Evidence for Local Antibiotics in the Prevention of Infection in Orthopaedic Trauma
Abstract
:1. Introduction
2. Methods
3. Rationale
4. Carriers
Carrier | Materials | Antibiotics | Benefits | Disadvantages | References |
---|---|---|---|---|---|
PMMA | Polymethylmethacrylate | Heat stable only (Aminoglycosides, Glycopeptides, Tetracyclines, and Quinolones) | Availability, Occupies dead space | Not absorbable, long elution profile | [22,23,26] |
Ceramics | Calcium sulfate, calcium phosphate, or a combination | Aminoglycosides Glycopeptides Lipopeptides | Absorbable, faster resorption and elution profiles | Possible toxicity or hypercalcemia (rare), wound drainage, cost | [22,34,35] |
Hydrogels | PCLA-PEG-PCLA tri-block, poly(ether ester) SynBiosys, etc. | Variable | Absorbable, fast resorption, variety | Shorter release period, lack structural integrity, cost | [22,39,40] |
5. Effectiveness in Trauma
6. Potential Limitations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roser, M.; Ritchie, H. Burden of Disease. Available online: https://ourworldindata.org/burden-of-disease (accessed on 1 April 2022).
- Wu, A.-M.; Bisignano, C.; James, S.L.; Abady, G.G.; Abedi, A.; Abu-Gharbieh, E.; Alhassan, R.K.; Alipour, V.; Arabloo, J.; Asaad, M.; et al. Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021, 2, e580–e592. [Google Scholar] [CrossRef] [PubMed]
- Lawing, C.R.; Lin, F.-C.; Dahners, L.E. Local Injection of Aminoglycosides for Prophylaxis Against Infection in Open Fractures. J. Bone Jt. Surg. 2015, 97, 1844–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenker, M.L.; Yannascoli, S.; Baldwin, K.D.; Ahn, J.; Mehta, S. Does Timing to Operative Debridement Affect Infectious Complications in Open Long-Bone Fractures? A Systematic Review. J. Bone Jt. Surg. 2012, 94, 1057–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, A.K.; Goldberg, S.; Graham, J.; Malhotra, N.R.; Willis, M.C.; Mounasamy, V.; Guilford, K.; Duane, T.M.; Aboutanos, M.B.; Mayglothling, J.; et al. Open Extremity Fractures: Impact of Delay in Operative Debridement and Irrigation. J. Trauma Acute Care Surg. 2014, 76, 1201–1207. [Google Scholar] [CrossRef]
- Cancienne, J.M.; Burrus, M.T.; Weiss, D.B.; Yarboro, S.R. Applications of Local Antibiotics in Orthopedic Trauma. Orthop. Clin. N. Am. 2015, 46, 495–510. [Google Scholar] [CrossRef]
- Redfern, J.; Wasilko, S.M.; Groth, M.E.; Mcmillian, W.D.; Bartlett, C.S. Surgical Site Infections in Patients with Type 3 Open Fractures: Comparing Antibiotic Prophylaxis with Cefazolin plus Gentamicin versus Piperacillin/Tazobactam. J. Orthop. Trauma 2016, 30, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Metsemakers, W.J.; Kuehl, R.; Moriarty, T.F.; Richards, R.G.; Verhofstad, M.H.J.; Borens, O.; Kates, S.; Morgenstern, M. Infection after Fracture Fixation: Current Surgical and Microbiological Concepts. Injury 2018, 49, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Kennedy, S.A.; Bhandari, M.; Lopes, L.C.; Bergamaschi, C.d.C.; Carolina de Oliveira e Silva, M.; Bhatnagar, N.; Mousavi, S.M.; Khurshid, S.; Petrisor, B.; et al. Effects of Antibiotic Prophylaxis in Patients with Open Fracture of the Extremities: A Systematic Review of Randomized Controlled Trials. JBJS Rev. 2015, 3, e2. [Google Scholar] [CrossRef]
