib, A.; Amara, W.; Wang, P.; Cattan, S.; Dellal, A.; Regaieg, K.; Nahon, S.; Nallet, O.; Nguyen, L.S. Lack of efficacy of hydroxychloroquine and azithromycin in patients hospitalized for COVID-19 pneumonia: A retrospective study. PLoS ONE 2021, 16, e0252388. [Google Scholar] [CrossRef]
- Guglielmetti, L.; Aschieri, D.; Kontsevaya, I.; Calabrese, F.; Donisi, A.; Faggi, A.; Ferrante, P.; Fronti, E.; Gerna, L.; Leoni, M.C.; et al. Treatment for COVID-19-a cohort study from Northern Italy. Sci. Rep. 2021, 11, 20964. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Alessandri, F.; Oliva, A.; Borrazzo, C.; Dell’Isola, S.; Ialungo, A.M.; Rastrelli, E.; Pelli, M.; Raponi, G.; Turriziani, O.; et al. The role of teicoplanin in the treatment of SARS-CoV-2 infection: A retrospective study in critically ill COVID-19 patients (Tei-COVID study). J. Med. Virol. 2021, 93, 4319–4325. [Google Scholar] [CrossRef]
- Maslennikov, R.; Svistunov, A.; Ivashkin, V.; Ufimtseva, A.; Poluektova, E.; Efremova, I.; Ulyanin, A.; Okhlobystin, A.; Kardasheva, S.; Kurbatova, A.; et al. Early viral versus late antibiotic-associated diarrhea in novel coronavirus infection. Medicine 2021, 100, e27528. [Google Scholar] [CrossRef]
- Granata, G.; Bartoloni, A.; Codeluppi, M.; Contadini, I.; Cristini, F.; Fantoni, M.; Ferraresi, A.; Fornabaio, C.; Grasselli, S.; Lagi, F.; et al. The Burden of Clostridioides Difficile Infection during the COVID-19 Pandemic: A Retrospective Case-Control Study in Italian Hospitals (CloVid). J. Clin. Med. 2020, 9, 3855. [Google Scholar] [CrossRef]
- Bilan, J.; Aggrey, K.; Quinn, T.J.; Lumsden, J.; Colquhoun, K. Occurrence and outcomes of possible superadded infections in older adults with COVID-19-cohort study. Eur. Geriatr. Med. 2022, 13, 1161–1167. [Google Scholar] [CrossRef]
- Nasir, N.; Rehman, F.; Omair, S.F. Risk factors for bacterial infections in patients with moderate to severe COVID-19: A case-control study. J. Med. Virol. 2021, 93, 4564–4569. [Google Scholar] [CrossRef]
- Giannella, M.; Rinaldi, M.; Tesini, G.; Gallo, M.; Cipriani, V.; Vatamanu, O.; Campoli, C.; Toschi, A.; Ferraro, G.; Horna, C.S.; et al. Predictive model for bacterial co-infection in patients hospitalized for COVID-19: A multicenter observational cohort study. Infection 2022, 50, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Pourajam, S.; Kalantari, E.; Talebzadeh, H.; Mellali, H.; Sami, R.; Soltaninejad, F.; Amra, B.; Sajadi, M.; Alenaseri, M.; Kalantari, F.; et al. Secondary Bacterial Infection and Clinical Characteristics in Patients With COVID-19 Admitted to Two Intensive Care Units of an Academic Hospital in Iran During the First Wave of the Pandemic. Front. Cell Infect. Microbiol. 2022, 12, 784130. [Google Scholar] [CrossRef]
- Rebold, N.; Alosaimy, S.; Morrisette, T.; Holger, D.; Lagnf, A.M.; Ansari, I.; Belza, A.C.; Cheaney, L.; Hussain, H.; Herbin, S.R.; et al. Clinical Characteristics Associated with Bacterial Bloodstream Coinfection in COVID-19. Infect. Dis. Ther. 2022, 11, 1281–1296. [Google Scholar] [CrossRef]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Boulle Geronimi, C.; Nieszkowska, A.; et al. Early Bacterial Identification among Intubated Patients with COVID-19 or Influenza Pneumonia: A European Multicenter Comparative Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 546–556. [Google Scholar] [CrossRef] [PubMed]
- PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet 2021, 397, 1063–1074. [Google Scholar] [CrossRef]
- Hinks, T.S.C.; Cureton, L.; Knight, R.; Wang, A.; Cane, J.L.; Barber, V.S.; Black, J.; Dutton, S.J.; Melhorn, J.; Jabeen, M.; et al. Azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): An open-label, randomised trial. Lancet Respir. Med. 2021, 9, 1130–1140. [Google Scholar] [CrossRef]
