Sex-Associated Differences in Short-Term Outcomes in Patients with Deep Sternal Wound Infection after Open-Heart Surgery
Abstract
:1. Introduction
2. Materials and Methods
- Purulent secretion from the wound.
- Swab culture isolated from the wound.
- Sternal instability with chest pain and fever (>38.5 °C).
- Mediastinitis or bone necrosis.
- Surgery performed under cardio-pulmonary bypass.
- Minimally invasive direct coronary artery bypass (MIDCAB) grafting.
- Off pump coronary artery bypass (OPCAB) grafting.
- Minimally invasive mitral valve repair/replacement.
- Minimally invasive aortic valve replacement.
2.1. Data Collection
2.2. Outcome Analysis
2.3. Ethics
2.4. Statistical Methods
3. Results
3.1. Baseline and Preoperative Data
3.2. Intraoperative Data
3.3. Wound Revision Data
3.4. Primary and Secondary Outcomes
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubota, H.; Miyata, H.; Motomura, N.; Ono, M.; Takamoto, S.; Harii, K.; Oura, N.; Hirabayashi, S.; Kyo, S. Deep sternal wound infection after cardiac surgery. J. Cardiothorac. Surg. 2013, 8, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotogni, P.; Barbero, C.; Rinaldi, M. Deep sternal wound infection after cardiac surgery: Evidences and controversies. World J. Crit. Care Med. 2015, 4, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Abboud, C.S.; Wey, S.B.; Baltar, V.T. Risk factors for mediastinitis after cardiac surgery. Ann. Thorac. Surg. 2004, 77, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Vos, R.J.; van Putte, B.P.; Kloppenburg, G.T.L. Prevention of deep sternal wound infection in cardiac surgery: A literature review. J. Hosp. Infect. 2018, 100, 411–420. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Hunt, D.R. The surgical infection prevention and surgical care improvement projects: National initiatives to improve outcomes for patients having surgery. Clin. Infect. Dis. 2006, 43, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filsoufi, F.; Castillo, J.G.; Rahmanian, P.B.; Broumand, S.R.; Silvay, G.; Carpentier, A.; Adams, D.H. Epidemiology of deep sternal wound infection in cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2009, 23, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Oswald, I.; Boening, A.; Pons-Kuehnemann, J.; Grieshaber, P. Wound Infection after CABG Using Internal Mammary Artery Grafts: A Meta-Analysis. Thorac. Cardiovasc. Surg. 2021, 69, 639–648. [Google Scholar] [CrossRef]
- Vos, R.J.; Yilmaz, A.; Sonker, U.; Kelder, J.C.; Kloppenburg, G.T. Vacuum-assisted closure of post-sternotomy mediastinitis as compared to open packing. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 17–21. [Google Scholar] [CrossRef]
- Sjögren, J.; Nilsson, J.; Gustafsson, R.; Malmsjö, M.; Ingemansson, R. The impact of vacuum-assisted closure on long-term survival after post-sternotomy mediastinitis. Ann. Thorac. Surg. 2005, 80, 1270–1275. [Google Scholar] [CrossRef]
- Enginoev, S.; Rad, A.A.; Ekimov, S.; Kondrat’Ev, D.; Magomedov, G.; Amirhanov, A.; Tsaroev, B.; Ziankou, A.; Motreva, A.; Chernov, I.; et al. Risk Factors for Deep Sternal Wound Infection after Off-Pump Coronary Artery Bypass Grafting: A Case-Control Study. Braz. J. Cardiovasc. Surg. 2022, 37, 13–19. [Google Scholar] [CrossRef]
