Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right Median Nerve Electrical Stimulation Treatment
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Prognostic Assessment
2.3. Clinical Parameters
2.4. RMNS Programing
2.5. AEEG Monitoring and Analysis
- (1)
- Flat tracing (FT): continuous low-voltage pattern with an upper margin of <5 μV;
- (2)
- Continuous extremely low voltage (CLV): continuous low-voltage pattern with an upper margin of <10 μV and a lower margin of <5 μV;
- (3)
- Burst suppression (BS): discontinuous pattern, with periods of very low voltage intermixed with high amplitude and a lower margin constantly at 0–1 μV and a burst amplitude of >25 μV more than 50% of the recording time;
- (4)
- Discontinuous normal voltage (DNV): electrical attenuation (with an upper margin of >10 μV) or suppression occurring (a lower margin of <5 μV) 10–49% of the recording time.
- (5)
- Continuous normal voltage (CNV): continuous pattern with a low voltage margin of 5–10 μV and an upper voltage margin of 10–50 μV. Only with sporadic electrical attenuation or suppression (<10% of the record).
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Physiology Characteristics
3.2. Model Configuration and Predictors of the Outcome
3.3. Nomograms Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008, 7, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Owen, A.M.; Schiff, N.D. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004, 3, 537–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, G.B. Coma. Ann. N. Y. Acad. Sci. 2009, 1157, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Gosseries, O.; Zasler, N.D.; Laureys, S. Recent advances in disorders of consciousness: Focus on the diagnosis. Brain Inj. 2014, 28, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Levin, H.S.; Saydjari, C.; Eisenberg, H.M.; Foulkes, M.; Marshall, L.F.; Ruff, R.M.; Jane, J.A.; Marmarou, A. Vegetative state after closed-head injury. A Traumatic Coma Data Bank Report. Arch. Neurol. 1991, 48, 580–585. [Google Scholar] [CrossRef]
- Pignat, J.M.; Mauron, E.; Jöhr, J.; Gilart de Keranflec’h, C.; Van De Ville, D.; Preti, M.G.; Meskaldji, D.E.; Hömberg, V.; Laureys, S.; Draganski, B.; et al. Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor Behavioural Tool. PLoS ONE 2016, 11, e0156882. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.B.; Jane, J.A.; Alves, W.M.; Cooper, E.B. Right median nerve electrical stimulation to hasten awakening from coma. Brain Inj. 1999, 13, 261–267. [Google Scholar] [CrossRef]
- Cooper, E.B.; Cooper, J.B. Electrical treatment of coma via the median nerve. Acta Neurochir. Suppl. 2003, 87, 7–10. [Google Scholar] [CrossRef]
- Peri, C.V.; Shaffrey, M.E.; Farace, E.; Cooper, E.; Alves, W.M.; Cooper, J.B.; Young, J.S.; Jane, J.A. Pilot study of electrical stimulation on median nerve in comatose severe brain injured patients: 3-month outcome. Brain Inj. 2001, 15, 903–910. [Google Scholar] [CrossRef]
- Liu, J.T.; Wang, C.H.; Chou, I.C.; Sun, S.S.; Koa, C.H.; Cooper, E. Regaining consciousness for prolonged comatose patients with right median nerve stimulation. Acta Neurochir. Suppl. 2003, 87, 11–14. [Google Scholar] [CrossRef]
- Lei, J.; Wang, L.; Gao, G.; Cooper, E.; Jiang, J. Right Median Nerve Electrical Stimulation for Acute Traumatic Coma Patients. J Neurotrauma 2015, 32, 1584–1589. [Google Scholar] [CrossRef]
