Pediatric Acute Myeloid Leukemia—Past, Present, and Future
Abstract
:1. Introduction
2. Past
2.1. Hematopoietic Stem Cell Transplantation
2.2. CNS Prophylaxis and Treatment
2.3. Development of Minimal Residual Disease (MRD) Diagnostics
3. Present
3.1. alloHSCT
3.2. Diagnostics
3.3. Myeloid Leukemia of Down Syndrome (ML-DS)
3.4. Supportive Care
3.5. Long-Term Toxicities
4. Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Study Group | Study | Periode | Patients (N) | EFS (%) | OS (%) | Relapse (%) | Source |
---|---|---|---|---|---|---|---|
AIEOP | AML2002/01 | 2002–2011 | 482 | 8-years 55.0 ± 2.6 | 8-years 67.7 ± 2.4 | 24 | Pession et al. 2013 [105] |
AML-BFM | AML-BFM 2012 | 2012–2018 | 324 | 5-years 65 ± 3 | 5-years 82 ± 3 | 22 | Waack et al. 2020 [106] |
AML-BFM 2004 | 2004–2010 | 521 | 5-years 55 ± 2 | 5-years 74 ± 2 | 29 | Creutzig et al. 2013 [107] | |
COG | AAML03P1 AAML0531 AAML1031 | 2003–2005 2006–2010 2011–2016 | 340 1022 1097 | 3-years 53 ± 6 3-years 53.1 vs. 46.9 3-years 45.9 ± 3 | 3-years 66 ± 5 3-years 69.4 vs. 65.4 3-years 65.4 ± 3 | 33 ± 6 32.8 vs. 41.3 47.2 | Cooper et al. 2012 [108] Gamis et al. 2014 [109] Aplenc et al. 2020 [110] |
JACLS | AML99 | 2000–2002 | 240 | 5-years 61.6 ± 6.5 | 5-years 75.6 ± 5.3 | 32.2 | Tsukimoto et al. 2009 [31] |
JPLSG | AML05 | 2006–2010 | 443 | 3-years 54.3 ± 2.4 | 3-years 73.2 ± 2.3 | 30.3 | Tomizawa et al. 2013 [32] |
MRC | MRC AML12 | 1995–2002 | 564 | 10-years 54 | 10-years 63 | 32 | Gibson et al. 2011 [27] |
MRC AML 17 | 2010–2014 | 5-years 74 | Burnett et al. [111] | ||||
NOPHO | NOPHO AML 2004 | 2004–2009 | 151 | 3-years 57 ± 5 | 3-years 69 ± 5 | 30 | Abrahamsson et al. 2011 [7] Hasle et al. 2012 [29] |
99PPLLSG | PPLLSG AML-98 AML-BFM 2012 | 1998–2002 | 195 | 5-years 46 ± 5 | 5-years 53 ± 5 | 24 | Dluzniewska et al. 2010 [112] Czogala et al. 2021 [113] |
27 | |||||||
2015–2019 | 131 | 3-years 67 ± 5 | 3 years 75 ± 5 | 17 | |||
SJCRH | AML02 AML08 | 2002–2008 2008–2017 | 216 285 | 3-years 61 3-years 52.9 | 3-years 71 3-years 74.8 | 21 | Rubnitz et al. 2010 [30] Rubnitz et al. 2019 [114] |
References
- Bonaventure, A.; Harewood, R.; Stiller, C.A.; Gatta, G.; Clavel, J.; Stefan, D.C.; Carreira, H.; Spika, D.; Marcos-Gragera, R.; Peris-Bonet, R.; et al. Worldwide comparison of survival from childhood leukaemia for 1995–2009, by subtype, age, and sex (CONCORD-2): A population-based study of individual data for 89,828 children from 198 registries in 53 countries. Lancet Haematol. 2017, 4, e202–e217. [Google Scholar] [CrossRef] [Green Version]
- Elgarten, C.W.; Aplenc, R. Pediatric acute myeloid leukemia: Updates on biology, risk stratification, and therapy. Curr. Opin. Pediatr. 2020, 32, 57–66. [Google Scholar] [CrossRef]
- Plana, A.; Furner, B.; Palese, M.; Dussault, N.; Birz, S.; Graglia, L.; Kush, M.; Nicholson, J.; Hecker-Nolting, S.; Gaspar, N.; et al. Pediatric Cancer Data Commons: Federating and Democratizing Data for Childhood Cancer Research. JCO Clin. Cancer Inform. 2021, 5, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Zwaan, C.M.; Kolb, E.A.; Reinhardt, D.; Abrahamsson, J.; Adachi, S.; Aplenc, R.; de Bont, E.S.J.M.; de Moerloose, B.; Dworzak, M.; Gibson, B.E.S.; et al. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia. J. Clin. Oncol. 2015, 33, 2949–2962. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, U.; van den Heuvel-Eibrink, M.M.; Gibson, B.; Dworzak, M.N.; Adachi, S.; de Bont, E.; Harbott, J.; Hasle, H.; Johnston, D.; Kinoshita, A.; et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel. Blood 2012, 120, 3187–3205. [Google Scholar] [CrossRef]