- Bitkover, C.Y.; Gårdlund, B. Mediastinitis after cardiovascular operations: A case-control study of risk factors. Ann. Thorac. Surg. 1998, 65, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Chaker, Z.; Badhwar, V.; Alqahtani, F.; Aljohani, S.; Zack, C.J.; Holmes, D.R.; Rihal, C.S.; Alkhouli, M. Sex Differences in the Utilization and Outcomes of Surgical Aortic Valve Replacement for Severe Aortic Stenosis. J. Am. Heart Assoc. 2017, 6, e006370. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Dinh, D.; Smith, J.A.; Shardey, G.; Reid, C.M.; Newcomb, A.E. Sex differences in outcomes following isolated coronary artery bypass graft surgery in Australian patients: Analysis of the Australasian Society of Cardiac and Thoracic Surgeons cardiac surgery database. Eur. J. Cardiothorac. Surg. 2012, 41, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Guru, V.; Fremes, S.E.; Austin, P.C.; Blackstone, E.H.; Tu, J.V. Gender differences in outcomes after hospital discharge from coronary artery bypass grafting. Circulation 2006, 113, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Eifert, S.; Pfannmüller, B.; Garbade, J.; Vollroth, M.; Misfeld, M.; Borger, M.; Mohr, F.W.; Seeburger, J. Gender differences in mitral valve surgery. Thorac. Cardiovasc. Surg. 2013, 61, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Selten, K.; Schnoering, H.; Zayat, R.; Aljalloud, A.; Moza, A.; Autschbach, R.; Tewarie, L. Prevention of Sternal Wound Infections in Women Using an External Sternum Fixation Corset. Ann. Thorac. Cardiovasc. Surg. 2021, 27, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Gatti, G.; Maschietto, L.; Morosin, M.; Russo, M.; Benussi, B.; Forti, G.; Dreas, L.; Sinagra, G.; Pappalardo, A. Routine use of bilateral internal thoracic artery grafting in women: A risk factor analysis for poor outcomes. Cardiovasc. Revasc. Med. 2017, 18, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Toumpoulis, I.K.; Anagnostopoulos, C.E.; Balaram, S.K.; Rokkas, C.K.; Swistel, D.; Ashton, R.C.; DeRose, J.J. Assessment of independent predictors for long-term mortality between women and men after coronary artery bypass grafting: Are women different from men? J. Thorac. Cardiovasc. Surg. 2006, 131, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Brandrup-Wognsen, G.; Berggren, H.; Hartford, M.; Hjalmarson, A.; Karlsson, T.; Herlitz, J. Female sex is associated with increased mortality and morbidity early, but not late, after coronary artery bypass grafting. Eur. Heart J. 1996, 17, 1426–1431. [Google Scholar] [CrossRef] [Green Version]
- Abramov, D.; Tamariz, M.G.; Sever, J.Y.; Christakis, G.T.; Bhatnagar, G.; Heenan, A.L.; Goldman, B.S.; Fremes, S. The influence of gender on the outcome of coronary artery bypass surgery. Ann. Thorac. Surg. 2000, 70, 800–805. [Google Scholar] [CrossRef]
- Hammar, N.; Sandberg, E.; Larsen, F.F.; Ivert, T. Comparison of early and late mortality in men and women after isolated coronary artery bypass graft surgery in Stockholm, Sweden, 1980 to 1989. J. Am. Coll. Cardiol. 1997, 29, 659–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, F.H.; Carey, J.S.; Grover, F.L.; Bero, J.W.; Hartz, R.S. Impact of gender on coronary bypass operative mortality. Ann. Thorac. Surg. 1998, 66, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Humphries, K.; Izadnegahdar, M.; Sedlak, T.; Saw, J.; Johnston, N.; Schenck-Gustafsson, K.; Shah, R.; Regitz-Zagrosek, V.; Grewal, J.; Vaccarino, V.; et al. Sex differences in cardiovascular disease – Impact on care and outcomes. Front. Neuroendocr. 2017, 46, 46–70. [Google Scholar] [CrossRef]