- Claassen, J.; Taccone, F.S.; Horn, P.; Holtkamp, M.; Stocchetti, N.; Oddo, M. Recommendations on the use of EEG monitoring in critically ill patients: Consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013, 39, 1337–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolonen, A.; Särkelä, M.O.K.; Takala, R.S.K.; Katila, A.; Frantzén, J.; Posti, J.P.; Müller, M.; van Gils, M.; Tenovuo, O. Quantitative EEG Parameters for Prediction of Outcome in Severe Traumatic Brain Injury: Development Study. Clin. EEG Neurosci. 2018, 49, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Williams, D. The Electro-Encephalogram in Acute Head Injuries. J. Neurol. Psychiatry 1941, 4, 107–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulton, R.J.; Marmarou, A.; Ronen, J.; Ward, J.D.; Choi, S.; Lutz, H.A.; Byrd, S.; Desalles, A.; Maset, A.; Muizelarr, J.P.; et al. Spectral analysis of the EEG in craniocerebral trauma. Can. J. Neurol. Sci. 1988, 15, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, R.W.; Walker, R.A.; Gerson, I.; Geisler, F.H. EEG discriminant analyses of mild head trauma. Electroencephalogr. Clin. Neurophysiol. 1989, 73, 94–106. [Google Scholar] [CrossRef]
- You, W.; Tang, Q.; Wu, X.; Feng, J.; Mao, Q.; Gao, G.; Jiang, J. Amplitude-Integrated Electroencephalography Predicts Outcome in Patients with Coma After Acute Brain Injury. Neurosci. Bull. 2018, 34, 639–646. [Google Scholar] [CrossRef]
- Edgren, E.; Hedstrand, U.; Kelsey, S.; Sutton-Tyrrell, K.; Safar, P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 1994, 343, 1055–1059. [Google Scholar] [CrossRef]
- Li, F.; Huang, L.; Yan, Y.; Wang, X.; Hu, Y. A novel nomogram for early prediction of death in severe neurological disease patients with electroencephalographic periodic discharges. Clin. Neurophysiol. 2021, 132, 1304–1311. [Google Scholar] [CrossRef]
- Haveman, M.E.; Van Putten, M.; Hom, H.W.; Eertman-Meyer, C.J.; Beishuizen, A.; Tjepkema-Cloostermans, M.C. Predicting outcome in patients with moderate to severe traumatic brain injury using electroencephalography. Crit. Care 2019, 23, 401. [Google Scholar] [CrossRef]
- Murray, G.D.; Butcher, I.; McHugh, G.S.; Lu, J.; Mushkudiani, N.A.; Maas, A.I.; Marmarou, A.; Steyerberg, E.W. Multivariable prognostic analysis in traumatic brain injury: Results from the IMPACT study. J Neurotrauma 2007, 24, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.H.; Arabi, Y.M. Critical care management of severe traumatic brain injury in adults. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walia, S.; Sutcliffe, A.J. The relationship between blood glucose, mean arterial pressure and outcome after severe head injury: An observational study. Injury 2002, 33, 339–344. [Google Scholar] [CrossRef]
- Bratton, S.L.; Chestnut, R.M.; Ghajar, J.; McConnell Hammond, F.F.; Harris, O.A.; Hartl, R.; Manley, G.T.; Nemecek, A.; Newell, D.W.; Rosenthal, G.; et al. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J. Neurotrauma 2007, 24 (Suppl. S1), S65–S70. [Google Scholar] [CrossRef] [PubMed]
- Marehbian, J.; Muehlschlegel, S.; Edlow, B.L.; Hinson, H.E.; Hwang, D.Y. Medical Management of the Severe Traumatic Brain Injury Patient. Neurocrit. Care 2017, 27, 430–446. [Google Scholar] [CrossRef]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Figaji, A.A.; Zwane, E.; Thompson, C.; Fieggen, A.G.; Argent, A.C.; Le Roux, P.D.; Peter, J.C. Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury. Part 1: Relationship with outcome. Childs Nerv. Syst. 2009, 25, 1325–1333. [Google Scholar] [CrossRef]
- Kwan, C.L.; Crawley, A.P.; Mikulis, D.J.; Davis, K.D. An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain 2000, 85, 359–374. [Google Scholar] [CrossRef]
- DeMarchi, R.; Bansal, V.; Hung, A.; Wroblewski, K.; Dua, H.; Sockalingam, S.; Bhalerao, S. Review of awakening agents. Can. J. Neurol. Sci. 2005, 32, 4–17. [Google Scholar] [CrossRef] [Green Version]
- ter Horst, H.J.; van Olffen, M.; Remmelts, H.J.; de Vries, H.; Bos, A.F. The prognostic value of amplitude integrated EEG in neonatal sepsis and/or meningitis. Acta Paediatr. 2010, 99, 194–200. [Google Scholar] [CrossRef]