- Pollard, J.A.; Guest, E.; Alonzo, T.A.; Gerbing, R.B.; Loken, M.R.; Brodersen, L.E.; Kolb, E.A.; Aplenc, R.; Meshinchi, S.; Raimondi, S.C.; et al. Gemtuzumab Ozogamicin Improves Event-Free Survival and Reduces Relapse in Pediatric KMT2A-Rearranged AML: Results From the Phase III Children’s Oncology Group Trial AAML0531. J. Clin. Oncol. 2021, 39, 3149–3160. [Google Scholar] [CrossRef]
- Gurnari, C.; Voso, M.T.; Girardi, K.; Mastronuzzi, A.; Strocchio, L. Acute Promyelocytic Leukemia in Children: A Model of Precision Medicine and Chemotherapy-Free Therapy. Int. J. Mol. Sci. 2021, 22, 642. [Google Scholar] [CrossRef]
- Abrahamsson, J.; Forestier, E.; Heldrup, J.; Jahnukainen, K.; Jónsson, O.G.; Lausen, B.; Palle, J.; Zeller, B.; Hasle, H. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J. Clin. Oncol. 2011, 29, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Rasche, M.; Steidel, E.; Kondryn, D.; von Neuhoff, N.; Sramkova, L.; Creutzig, U.; Dworzak, M.; Reinhardt, D. Impact of a Risk-Adapted Treatment Approach in Pediatric AML: A Report of the AML-BFM Registry 2012. Blood 2019, 134, 293. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann. Intern. Med. 1985, 103, 620–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br. J. Haematol. 1991, 78, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, C.D.; Brunning, R.D. FAB M7: Acute megakaryoblastic leukemia--beyond morphology. Ann. Intern. Med. 1985, 103, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Pollak, A.; Leavitt, R.D.; Testa, J.R.; Schiffer, C.A. Minimally differentiated acute nonlymphocytic leukemia: A distinct entity. Blood 1987, 70, 1400–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boiron, M.; Jacquillat, C.; Weil, M.; Tanzer, J.; Levy, D.; Sultan, C.; Bernard, J. DAUNORUBICIN IN THE TREATMENT OF ACUTE MYELOCYTIC LEUKÆMIA. Lancet 1969, 293, 330–333. [Google Scholar] [CrossRef]
- Pizzo, P.A.; Henderson, E.S.; Leventhal, B.G. Acute myelogenous leukemia in children: A preliminary report of combination chemotherapy. J. Pediatr. 1976, 88, 125–130. [Google Scholar] [CrossRef]
- Wells, R.J.; Feusner, J.; Devney, R.; Woods, W.G.; Provisor, A.J.; Cairo, M.S.; Odom, L.F.; Nachman, J.; Jones, G.R.; Ettinger, L.J. Sequential high-dose cytosine arabinoside-asparaginase treatment in advanced childhood leukemia. J. Clin. Oncol. 1985, 3, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Ritter, J.; Langermann, H.J.; Riehm, H.; Henze, G.; Niethammer, D.; Jürgens, H.; Stollmann, B.; Lasson, U.; Kabisch, H.; et al. Acute myelogenous leukemia in children: Results of the cooperative BFM-78 therapy study after 3 3/4 years. Klin. Padiatr. 1983, 195, 152–160. [Google Scholar] [CrossRef]
- Steuber, C.P.; Humphrey, G.B.; McMillan, C.W.; Vietti, T.J. Remission induction in acute myelogenous leukemia using cytosine arabinoside synchronization: A Southwest Oncology Group Study. Med. Pediatr. Oncol. 1978, 4, 337–342. [Google Scholar] [CrossRef]
- Rees, J. Principal results of the medical research council’s 8th acute myeloid leukaemia trial. Lancet 1986, 328, 1236–1241. [Google Scholar] [CrossRef]
- Stevens, R.F.; Hann, I.M.; Wheatley, K.; Gray, R. Intensive chemotherapy with or without additional bone marrow transplantation in paediatric AML: Progress report on the MRC AML 10 trial. Medical Research Council Working Party on Childhood Leukaemia. Leukemia 1992, 6 (Suppl. 2), 55–58. [Google Scholar]