- Barker, F.G. Efficacy of Prophylactic Antibiotic Therapy in Spinal Surgery: A Meta-Analysis. Neurosurgery 2002, 51, 391–400. [Google Scholar] [CrossRef]
- Major Extremity Trauma Research Consortium (METRC); O’Toole, R.V.; Joshi, M.; Carlini, A.R.; Murray, C.K.; Allen, L.E.; Huang, Y.; Scharfstein, D.O.; O’Hara, N.N.; Gary, J.L.; et al. Effect of Intrawound Vancomycin Powder in Operatively Treated High-Risk Tibia Fractures: A Randomized Clinical Trial. JAMA Surg. 2021, 156, e207259. [Google Scholar] [CrossRef]
- Harris, A.M.; Althausen, P.L.; Kellam, J.; Bosse, M.J.; Castillo, R. Lower Extremity Assessment Project (LEAP) Study Group Complications Following Limb-Threatening Lower Extremity Trauma. J. Orthop. Trauma 2009, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Carver, D.C.; Kuehn, S.B.; Weinlein, J.C. Role of Systemic and Local Antibiotics in the Treatment of Open Fractures. Orthop. Clin. N. Am. 2017, 48, 137–153. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, R.V.; Joshi, M.; Carlini, A.R.; Murray, C.K.; Allen, L.E.; Scharfstein, D.O.; Gary, J.L.; Bosse, M.J.; Castillo, R.C.; METRC. Local Antibiotic Therapy to Reduce Infection After Operative Treatment of Fractures at High Risk of Infection: A Multicenter, Randomized, Controlled Trial (VANCO Study). J. Orthop. Trauma 2017, 31, S18–S24. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, M.; Vallejo, A.; McNally, M.A.; Moriarty, T.F.; Ferguson, J.Y.; Nijs, S.; Metsemakers, W.J. The Effect of Local Antibiotic Prophylaxis When Treating Open Limb Fractures: A Systematic Review and Meta-Analysis. Bone Jt. Res. 2018, 7, 447–456. [Google Scholar] [CrossRef]
- Craig, J.; Fuchs, T.; Jenks, M.; Fleetwood, K.; Franz, D.; Iff, J.; Raschke, M. Systematic Review and Meta-Analysis of the Additional Benefit of Local Prophylactic Antibiotic Therapy for Infection Rates in Open Tibia Fractures Treated with Intramedullary Nailing. Int. Orthop. 2014, 38, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.K.; Donnelley, C.A.; Tiee, M.; Roberts, H.J.; Von Kaeppler, E.; Shearer, D.; Morshed, S. Prophylactic Topical Antibiotics in Fracture Repair and Spinal Fusion. Adv. Orthop. 2021, 2021, 1949877. [Google Scholar] [CrossRef]
- Hospenthal, D.R.; Murray, C.K.; Andersen, R.C.; Blice, J.P.; Calhoun, J.H.; Cancio, L.C.; Chung, K.K.; Conger, N.G.; Crouch, H.K.; D’Avignon, L.C.; et al. Guidelines for the Prevention of Infection after Combat-Related Injuries. J. Trauma 2008, 64, S211–S220. [Google Scholar] [CrossRef] [Green Version]
- Buttaro, M.A.; Gimenez, M.I.; Greco, G.; Barcan, L.; Piccaluga, F. High Active Local Levels of Vancomycin without Nephrotoxicity Released from Impacted Bone Allografts in 20 Revision Hip Arthroplasties. Acta Orthop. 2005, 76, 336–340. [Google Scholar] [CrossRef]
- Huddleston, P. Intrawound Application of Vancomycin for Prophylaxis in Instrumented Thoracolumbar Fusions: Efficacy, Drug Levels, and Patient Outcomes. Yearb. Orthop. 2012, 2012, 326–328. [Google Scholar] [CrossRef]