- Kidokoro, H.; Kubota, T.; Hayashi, N.; Hayakawa, M.; Takemoto, K.; Kato, Y.; Okumura, A. Absent cyclicity on aEEG within the first 24 h is associated with brain damage in preterm infants. Neuropediatrics 2010, 41, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.O.; Oddo, M.; Logroscino, G.; Kaplan, P.W. Prognostication after cardiac arrest and hypothermia: A prospective study. Ann. Neurol. 2010, 67, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Thenayan, E.A.; Savard, M.; Sharpe, M.D.; Norton, L.; Young, B. Electroencephalogram for prognosis after cardiac arrest. J. Crit. Care 2010, 25, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Sutter, R.; Barnes, B.; Leyva, A.; Kaplan, P.W.; Geocadin, R.G. Electroencephalographic sleep elements and outcome in acute encephalopathic patients: A 4-year cohort study. Eur. J. Neurol. 2014, 21, 1268–1275. [Google Scholar] [CrossRef]
- Mofrad, M.H.; Gilmore, G.; Koller, D.; Mirsattari, S.M.; Burneo, J.G.; Steven, D.A.; Khan, A.R.; Suller Marti, A.; Muller, L. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load. eLife 2022, 11, e75769. [Google Scholar] [CrossRef]
- Lingsma, H.F.; Roozenbeek, B.; Li, B.; Lu, J.; Weir, J.; Butcher, I.; Marmarou, A.; Murray, G.D.; Maas, A.I.; Steyerberg, E.W. Large between-center differences in outcome after moderate and severe traumatic brain injury in the international mission on prognosis and clinical trial design in traumatic brain injury (IMPACT) study. Neurosurgery 2011, 68, 601–608. [Google Scholar] [CrossRef]
- Roberts, I.; Yates, D.; Sandercock, P.; Farrell, B.; Wasserberg, J.; Lomas, G.; Cottingham, R.; Svoboda, P.; Brayley, N.; Mazairac, G.; et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): Randomised placebo-controlled trial. Lancet 2004, 364, 1321–1328. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Califf, R.M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. Jama 1982, 247, 2543–2546. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet. Neurol. 2017, 16, 987–1048. [Google Scholar] [CrossRef] [Green Version]
- Ghajar, J. Traumatic brain injury. Lancet 2000, 356, 923–929. [Google Scholar] [CrossRef]
- Rundgren, M.; Rosén, I.; Friberg, H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia. Intensive Care Med. 2006, 32, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Rundgren, M.; Westhall, E.; Cronberg, T.; Rosén, I.; Friberg, H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit. Care Med. 2010, 38, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Park, K.N.; Shon, Y.M.; Kim, Y.M.; Kim, H.J.; Youn, C.S.; Kim, S.H.; Choi, S.P.; Kim, S.C. Continuous Amplitude-Integrated Electroencephalographic Monitoring Is a Useful Prognostic Tool for Hypothermia-Treated Cardiac Arrest Patients. Circulation 2015, 132, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Park, K.N.; Kim, Y.M.; Kim, H.J.; Youn, C.S.; Kim, S.H.; Choi, S.P.; Kim, S.C.; Shon, Y.M. The prognostic value of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation 2013, 84, 200–205. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kashiura, M.; Akashi, A.; Tanabe, T.; Hamabe, Y. Prognostic value of the recovery time of continuous normal voltage in amplitude-integrated electroencephalography in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia: A retrospective study. J. Intensive Care 2016, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Procaccio, F.; Polo, A.; Lanteri, P.; Sala, F. Electrophysiologic monitoring in neurointensive care. Curr. Opin. Crit. Care 2001, 7, 74–80. [Google Scholar] [CrossRef]
- Kane, N.; Taylor, S. EEG-reactivity: What is it good for? Resuscitation 2019, 142, 186–187. [Google Scholar] [CrossRef]
- Synek, V.M. EEG abnormality grades and subdivisions of prognostic importance in traumatic and anoxic coma in adults. Clin. Electroencephalogr. 1988, 19, 160–166. [Google Scholar] [CrossRef]
- Young, G.B.; McLachlan, R.S.; Kreeft, J.H.; Demelo, J.D. An electroencephalographic classification for coma. Can. J. Neurol. Sci. 1997, 24, 320–325. [Google Scholar] [CrossRef]
- Gütling, E.; Gonser, A.; Imhof, H.G.; Landis, T. EEG reactivity in the prognosis of severe head injury. Neurology 1995, 45, 915–918. [Google Scholar] [CrossRef]
