Analysis of the Impact of the Presence of Phylum Cyanobacteria in the Microbiome of Patients with Breast Cancer on Their Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Patients
2.2. Distribution of Cyanobacteria Blooms in Korean Freshwater according to the Satellite
2.3. Isolation of the Extracellular Vesicles and DNA Extraction
2.4. Next-Generation Sequencing for Microbiome Analysis
2.5. Analysis of the Percentage of Cyanobacteria in the Microbiome of Patients with Breast Cancer
3. Results
3.1. Characteristics of Patients
3.2. Analysis of the Cyanobacterial Blooms in Republic of Korea
3.3. Characteristics of the Cyanobacteria Phylum
3.4. Analysis of the Relationship between the Presence of Cyanobacteria in the Microbiome and Liver Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.; Balakrishnan, V. Triple negative breast cancer: A review of present and future diagnostic modalities. Medicina 2021, 57, 62. [Google Scholar] [CrossRef] [PubMed]
- Munzone, E.; Colleoni, M. Optimal management of luminal breast cancer: How much endocrine therapy is long enough? Ther. Adv. Med. Oncol. 2018, 10, 1758835918777437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Nutrition and breast cancer: A literature review on prevention, treatment and recurrence. Nutrients 2019, 11, 1514. [Google Scholar] [CrossRef] [Green Version]
- Joseph, T.A.; Pe’er, I. An introduction to whole-metagenome shotgun sequencing studies. Methods Mol. Biol. 2021, 2243, 107–122. [Google Scholar]
- Haselkorn, R. Cyanobacteria. Curr. Biol. 2009, 19, R277–R278. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Rzymski, P. Non-photosynthetic melainabacteria (Cyanobacteria) in human gut: Characteristics and association with health. Life 2022, 12, 476. [Google Scholar] [CrossRef]
- Parida, S.; Sharma, D. The power of small changes: Comprehensive analyses of microbial dysbiosis in breast cancer. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 392–405. [Google Scholar] [CrossRef]
- Ranjbar, M.H.; Hamilton, D.P.; Etemad-Shahidi, A.; Helfer, F. Individual-based modelling of cyanobacteria blooms: Physical and physiological processes. Sci. Total Environ. 2021, 792, 148418. [Google Scholar] [CrossRef]
- Neilan, B.A.; Pearson, L.A.; Muenchhoff, J.; Moffitt, M.C.; Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 2013, 15, 1239–1253. [Google Scholar] [CrossRef]
- Wang, Z.; Akbar, S.; Sun, Y.; Gu, L.; Zhang, L.; Lyu, K.; Huang, Y.; Yang, Z. Cyanobacterial dominance and succession: Factors, mechanisms, predictions, and managements. J. Environ. Manag. 2021, 297, 113281. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Zerrifi, S.E.A.; Mugani, R.; Redouane, E.M.; El Khalloufi, F.; Campos, A.; Vasconcelos, V.; Oudra, B. Harmful cyanobacterial blooms (HCBs): Innovative green bioremediation process based on anti-cyanobacteria bioactive natural products. Arch. Microbiol. 2021, 203, 31–44. [Google Scholar] [CrossRef]
- Svirčev, Z.; Lalić, D.; Bojadžija Savić, G.; Tokodi, N.; Drobac Backović, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Arman, T.; Clarke, J.D. Microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. Toxins 2021, 13, 537. [Google Scholar] [CrossRef]
- Lad, A.; Breidenbach, J.D.; Su, R.C.; Murray, J.; Kuang, R.; Mascarenhas, A.; Najjar, J.; Patel, S.; Hegde, P.; Youssef, M.; et al. As we drink and breathe: Adverse health effects of microcystins and other harmful algal bloom toxins in the liver, gut, lungs and beyond. Life 2022, 12, 418. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M. Tumor promoters—Microcystin-LR, nodularin and TNF-α and human cancer development. Anticancer Agents Med. Chem. 2011, 11, 4–18. [Google Scholar] [CrossRef]
- Cox, P.A.; Banack, S.A.; Murch, S.J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 2003, 100, 13380–13383. [Google Scholar] [CrossRef] [Green Version]
- Villard, A.; Boursier, J.; Andriantsitohaina, R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: New players in the gut-liver axis? Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G485–G495. [Google Scholar] [CrossRef]
- An, J.; Kim, J.B.; Yang, E.Y.; Kim, H.O.; Lee, W.H.; Yang, J.; Kwon, H.; Paik, N.S.; Lim, W.; Kim, Y.K.; et al. Bacterial extracellular vesicles affect endocrine therapy in MCF7 cells. Medicine 2021, 100, e25835. [Google Scholar] [CrossRef]
- An, J.; Kwon, H.; Lim, W.; Moon, B.I. Staphylococcus aureus-derived extracellular vesicles enhance the efficacy of endocrine therapy in breast cancer cells. J. Clin. Med. 2022, 11, 2030. [Google Scholar] [CrossRef] [PubMed]
- Zlinszky, A.; Padányi-Gulyás, G. Ulyssys Water Quality Viewer technical description supplementary. Preprints 2020, 2020010386. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Kim, S.H.; Park, S.Y.; Park, B.Y.; Lee, J.H.; An, J.; Won, H.K.; Song, W.J.; Kwon, H.S.; Cho, Y.S.; et al. Evaluation of drug-induced liver injury developed during hospitalization using electronic health record (EHR)-based algorithm. Allergy Asthma Immunol. Res. 2020, 12, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Dubinkina, V.B.; Tyakht, A.V.; Odintsova, V.Y.; Yarygin, K.S.; Kovarsky, B.A.; Pavlenko, A.V.; Ischenko, D.S.; Popenko, A.S.; Alexeev, D.G.; Taraskina, A.Y.; et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome 2017, 5, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwenger, K.J.; Clermont-Dejean, N.; Allard, J.P. The role of the gut microbiome in chronic liver disease: The clinical evidence revised. JHEP Rep. 2019, 1, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541070 (accessed on 31 October 2022).