- Oldenburg, C.E.; Pinsky, B.A.; Brogdon, J.; Chen, C.; Ruder, K.; Zhong, L.; Nyatigo, F.; Cook, C.A.; Hinterwirth, A.; Lebas, E.; et al. Effect of Oral Azithromycin vs Placebo on COVID-19 Symptoms in Outpatients With SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA 2021, 326, 490–498. [Google Scholar] [CrossRef]
- Butler, C.C.; Yu, L.M.; Dorward, J.; Gbinigie, O.; Hayward, G.; Saville, B.R.; Van Hecke, O.; Berry, N.; Detry, M.A.; Saunders, C.; et al. Doxycycline for community treatment of suspected COVID-19 in people at high risk of adverse outcomes in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet Respir. Med. 2021, 9, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Living Guidance for Clinical Management of COVID-19: Living Guidance. 23 November 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 23 July 2022).
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov (accessed on 23 July 2022).
- Treatment and Pharmaceutical Prophylaxis of COVID-19. Available online: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/treatment (accessed on 23 July 2022).
- COVID-19 Rapid Guideline: Managing COVID-19. Available online: https://www.nice.org.uk/guidance/ng191/resources/fully-accessible-version-of-the-guideline-pdf-pdf-51035553326 (accessed on 23 July 2022).
- Bassetti, M.; Giacobbe, D.R.; Bruzzi, P.; Barisione, E.; Centanni, S.; Castaldo, N.; Corcione, S.; De Rosa, F.G.; Di Marco, F.; Gori, A.; et al. Clinical Management of Adult Patients with COVID-19 Outside Intensive Care Units: Guidelines from the Italian Society of Anti-Infective Therapy (SITA) and the Italian Society of Pulmonology (SIP). Infect. Dis. Ther. 2021, 10, 1837–1885. [Google Scholar] [CrossRef] [PubMed]
- Moreno-García, E.; Puerta-Alcalde, P.; Letona, L.; Meira, F.; Dueñas, G.; Chumbita, M.; Garcia-Pouton, N.; Monzó, P.; Lopera, C.; Serra, L.; et al. Bacterial co-infection at hospital admission in patients with COVID-19. Int. J. Infect. Dis. 2022, 118, 197–202. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; De Maio, F.; Carelli, S.; De Angelis, G.; Cacaci, M.; Montini, L.; Bello, G.; Cutuli, S.L.; Pintaudi, G.; Tanzarella, E.S.; et al. Staphylococcus aureus ventilator-associated pneumonia in patients with COVID-19: Clinical features and potential inference with lung dysbiosis. Crit. Care 2021, 25, 197. [Google Scholar] [CrossRef] [PubMed]
Author, Year and Country | Study Type | Setting | Study Population, Age (Mean), Sex (% Male) | COVID-19 Severity | Study Aim | Study Design | Study Results |
---|---|---|---|---|---|---|---|
Rashad A et al., 2020, Egypt [18] | Phase III, double-blinded, randomized clinical trial | A single clinical site in Egypt, from May 2020 to September 2020 | 305 confirmed mild COVID-19 patients, Age: 44.3, Sex (M): 70% | Mild COVID-19 infection | To assess superiority of azithromycin or clarithromycin plus the standard of care in patients with mild COVID-19 | Patients were randomized to three study arms: Azithromycin 500 mg/24 h for 7 days, Clarithromycin 500 mg/12 h for 7 days, or the control group | No benefit was observed in overall survival. The follow-up period was only 7 days |
RECOVERY Collaborative Group. 2020, UK [17] | Randomized, controlled, open-label, adaptive platform trial | 176 hospitals in the UK, Between April and November 2020 | 7763 COVID-19 patients, Age: 65.3, Sex (M): 62% | Mild COVID-19 infection | To evaluate the safety and efficacy of azithromycin in hospitalized COVID-19 patients | Patients were randomized to usual standard of care alone or usual standard of care plus azithromycin, 500 mg once per day for 10 days or until discharge | No significant difference was found in length of hospital stay or in mortality rate at 28 days |