- Armaghani, S.J.; Menge, T.J.; Lovejoy, S.A.; Mencio, G.A.; Martus, J.E. Safety of Topical Vancomycin for Pediatric Spinal Deformity: Nontoxic Serum Levels with Supratherapeutic Drain Levels. Spine 2014, 39, 1683–1687. [Google Scholar] [CrossRef]
- Metsemakers, W.-J.; Fragomen, A.T.; Moriarty, T.F.; Morgenstern, M.; Egol, K.A.; Zalavras, C.; Obremskey, W.T.; Raschke, M.; McNally, M.A. Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection. J. Orthop. Trauma 2020, 34, 18–29. [Google Scholar] [CrossRef] [PubMed]
- van Vugt, T.A.G.; Arts, J.J.; Geurts, J.A.P. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation. Front. Microbiol. 2019, 10, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neut, D.; van de Belt, H.; Stokroos, I.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Biomaterial-Associated Infection of Gentamicin-Loaded PMMA Beads in Orthopaedic Revision Surgery. J. Antimicrob. Chemother. 2001, 47, 885–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, H.; Gartmann, H. Infection Prevention and Surgical Management of Deep Insidious Infection in Total Endoprosthesis. Chir. Z. Alle Geb. Oper. Medizen 1972, 43, 446–453. [Google Scholar]
- Walenkamp, G.H.; Vree, T.B.; van Rens, T.J. Gentamicin-PMMA Beads. Pharmacokinetic and Nephrotoxicological Study. Clin. Orthop. 1986, 205, 171–183. [Google Scholar] [CrossRef]
- Barger, J.; Fragomen, A.T.; Rozbruch, S.R. Antibiotic-Coated Interlocking Intramedullary Nail for the Treatment of Long-Bone Osteomyelitis. JBJS Rev. 2017, 5, e5. [Google Scholar] [CrossRef]
- Yu, X.; Wu, H.; Li, J.; Xie, Z. Antibiotic Cement-Coated Locking Plate as a Temporary Internal Fixator for Femoral Osteomyelitis Defects. Int. Orthop. 2017, 41, 1851–1857. [Google Scholar] [CrossRef]
- Samara, E.; Moriarty, T.; Decosterd, L.; Richards, R.; Gautier, E.; Wahl, P. Antibiotic Stability over Six Weeks in Aqueous Solution at Body Temperature with and without Heat Treatment That Mimics the Curing of Bone Cement. Bone Jt. Res. 2017, 6, 296–306. [Google Scholar] [CrossRef]
- Greene, N.; Holtom, P.; Warren, C.; Ressler, R.; Shepherd, L.; McPherson, E.; Patzakis, M. In Vitro Elution of Tobramycin and Vancomycin Polymethylmethacrylate Beads and Spacers from Simplex and Palacos. Am. J. Orthop. 1998, 27, 201–205. [Google Scholar]
- van de Belt, H.; Neut, D.; Uges, D.R.; Schenk, W.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Surface Roughness, Porosity and Wettability of Gentamicin-Loaded Bone Cements and Their Antibiotic Release. Biomaterials 2000, 21, 1981–1987. [Google Scholar] [CrossRef]
- Parvizi, J.; Saleh, K.J.; Ragland, P.S.; Pour, A.E.; Mont, M.A. Efficacy of Antibiotic-Impregnated Cement in Total Hip Replacement. Acta Orthop. 2008, 79, 335–341. [Google Scholar] [CrossRef] [PubMed]
- McKee, M.D.; Li-Bland, E.A.; Wild, L.M.; Schemitsch, E.H. A Prospective, Randomized Clinical Trial Comparing an Antibiotic-Impregnated Bioabsorbable Bone Substitute with Standard Antibiotic-Impregnated Cement Beads in the Treatment of Chronic Osteomyelitis and Infected Nonunion. J. Orthop. Trauma 2010, 24, 483–490. [Google Scholar] [CrossRef] [PubMed]