- Toumpoulis, I.K.; Anagnostopoulos, C.E.; Derose, J.J., Jr.; Swistel, D.G. The impact of deep sternal wound infection on long-term survival after coronary artery bypass grafting. Chest 2005, 127, 464–471. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Haneya, A.; Straburzyńska-Migaj, E.; Bociański, M.; Jemielity, M. Gender differences in coronary artery diameters and survival results after off-pump coronary artery bypass (OPCAB) procedures. J. Thorac. Dis. 2021, 13, 2867–2873. [Google Scholar] [CrossRef]
- Furui, M.; Kong, P.K.; Moorthy, P.S.K.; Soon, C.K.; Akhtar, K.M.A.; Shamsuddin, A.M.; Dillon, J. Risk Factors for Sternal Wound Infection after Coronary Artery Bypass Grafting in Patients with and without Diabetes. Int. Heart J. 2022, 63, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Bryan, C.S.; Yarbrough, W.M. Preventing deep wound infection after coronary artery bypass grafting: A review. Tex. Heart Inst. J. 2013, 40, 125–139. (In English) [Google Scholar]
- Guru, V.; Fremes, S.E.; Tu, J.V. Time-related mortality for women after coronary artery bypass graft surgery: A population-based study. J. Thorac. Cardiovasc. Surg. 2004, 127, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Itagaki, S.; Cavallaro, P.; Adams, D.H.; Chikwe, J. Bilateral internal mammary artery grafts, mortality and morbidity: An analysis of 1 526 360 coronary bypass operations. Heart 2013, 99, 849–853. [Google Scholar] [CrossRef]
- Kouchoukos, N.T.; Wareing, T.H.; Murphy, S.F.; Pelate, C.; Marshall, W.G., Jr. Risks of bilateral internal mammary artery bypass grafting. Ann. Thorac. Surg. 1990, 49, 210–217. [Google Scholar] [CrossRef]
- Seyfer, A.E.; Shriver, C.D.; Miller, T.R.; Graeber, G.M. Sternal blood flow after median sternotomy and mobilization of the internal mammary arteries. Surgery 1988, 104, 899–904. (In English) [Google Scholar] [PubMed]
- Rubens, F.D.; Chen, L.; Bourke, M. Assessment of the Association of Bilateral Internal Thoracic Artery Skeletonization and Sternal Wound Infection After Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2016, 101, 1677–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudino, M.; Angelini, G.D.; Antoniades, C.; Bakaeen, F.; Benedetto, U.; Calafiore, A.M.; Di Franco, A.; Di Mauro, M.; Fremes, S.E.; Girardi, L.N.; et al. Off-Pump Coronary Artery Bypass Grafting: 30 Years of Debate. J. Am. Heart Assoc. 2018, 7, e009934. [Google Scholar] [CrossRef] [PubMed]
- Taggart, D.P.; Altman, D.G.; Gray, A.M.; Lees, B.; Gerry, S.; Benedetto, U.; Flather, M. Randomized Trial of Bilateral versus Single Internal-Thoracic-Artery Grafts. N. Engl. J. Med. 2016, 375, 2540–2549. [Google Scholar] [CrossRef] [Green Version]
- Milano, C.A.; Kesler, K.; Archibald, N.; Sexton, D.J.; Jones, R.H. Mediastinitis after coronary artery bypass graft surgery. Risk factors and long-term survival. Circulation 1995, 92, 2245–2251. [Google Scholar] [CrossRef]
- Raza, S.; Sabik, J.F., 3rd; Masabni, K.; Ainkaran, P.; Lytle, B.W.; Blackstone, E.H. Surgical revascularization techniques that minimize surgical risk and maximize late survival after coronary artery bypass grafting in patients with diabetes mellitus. J. Thorac. Cardiovasc. Surg. 2014, 148, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Kieser, T.M.; Rose, M.S.; Aluthman, U.; Montgomery, M.; Louie, T.; Belenkie, I. Toward zero: Deep sternal wound infection after 1001 consecutive coronary artery bypass procedures using arterial grafts: Implications for diabetic patients. J. Thorac. Cardiovasc. Surg. 2014, 148, 1887–1895. [Google Scholar] [CrossRef] [Green Version]