Furtado R et al., 2020, Brazil [20] | Open-label, randomized clinical trial | 57 centers in Brazil, from March to May 2020 | 447 Severe COVID-19 patients, Age: 59.8, Sex (M): 65.9% | Severe COVID-19 infection | To assess the efficacy of azithromycin in improving clinical outcomes of COVID-19 patients | Patients were randomized 1:1 to azithromycin, 500 mg once daily for 10 days plus standard of care or to the standard of care alone, including hydroxychloroquine | No improvement in clinical outcomes was found |
Sivapalan P et al., 2020, Denmark [24] | Randomized, double-blinded, placebo-controlled trial | 6 hospitals in Denmark, between April and December 2020 | 117 hospitalized COVID-19 patients, Age: 65, Sex (M): 65% | Mild COVID-19 infection | To assess the efficacy of azithromycin and hydroxychloroquine in improving survival and length of hospitalization | The intervention arm received hydroxychloroquine, 200 mg twice daily for 15 days plus azithromycin, 500 mg daily for 3 days followed by 250 mg daily for 12 days. The control arm received placebo/placebo | The azithromycin and hydroxychloroquine combination did not improve survival or length of stay |
Author, Year and Country | Study Type | Setting | Study Population, Age (Mean), Sex (% Male) | Study Aim | Study Design | Study Results |
---|---|---|---|---|---|---|
Butler C et al., 2020, UK [40] | Open-label, multi-arm, adaptive platform randomized clinical trial | Primary centers across the UK, from July to December 2020 | 1792 suspected COVID-19 community patients, Age: 61.1, Sex (M): 44.1% | To assess the efficacy of doxycycline in high-risk COVID-19 patients | Participants randomized to usual care alone or usual care plus oral doxycycline, 200 mg on Day 1, then 100 mg once daily for 6 days | No improvement in recovery time, hospital admission rate or COVID-19 related mortality |
PRINCIPLE Trial Collaborative Group. 2020, UK [37] | Open-label, multi-arm, adaptive platform randomized clinical trial | Primary centers across the UK, from May to November 2020 | 2120 suspected COVID-19 patients, Age: 60.7, Sex (M): 43% | To assess the efficacy of azithromycin in high-risk COVID-19 patients | Participants randomized to usual care alone or usual care plus azithromycin, 500 mg daily for 3 days | No significant improvement in recovery time |
Hinks T et al., 2020, UK [38] | Prospective, open-label, randomized superiority clinical trial | 19 hospitals in the UK, from June 2020 to January 2021 | 298 community patients with mild to moderate COVID-19, Age: 45.9, Sex (M): 51.5% | To evaluate azithromycin efficacy in reducing hospital admission rate | Participants were randomized 1:1 to azithromycin, 500 mg daily for 14 days plus standard of care or standard of care alone | No improvement in mortality or in-hospital admission rate |
Oldenburg C et al., 2020, US [39] | Randomized, placebo-controlled trial | The US, from May 2020 to March 2021 | 263 community COVID-19 patients, Age: 42.7, Sex (M): 32.7% | To assess azithromycin efficacy in reducing self-reported COVID-19 symptoms at 14 days | Participants were randomized 2:1 to azithromycin, 1200 mg single oral dose or placebo | No significant difference in the proportion of participants reporting symptoms |
Author, Year | Study Design | Study Population, Setting | Type of the Clinical Specimens Collected for Bacterial Detection | Bacterial Coinfection, Percentage | Empirical Antibiotic Treatment at Hospital Admission, Percentage | Microbial Etiology |