- Azabou, E.; Navarro, V.; Kubis, N.; Gavaret, M.; Heming, N.; Cariou, A.; Annane, D.; Lofaso, F.; Naccache, L.; Sharshar, T. Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: A systematic review. Crit. Care 2018, 22, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Mizrahi, M.A.; Hartings, J.A.; Sharma, S.; Pahren, L.; Ngwenya, L.B.; Moseley, B.D.; Privitera, M.; Tortella, F.C.; Foreman, B. Continuous Electroencephalography After Moderate to Severe Traumatic Brain Injury. Crit. Care Med. 2019, 47, 574–582. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n = 228) |
---|---|
Age, years, median (IQR) | 40.0 (33.0–47.0) |
Gender, n (%) | |
Male | 132.0 (57.9) |
Female | 96.0 (42.1) |
GCS, median (IQR) | 5.0 (4.0–6.0) |
Pupillary response, n (%) | |
Both reacting | 73.0 (32.0) |
Single reacting | 91.0 (39.9) |
Neither reacting | 64.0 (28.1) |
Hyphemia, n (%) | |
Yes | 82.0 (36.0) |
No | 146.0 (64.0) |
Arterial PO2, mmHg, n (%) | |
<60 | 67.0 (29.4) |
≥60 | 161.0 (70.6) |
Surgical operation, n (%) | 145.0 (63.6) |
EEG reactivity, n (%) | |
Absence | 34.0 (14.9) |
Normal | 109.0 (47.8) |
SIRPIDs | 85.0 (37.3) |
AEEG background pattern, n (%) | |
C mode | 26.0 (11.4) |
B mode | 140.0 (61.4) |
A mode | 62.0 (27.2) |
Sleep-related wave, n (%) | |
Absence | 101.0 (44.3) |
Presence | 127.0 (55.7) |
MAP, mmHg, n (%) | |
<70 | 54.0 (23.7) |
70–105 | 174.0 (76.3) |
Complication, n (%) | |
Existence | 32.0 (14.0) |
Absence | 196 (86.0) |
Univariable | Multivariable | |||
---|---|---|---|---|
Variable | HR (95% CI) | p Value | HR (95% CI) | p Value |
Factors Selected | ||||
Age, years | 1.03 (1.02–1.05) | <0.001 | 1.02 (1.00–1.04) | 0.013 |
GCS | 0.68 (0.59–0.79) | <0.001 | 0.83 (0.68–1.02) | 0.032 |
EEG reactivity | ||||
Absence | 1[Reference] | NA | 1[Reference] | NA |
Normal | 0.54 (0.35–0.84) | 0.006 | 0.69 (0.43–1.09) | 0.011 |
SIRPIDs | 1.58 (1.04–2.37) | 0.030 | 1.76 (1.16–2.68) | 0.008 |
AEEG background pattern | ||||
C mode | 1[Reference] | NA | 1[Reference] | NA |
B mode | 0.56 (0.35–0.91) | 0.020 | 0.29 (0.16–0.50) | <0.001 |
A mode | 0.39 (0.18–0.54) | <0.001 | 0.45 (0.27–0.73) | <0.001 |
Factors Not Selected | ||||
Gender | ||||
Male | 1[Reference] | NA | NA | NA |
Female | 0.93 (0.61–1.49) | 0.54 | NA | NA |
Pupillary response | ||||
Both reacting | 1[Reference] | NA | NA | NA |
Single reacting | 2.96 (0.75–4.03) | 0.41 | NA | NA |
Neither reacting | 0.76 (0.38–0.93) | 0.24 | NA | NA |
Hypoxia | ||||
Yes | 1[Reference] | NA | NA | NA |
No | 1.43 (0.98–2.64) | 0.60 | NA | NA |
Arterial PO2, mmHg | ||||
<60 | 1[Reference] | NA | NA | NA |
≥60 | 1.67 (0.84–3.04) | 0.31 | NA | NA |
MAP, mmHg | ||||
<70 | 1[Reference] | NA | NA | NA |
≥70 | 1.13 (0.76–2.13) | 0.57 | NA | NA |
Sleep-related wave | ||||
Absence | 1[Reference] | NA | NA | NA |
Presence | 0.86 (0.44–1.24) | 0.28 | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; You, W.-D.; Xu, X.-X.; Zhou, Q.; Yang, X.-F. Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right Median Nerve Electrical Stimulation Treatment. J. Clin. Med. 2022, 11, 7529. https://doi.org/10.3390/jcm11247529
Zhang C, You W-D, Xu X-X, Zhou Q, Yang X-F. Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right Median Nerve Electrical Stimulation Treatment. Journal of Clinical Medicine. 2022; 11(24):7529. https://doi.org/10.3390/jcm11247529
Chicago/Turabian StyleZhang, Chao, Wen-Dong You, Xu-Xu Xu, Qian Zhou, and Xiao-Feng Yang. 2022. "Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right Median Nerve Electrical Stimulation Treatment" Journal of Clinical Medicine 11, no. 24: 7529. https://doi.org/10.3390/jcm11247529
APA StyleZhang, C., You, W. -D., Xu, X. -X., Zhou, Q., & Yang, X. -F. (2022). Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right Median Nerve Electrical Stimulation Treatment. Journal of Clinical Medicine, 11(24), 7529. https://doi.org/10.3390/jcm11247529