- McConoughey, S.J.; Howlin, R.P.; Wiseman, J.; Stoodley, P.; Calhoun, J.H. Comparing PMMA and Calcium Sulfate as Carriers for the Local Delivery of Antibiotics to Infected Surgical Sites. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.; Diefenbeck, M.; McNally, M. Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections. J. Bone Jt. Infect. 2017, 2, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Howlin, R.P.; Brayford, M.J.; Webb, J.S.; Cooper, J.J.; Aiken, S.S.; Stoodley, P. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections. Antimicrob. Agents Chemother. 2015, 59, 111–120. [Google Scholar] [CrossRef] [Green Version]
- McNally, M.A.; Ferguson, J.Y.; Lau, A.C.K.; Diefenbeck, M.; Scarborough, M.; Ramsden, A.J.; Atkins, B.L. Single-Stage Treatment of Chronic Osteomyelitis with a New Absorbable, Gentamicin-Loaded, Calcium Sulphate/Hydroxyapatite Biocomposite: A Prospective Series of 100 Cases. Bone Jt. J. 2016, 98-B, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.Y.; Dudareva, M.; Riley, N.D.; Stubbs, D.; Atkins, B.L.; McNally, M.A. The Use of a Biodegradable Antibiotic-Loaded Calcium Sulphate Carrier Containing Tobramycin for the Treatment of Chronic Osteomyelitis: A Series of 195 Cases. Bone Jt. J. 2014, 96-B, 829–836. [Google Scholar] [CrossRef]
- Boot, W.; Gawlitta, D.; Nikkels, P.G.J.; Pouran, B.; van Rijen, M.H.P.; Dhert, W.J.A.; Vogely, H.C. Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model. Clin. Orthop. Relat. Res. 2017, 475, 1911–1919. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J. Antimicrobial Hydrogels: Promising Materials for Medical Application. Int. J. Nanomed. 2018, 13, 2217–2263. [Google Scholar] [CrossRef] [Green Version]
- Hatch, M.D.; Daniels, S.D.; Glerum, K.M.; Higgins, L.D. The Cost Effectiveness of Vancomycin for Preventing Infections after Shoulder Arthroplasty: A Break-Even Analysis. J. Shoulder Elb. Surg. 2017, 26, 472–477. [Google Scholar] [CrossRef]
- British Pound to US Dollar Spot Exchange Rates for 2017. Available online: https://www.exchangerates.org.uk/GBP-USD-spot-exchange-rates-history-2017.html (accessed on 5 January 2022).
- Geurts, J.; van Vugt, T.; Thijssen, E.; Arts, J.J. Cost-Effectiveness Study of One-Stage Treatment of Chronic Osteomyelitis with Bioactive Glass S53P4. Materials 2019, 12, 3209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trentinaglia, M.T.; Van Der Straeten, C.; Morelli, I.; Logoluso, N.; Drago, L.; Romanò, C.L. Economic Evaluation of Antibacterial Coatings on Healthcare Costs in First Year Following Total Joint Arthroplasty. J. Arthroplast. 2018, 33, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.-Y.; Herwaldt, L.A.; Blevins, A.E.; Cho, E.; Schweizer, M.L. Effectiveness of Local Vancomycin Powder to Decrease Surgical Site Infections: A Meta-Analysis. Spine J. 2014, 14, 397–407. [Google Scholar] [CrossRef]
- Major Extremity Trauma Research Consortium. Topical Antibiotic Therapy to Reduce Infection after Operative Treatment of Fractures at High Risk of Infection: TOBRA—A Multicenter Randomized Controlled Trial. Available online: https://clinicaltrials.gov/ct2/show/NCT04597008 (accessed on 8 December 2022).