---|---|---|---|---|---|---|
Garcia-Vidal C, 2021 [5] | Observational cohort study | 989 COVID-19 patients. All the hospital wards | Blood, normally sterile fluids, sputum and other samples | 7.2% | Yes, more than 90% of the patients | S. pneumoniae S. aureus P. aeruginosa E. coli |
Karami Z, 2020 [6] | Retrospective observational study | 925 COVID-19 patients. All the hospital wards | Sputum, blood cultures, pneumococcal and Legionella urinary antigen tests | 1.2% | Yes, 60.1% received antibiotics before hospital admission | E. coli S. aureus Achromobacter spp |
Wang L, 2020 [7] | Retrospective observational cohort study | 1396 COVID-19 patients. All the hospital wards | Nasopharyngeal or lower respiratory tract specimens | 2.7% | Yes, 98% received antibiotics at admission | E. coli (ESBL-producing) K. pneumoniae K. variicola P. mirabilis MRSA MSSA S. epidermidis Group A Streptococcus H. influenzae P. aeruginosa |
Falcone M, 2020 [8] | Prospective observational study | 315 COVID-19 patients. All the hospital wards | Pneumonia, urinary tract infection, skin and soft structure infection, intra-abdominal and bloodstream infection | 21.9% | Yes | Enterobacterales Non-fermenting Gram-negative bacilli Gram-positive bacteria Fungi |
Rebold N, 2022 [35] | Retrospective cohort study | 595 COVID-19 patients. All the hospital wards | Only blood | 4.2% (only blood infection) | Yes, 80% | Coagulase-negative Staphylococci (36%) S. aureus (20%) Enterococcus (16%) Enterobacterales (8%) |
Bilan J, 2022 [31] | Single-center observational study | 266 older adults with COVID-19. Department of Medicine | Any clinical specimen | 43% | Yes | S. haemolyticus S. aureus P. aeruginosa P. mirabilis P. acnes K. pneumoniae P. aeruginosa H. influenzae E. coli E. faecalis C. difficile |
Nasir N, 2021 [32] | Case–control study | 50 cases, 50 controls. All the hospital wards | Various sites including urinary tract, lungs, blood | 100% cases, N/A controls | Yes (cases: 100%, controls: 64%) | Acinetobacter spp. (22%) P. aeruginosa (21%) S. maltophilia (13%) S. aureus (10%) K. penumoniae (8%) E. coli (3%) |
Giannella M, 2022 [33] | Multicenter observational study | 1733 hospitalized COVID-19 patients. All the hospital wards | Any clinical specimen | 6.3% | Yes, 59.8% | Enterobacteriaceae (33.6%) S. pneumoniae (29.1%) E. Coli (28.2%) Coagulase-negative Staphylococci (10%) M. pneumoniae (8.2%) K. pneumoniae (6.4%) Others (19%) |
Ruiz-Bastián M, 2021 [13] | Retrospective observational cohort study | 1195 COVID-19 patients. Clinical Microbiology and Parasitology Department | Respiratory samples including bronchial aspirates, bronchoalveolar lavages and tracheal aspirates | 5.52% | Not assessed | Enterobacterales S. aureus P. aeruginosa |
Karolyi M, 2022 [14] | Retrospective observational cohort study | 60 COVID-19 patients. Infectious Diseases Department | Respiratory samples | 35% (monomicrobial) 28.3% (polymicrobial) | Yes, 73% of the patients | S. aureus (21.7%) K. pneumoniae (20%) H. influenzae (15%) |
Nori P, 2020 [10] | Retrospective observational cohort study | 4267 COVID-19 patients. Hospital wards, including intensive care unit | Blood or respiratory samples | 3.6% | Yes, 71% | S. aureus (30%) S. epidermidis (12%) Streptococcus spp. (10%) Enterococcus spp. (7%) E. coli (7%) P. aeruginosa (6%) Candida spp. (5%) Klebsiella spp. (3%) Enterobacter spp. (3%) |
Thoma R, 2022 [9] | Retrospective observational cohort study | 10 COVID-19 patients. Intensive care unit | Rectum, skin, urine, respiratory tract | 100% | Not assessed | Carbapenem-resistant A. baumannii |