- Copeland, M.; Senkowski, C.; Ulcickas, M.; Mendelson, M.; Griepp, R.B. Breast size as a risk factor for sternal wound complications following cardiac surgery. Arch. Surg. 1994, 129, 757–759. [Google Scholar] [CrossRef]
- Bor, D.H.; Rose, R.M.; Modlin, J.F.; Weintraub, R.; Friedland, G.H. Mediastinitis after cardiovascular surgery. Rev. Infect. Dis. 1983, 5, 885–897. [Google Scholar] [CrossRef]
- Gummert, J.F.; Barten, M.J.; Hans, C.; Kluge, M.; Doll, N.; Walther, T.; Hentschel, B.; Schmitt, D.V.; Mohr, F.W.; Diegeler, A. Mediastinitis and Cardiac Surgery-an Updated Risk Factor Analysis in 10,373 Consecutive Adult Patients. Thorac. Cardiovasc. Surg. 2002, 50, 87–91. [Google Scholar] [CrossRef]
- Borger, M.A.; Rao, V.; Weisel, R.D.; Ivanov, J.; Cohen, G.; Scully, H.E.; David, T.E. Deep sternal wound infection: Risk factors and outcomes. Ann. Thorac. Surg. 1998, 65, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Silbiger, S.; Neugarten, J. Gender and human chronic renal disease. Gend. Med. 2008, 5, S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Neugarten, J. Gender and the progression of renal disease. J. Am. Soc. Nephrol. 2002, 13, 2807–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merz, C.N.B.; Dember, L.M.; Ingelfinger, J.R.; Vinson, A.; Neugarten, J.; Sandberg, K.L.; Sullivan, J.C.; Maric-Bilkan, C.; Rankin, T.L.; Kimmel, P.L.; et al. Sex and the kidneys: Current understanding and research opportunities. Nat. Rev. Nephrol. 2019, 15, 776–783. [Google Scholar] [CrossRef]
before PSM | after PSM | |||||
---|---|---|---|---|---|---|
Male (n = 150) | Female (n = 67) | p-Value | Male (n = 62) | Female (n = 62) | p-Value | |
Age (years), mean ± SD | 63 ± 12 | 66 ± 12 | 0.606 | 64 ± 11 | 66 ± 13 | 0.088 |
BMI (kg/m2), mean ± SD | 28.6 ± 5.0 | 29.0 ± 7.4 | 0.007 | 29.7 ± 5.2 | 29.4 ± 7.3 | 0.905 |
Diabetes, n (%) | 66 (44.0%) | 36 (53.7%) | 0.293 | 32 (51.6%) | 33 (53.2%) | 0.857 |
Hyperlipidemia, n (%) | 118 (78.7%) | 58 (86.6%) | 0.347 | 46 (74.2%) | 53 (85.5%) | 0.117 |
Arterial hypertension, n (%) | 136 (90.7%) | 62 (92.5%) | 0.761 | 56 (90.3%) | 57 (91.9%) | 0.752 |
Smoker, n (%) | 73 (48.7%) | 25 (37.3%) | 0.290 | 29 (46.8%) | 22 (35.5%) | 0.229 |
COPD, n (%) | 31 (20.7%) | 12 (17.9%) | 0.882 | 15 (24.2%) | 12 (19.4%) | 0.218 |
PVD, n (%) | 22 (14.8%) | 16 (23.9%) | 0.261 | 10 (16.1%) | 15 (24.2%) | 0.135 |
Renal insufficiency, n (%) | 40 (26.7%) | 15 (22.7%) | 0.274 | 16 (25.8%) | 15 (24.2%) | 0.597 |
before PSM | after PSM | |||||
---|---|---|---|---|---|---|
Male (n = 150) | Female (n = 67) | p-Value | Male (n = 62) | Female (n = 62) | p-Value | |
CABG, n (%) | 111 (74.0%) | 40 (59.7%) | 0.362 | 44 (71.0%) | 37 (59.7%) | 0.186 |
Heart valve surgery, n (%) | 39 (26.0%) | 27 (40.2%) | 0.052 | 18 (29.0%) | 25 (40.3%) | 0.073 |
Urgent procedure, n (%) | 30 (20.1%) | 13 (19.4%) | 0.769 | 10 (16.1%) | 11 (17.7%) | 0.811 |
CPR before surgery, n (%) | 7 (4.7%) | 0 (0.0%) | 0.071 | 3 (4.8%) | 0 (0.0%) | 0.244 |
Reoperation, n (%) | 9 (6.1%) | 1 (1.5%) | 0.126 | 2 (3.2%) | 1 (1.6%) | 0.346 |
Use of left ITA graft, n (%) | 125 (83.3%) | 53 (80.3%) | 0.360 | 47 (75.8%) | 49 (80.3%) | 0.545 |
Use of both ITA graft, n (%) | 53 (35.3%) | 14 (20.9%) | 0.023 | 15 (24.2%) | 14 (22.6%) | 0.832 |
Bone wax, n (%) | 71 (48.3%) | 26 (39.4%) | 0.480 | 23 (37.1%) | 25 (41.0%) | 0.811 |
CPB time (min), mean ± SD | 96.4 ± 60.3 | 96.5 ± 48.3 | 0.193 | 97 ± 52 | 99 ± 46 | 0.505 |