- von Kaeppler, E.P.; Donnelley, C.; Ali, S.H.; Roberts, H.J.; Ibrahim, J.M.; Wu, H.-H.; Eliezer, E.N.; Porco, T.C.; Haonga, B.T.; Morshed, S.; et al. A Study Protocol for a Pilot Masked, Randomized Controlled Trial Evaluating Locally-Applied Gentamicin versus Saline in Open Tibia Fractures (PGO-Tibia) in Dar Es Salaam, Tanzania. Pilot Feasibility Stud. 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Dodson, V.; Majmundar, N.; Swantic, V.; Assina, R. The Effect of Prophylactic Vancomycin Powder on Infections Following Spinal Surgeries: A Systematic Review. Neurosurg. Focus 2019, 46, E11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemans, J.V.C.; Wijdicks, S.P.J.; Boot, W.; Govaert, G.A.M.; Houwert, R.M.; Öner, F.C.; Kruyt, M.C. Intrawound Treatment for Prevention of Surgical Site Infections in Instrumented Spinal Surgery: A Systematic Comparative Effectiveness Review and Meta-Analysis. Glob. Spine J. 2019, 9, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Tubaki, V.R.; Rajasekaran, S.; Shetty, A.P. Effects of Using Intravenous Antibiotic Only versus Local Intrawound Vancomycin Antibiotic Powder Application in Addition to Intravenous Antibiotics on Postoperative Infection in Spine Surgery in 907 Patients. Spine 2013, 38, 2149–2155. [Google Scholar] [CrossRef]
- Martin, J.R.; Adogwa, O.; Brown, C.R.; Bagley, C.A.; Richardson, W.J.; Lad, S.P.; Kuchibhatla, M.; Gottfried, O.N. Experience with Intrawound Vancomycin Powder for Spinal Deformity Surgery. Spine 2014, 39, 177–184. [Google Scholar] [CrossRef]
- Rathbone, C.R.; Cross, J.D.; Brown, K.V.; Murray, C.K.; Wenke, J.C. Effect of Various Concentrations of Antibiotics on Osteogenic Cell Viability and Activity. J. Orthop. Res. 2011, 29, 1070–1074. [Google Scholar] [CrossRef]
- Lindsey, R.W.; Probe, R.; Miclau, T.; Alexander, J.W.; Perren, S.M. The Effects of Antibiotic-Impregnated Autogeneic Cancellous Bone Graft on Bone Healing. Clin. Orthop. Relat. Res. 1993, 291, 303–312. [Google Scholar] [CrossRef]
- Dovas, S.; Liakopoulos, V.; Papatheodorou, L.; Chronopoulou, I.; Papavasiliou, V.; Atmatzidis, E.; Giannopoulou, M.; Eleftheriadis, T.; Simopoulou, T.; Karachalios, T. Acute Renal Failure after Antibiotic-Impregnated Bone Cement Treatment of an Infected Total Knee Arthroplasty. Clin. Nephrol. 2008, 69, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, A.I.; Okroj, K.T.; Rogers, T.; Della Valle, C.J.; Sporer, S.M. Nephrotoxicity after the Treatment of Periprosthetic Joint Infection with Antibiotic-Loaded Cement Spacers. J. Arthroplast. 2018, 33, 2225–2229. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, R.V.; Degani, Y.; Carlini, A.R.; Castillo, R.C.; O’Hara, N.N.; Joshi, M.; Metrc, A. Systemic Absorption and Nephrotoxicity Associated with Topical Vancomycin Powder for Fracture Surgery. J. Orthop. Trauma 2021, 35, 29–34. [Google Scholar] [CrossRef]
- Henry, S.L.; Seligson, D.; Mangino, P.; Popham, G.J. Antibiotic-Impregnated Beads. Part I: Bead Implantation versus Systemic Therapy. Orthop. Rev. 1991, 20, 242–247. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, M.J.; Brown, K.E.; Morshed, S.; Shearer, D.W. Evidence for Local Antibiotics in the Prevention of Infection in Orthopaedic Trauma. J. Clin. Med. 2022, 11, 7461. https://doi.org/10.3390/jcm11247461
Flores MJ, Brown KE, Morshed S, Shearer DW. Evidence for Local Antibiotics in the Prevention of Infection in Orthopaedic Trauma. Journal of Clinical Medicine. 2022; 11(24):7461. https://doi.org/10.3390/jcm11247461
Chicago/Turabian StyleFlores, Michael J., Kelsey E. Brown, Saam Morshed, and David W. Shearer. 2022. "Evidence for Local Antibiotics in the Prevention of Infection in Orthopaedic Trauma" Journal of Clinical Medicine 11, no. 24: 7461. https://doi.org/10.3390/jcm11247461
APA StyleFlores, M. J., Brown, K. E., Morshed, S., & Shearer, D. W. (2022). Evidence for Local Antibiotics in the Prevention of Infection in Orthopaedic Trauma. Journal of Clinical Medicine, 11(24), 7461. https://doi.org/10.3390/jcm11247461