Mustafa L, 2021 [11] | Retrospective observational cohort study | 52 COVID-19 patients. Intensive care unit | Nasopharyngeal swabs | Not assessed | Yes, 94% | Not reported |
Thomsen K, 2021 [12] | Observational cohort study | 34 COVID-19 patients. Intensive care unit | Lower respiratory samples | 3–21% | Yes, 59% | S. aureus S. pneumoniae |
Pourajam S, 2022 [34] | Retrospective cohort study | 553 COVID-19 patients. Intensive care unit | Blood, cerebrospinal fluid, sputum, stool, tracheal aspirate, wound and urine | 11.9% | Yes, 55.4% | K. pneumoniae (72.3%) A. baumannii (53.8%) E. cloacae (1.5%) E. coli (1.5%) P. aeruginosa (1.5%) |
Rouzé A, 2021 [36] | Multicenter retrospective cohort study | 568 COVID-19 patients. Intensive care unit | Endotracheal aspirates, blood, pneumococcal or Legionella urinary antigen test | 9.7% | Yes (88% at intensive care unit admission) | S. aureus (23.6%) S. pneumoniae (21.8) P. aeruginosa (10.9%) H. influenzae (9.1%) Streptococcus spp (7.3%) Other (40%) |
Guideline | Last Update | General Recommendations on Antibiotic Treatment | COVID-19 Inpatients | COVID-19 Outpatients |
---|---|---|---|---|
World Health Organization (WHO) [41] | November 2021 | Antibiotic therapy not recommended in patients with mild COVID-19. In patients with moderate COVID-19 antibiotics should not be prescribed unless a bacterial infection is suspected | In patients with severe COVID-19, the guideline recommends empiric antibiotic treatment, based on clinical judgment, patient host factors and local epidemiology, as soon as possible | Guideline recommends considering empiric antibiotic treatment in the elderly, particularly in long-term care facility setting |
National Institutes of Health (US) [42] | May 2022 | Empiric antibiotic treatment is not recommended | Guideline recommends following the guidelines established for non-COVID-19 patients | Antibiotic treatment is not recommended |
The European Centre for Disease Prevention and Control (Europe) [43] | February 2022 | Consider antibiotic treatment only if bacterial coinfection is suspected/confirmed | Routine azithromycin administration is not recommended | Antibiotic treatment only if bacterial coinfection is suspected/confirmed |
The National Institute for Health and Care Excellence (UK) [44] | April 2022 | Consider antibiotic administration only if bacterial coinfection is suspected or confirmed | Consider antibiotic administration only if bacterial coinfection is suspected or confirmed | Doxycycline is not recommended |
Italian Society of Anti-infective Therapy and Italian Society of Pulmonology (Italy) [45] | July 2021 | Antibiotic administration is not recommended in the absence of a proven bacterial infection | Consider empirical antibiotic treatment if radiological signs of pulmonary consolidative lesions. Collection of samples for culture or molecular detection before antibiotic administration is recommended | Azithromycin is not recommended |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. https://doi.org/10.3390/jcm11237207
Granata G, Schiavone F, Pipitone G, Taglietti F, Petrosillo N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. Journal of Clinical Medicine. 2022; 11(23):7207. https://doi.org/10.3390/jcm11237207
Chicago/Turabian StyleGranata, Guido, Francesco Schiavone, Giuseppe Pipitone, Fabrizio Taglietti, and Nicola Petrosillo. 2022. "Antibiotics Use in COVID-19 Patients: A Systematic Literature Review" Journal of Clinical Medicine 11, no. 23: 7207. https://doi.org/10.3390/jcm11237207
APA StyleGranata, G., Schiavone, F., Pipitone, G., Taglietti, F., & Petrosillo, N. (2022). Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. Journal of Clinical Medicine, 11(23), 7207. https://doi.org/10.3390/jcm11237207