CC time (min), mean ± SD | 57.6 ± 41.7 | 60.0 ± 32.6 | 0.425 | 58 ± 35 | 61 ± 33 | 0.749 |
before PSM | after PSM | |||||
---|---|---|---|---|---|---|
Male (n = 150) | Female (n = 67) | p-Value | Male (n = 62) | Female (n = 62) | p-Value | |
HbA1c, %, mean ± SD | 6.8 ± 1.5 | 7.1 ± 1.4 | 0.686 | 6.5 ± 1.5 | 7.0 ± 1.4 | 0.667 |
CRP mg/L, mean ± SD | 93.4 ± 85.8 | 94.4 ± 83.9 | 0.969 | 104 ± 90 | 97 ± 83 | 0.676 |
Leukocytes 10×9/L, mean ± SD | 10.1 ± 4.4 | 10.0 ± 3.3 | 0.090 | 9.4 ± 3.8 | 9.4 ± 3.6 | 0.653 |
Wound secretion, n (%) | 28 (20.4%) | 10 (16.4%) | 0.563 | 13 (22.4%) | 9 (16.1%) | 0.391 |
Sternal instability, n (%) | 77(56.2%) | 36 (59.0%) | 0.417 | 29 (50.9%) | 32 (57.1%) | 0.504 |
Sternal wire removal, n (%) | 72 (53.7%) | 28 (46.7%) | 0.225 | 38 (61.2%) | 25 (40.3%) | 0.032 |
Direct wound closure, n (%) | 32 (23.4%) | 9 (14.8%) | 0.116 | 11 (17.7%) | 10 (16.1%) | 0.125 |
VAC therapy, n (%) | 105 (76.6%) | 52 (85.2%) | 0.188 | 51 (82.3%) | 52 (83.9%) | 0.432 |
VAC therapy, days, median ± SD | 17 ± 13 | 16 ± 14 | 0.265 | 18 ± 14 | 17 ± 15 | 0.324 |
before PSM | after PSM | |||||
---|---|---|---|---|---|---|
Male (n = 150) | Female (n = 67) | p-Value | Male (n = 62) | Female (n = 62) | p-Value | |
MV, hours, mean ± SD | 90.3 ± 27.2 | 39.0 ± 53.7 | 0.005 | 35 ± 50 | 39 ± 55 | 0.527 |
Tracheotomy, n (%) | 9 (6.1%) | 0 (0.0%) | 0.033 | 2 (3.25) | 0 (0.0%) | 0.496 |
Postoperative delirium, n (%) | 36 (24.5%) | 11 (16.9%) | 0.221 | 16 (25.8%) | 11 (18.3%) | 0.386 |
Acute renal failure, n (%) | 41 (27.7%) | 8 (12.1%) | 0.013 | 21 (33.9%) | 8 (13.1%) | 0.010 |
Dialysis, n (%) | 8 (5.4%) | 5 (7.6%) | 0.547 | 3 (4.8%) | 5 (8.2%) | 0.491 |
ICU stay, days, mean ± SD | 7 ± 9 | 5 ± 4 | 0.004 | 6 ± 7 | 4 ± 3 | 0.179 |
Hospital stay, days, mean ± SD | 29 ± 13 | 20 ± 14 | 0.087 | 29 ± 12 | 19 ± 14 | 0.093 |
In-hospital mortality, n (%) | 5 (3.4%) | 2 (3.0%) | 0.622 | 3 (4.8%) | 2 (3.3%) | 0.680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasivskyi, I.; Ivanov, B.; Eghbalzadeh, K.; Fehlau, F.; Gerfer, S.; Großmann, C.; Elderia, A.; Sabashnikov, A.; Rahmanian, P.B.; Mader, N.; et al. Sex-Associated Differences in Short-Term Outcomes in Patients with Deep Sternal Wound Infection after Open-Heart Surgery. J. Clin. Med. 2022, 11, 7510. https://doi.org/10.3390/jcm11247510
Krasivskyi I, Ivanov B, Eghbalzadeh K, Fehlau F, Gerfer S, Großmann C, Elderia A, Sabashnikov A, Rahmanian PB, Mader N, et al. Sex-Associated Differences in Short-Term Outcomes in Patients with Deep Sternal Wound Infection after Open-Heart Surgery. Journal of Clinical Medicine. 2022; 11(24):7510. https://doi.org/10.3390/jcm11247510
Chicago/Turabian StyleKrasivskyi, Ihor, Borko Ivanov, Kaveh Eghbalzadeh, Frederike Fehlau, Stephen Gerfer, Clara Großmann, Ahmed Elderia, Anton Sabashnikov, Parwis Baradaran Rahmanian, Navid Mader, and et al. 2022. "Sex-Associated Differences in Short-Term Outcomes in Patients with Deep Sternal Wound Infection after Open-Heart Surgery" Journal of Clinical Medicine 11, no. 24: 7510. https://doi.org/10.3390/jcm11247510
APA StyleKrasivskyi, I., Ivanov, B., Eghbalzadeh, K., Fehlau, F., Gerfer, S., Großmann, C., Elderia, A., Sabashnikov, A., Rahmanian, P. B., Mader, N., Djordjevic, I., & Wahlers, T. (2022). Sex-Associated Differences in Short-Term Outcomes in Patients with Deep Sternal Wound Infection after Open-Heart Surgery. Journal of Clinical Medicine, 11(24), 7510. https://doi.org/10.3390/jcm11247510