- Gärtner, G.; Stoyneva-Gärtner, M.; Uzunov, B. Algal toxic compounds and their aeroterrestrial, airborne and other extremophilic producers with attention to soil and plant contamination: A review. Toxins 2021, 13, 322. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Q.; Zhang, Z.; Hu, B.; Chen, J.; Chen, J.; Qian, H. Pollutant toxicology with respect to microalgae and cyanobacteria. J. Environ. Sci. 2021, 99, 175–186. [Google Scholar] [CrossRef]
- Pham, T.L.; Tran, T.H.Y.; Shimizu, K.; Li, Q.; Utsumi, M. Toxic cyanobacteria and microcystin dynamics in a tropical reservoir: Assessing the influence of environmental variables. Environ. Sci. Pollut. Res. Int. 2021, 28, 63544–63557. [Google Scholar] [CrossRef]
- Martins, A.; Moreira, C.; Vale, M.; Freitas, M.; Regueiras, A.; Antunes, A.; Vasconcelos, V. Seasonal dynamics of Microcystis spp. and their toxigenicity as assessed by qPCR in a temperate reservoir. Mar. Drugs 2011, 9, 1715–1730. [Google Scholar] [CrossRef] [Green Version]
- Safari, Z.; Gérard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol. Life Sci. 2019, 76, 1541–1558. [Google Scholar] [CrossRef]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef]
- Behrouz, V.; Aryaeian, N.; Zahedi, M.J.; Jazayeri, S. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: A randomized clinical trial. J. Food Sci. 2020, 85, 3611–3617. [Google Scholar] [CrossRef]
Characteristics | N (Percentage of the Total Patients) or Concentration |
---|---|
Female number (N) | 96 |
Age (years) | 51.5 ± 11.1 |
Body weight (kg) | 58.2 ± 9.4 |
Hight (cm) | 158.4 ± 6.6 |
BMI (kg/m2) | 23.2 ± 3.5 |
Below 18.5 | 5 (7.2%) |
18.5–24.9 | 64 (66.6%) |
25.0–29.9 | 21 (21.8%) |
30.0–34.9 | 6 (6.2%) |
Menopause | |
premenopause | 48 (50%) |
menopause | 46 (47.9%) |
nonresponse | 2 (2.0%) |
Stage | |
0 | 3 (3.1%) |
I | 44 (45.8%) |
II | 36 (37.5%) |
III | 13 (13.5%) |
Subtype | |
Luminal A | 36 (37.5%) |
Luminal B | 32 (33.3%) |
HER2 | 13 (13%) |
TNBC | 15 (15.6%) |
Tumor size (cm) | |
<2 | 53 (55.2%) |
2–4.9 | 38 (39.5%) |
≥5 | 5 (5.2%) |
Lymph node metastasis | |
Negative | 65 (67.7%) |
Positive | 31 (32.2%) |
Serologic tests | |
HDL cholesterol | 50.8 ± 13.2 (mg/dL) |
LDL cholesterol | 113.0 ± 34.3 (mg/dL) |
ALP | 205.6 ± 70.8 (IU/L) |
Glucose | 100.1 ± 14.6 (mg/dL) |
Eating habits | |
Omnivorous | 64 (66.6%) |
Vegetarian | 18 (18.7%) |
Meat-based diet | 5 (5.2%) |
Nonresponse | 9 (9.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Kil, B.-J.; Kwon, H.; Kim, Y.J. Analysis of the Impact of the Presence of Phylum Cyanobacteria in the Microbiome of Patients with Breast Cancer on Their Prognosis. J. Clin. Med. 2022, 11, 7272. https://doi.org/10.3390/jcm11247272
An J, Kil B-J, Kwon H, Kim YJ. Analysis of the Impact of the Presence of Phylum Cyanobacteria in the Microbiome of Patients with Breast Cancer on Their Prognosis. Journal of Clinical Medicine. 2022; 11(24):7272. https://doi.org/10.3390/jcm11247272
Chicago/Turabian StyleAn, Jeongshin, Bum-Jun Kil, Hyungju Kwon, and Young Ju Kim. 2022. "Analysis of the Impact of the Presence of Phylum Cyanobacteria in the Microbiome of Patients with Breast Cancer on Their Prognosis" Journal of Clinical Medicine 11, no. 24: 7272. https://doi.org/10.3390/jcm11247272
APA StyleAn, J., Kil, B.-J., Kwon, H., & Kim, Y. J. (2022). Analysis of the Impact of the Presence of Phylum Cyanobacteria in the Microbiome of Patients with Breast Cancer on Their Prognosis. Journal of Clinical Medicine, 11(24), 7272. https://doi.org/10.3390/jcm11247272