- Swirsky, D.M.; Li, Y.S.; Matthews, J.G.; Flemans, R.J.; Rees, J.K.; Hayhoe, F.G. 8;21 translocation in acute granulocytic leukaemia: Cytological, cytochemical and clinical features. Br. J. Haematol. 1984, 56, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Ritter, J.; Niederbiermann-Koczy, G.; Harbott, J.; Schellong, G. Prognostische Bedeutung der Eosinophilie bei Kindern mit akuter myeloischer Leukämie in den Studien AML-BFM-78 und -83. Klin. Padiatr. 1989, 201, 220–226. [Google Scholar] [CrossRef]
- Creutzig, U.; Ritter, J.; Schellong, G. Identification of two risk groups in childhood acute myelogenous leukemia after therapy intensification in study AML-BFM-83 as compared with study AML-BFM-78. AML-BFM Study Group. Blood 1990, 75, 1932–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perel, Y.; Auvrignon, A.; Leblanc, T.; Michel, G.; Reguerre, Y.; Vannier, J.-P.; Dalle, J.-H.; Gandemer, V.; Schmitt, C.; Méchinaud, F.; et al. Treatment of childhood acute myeloblastic leukemia: Dose intensification improves outcome and maintenance therapy is of no benefit--multicenter studies of the French LAME (Leucémie Aiguë Myéloblastique Enfant) Cooperative Group. Leukemia 2005, 19, 2082–2089. [Google Scholar] [CrossRef]
- Creutzig, U.; Zimmermann, M.; Reinhardt, D.; Rasche, M.; von Neuhoff, C.; Alpermann, T.; Dworzak, M.; Perglerová, K.; Zemanova, Z.; Tchinda, J.; et al. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer 2016, 122, 3821–3830. [Google Scholar] [CrossRef]
- Creutzig, U.; Ritter, J.; Zimmermann, M.; Hermann, J.; Gadner, H.; Sawatzki, D.B.; Niemeyer, C.M.; Schwabe, D.; Selle, B.; Boos, J.; et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: Results of study AML-BFM 93. AML-BFM Study Group. Leukemia 2001, 15, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.E.S.; Webb, D.K.H.; Howman, A.J.; de Graaf, S.S.N.; Harrison, C.J.; Wheatley, K. Results of a randomized trial in children with Acute Myeloid Leukaemia: Medical research council AML12 trial. Br. J. Haematol. 2011, 155, 366–376. [Google Scholar] [CrossRef]
- Lie, S.O.; Abrahamsson, J.; Clausen, N.; Forestier, E.; Hasle, H.; Hovi, L.; Jonmundsson, G.; Mellander, L.; Siimes, M.A.; Yssing, M.; et al. Long-term results in children with AML: NOPHO-AML Study Group--report of three consecutive trials. Leukemia 2005, 19, 2090–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasle, H.; Abrahamsson, J.; Forestier, E.; Ha, S.-Y.; Heldrup, J.; Jahnukainen, K.; Jónsson, Ó.G.; Lausen, B.; Palle, J.; Zeller, B. Gemtuzumab ozogamicin as postconsolidation therapy does not prevent relapse in children with AML: Results from NOPHO-AML 2004. Blood 2012, 120, 978–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubnitz, J.E.; Inaba, H.; Dahl, G.; Ribeiro, R.C.; Bowman, W.P.; Taub, J.; Pounds, S.; Razzouk, B.I.; Lacayo, N.J.; Cao, X.; et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: Results of the AML02 multicentre trial. Lancet Oncol. 2010, 11, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Tsukimoto, I.; Tawa, A.; Horibe, K.; Tabuchi, K.; Kigasawa, H.; Tsuchida, M.; Yabe, H.; Nakayama, H.; Kudo, K.; Kobayashi, R.; et al. Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: The AML99 trial from the Japanese Childhood AML Cooperative Study Group. J. Clin. Oncol. 2009, 27, 4007–4013. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, D.; Tawa, A.; Watanabe, T.; Saito, A.M.; Kudo, K.; Taga, T.; Iwamoto, S.; Shimada, A.; Terui, K.; Moritake, H.; et al. Appropriate dose reduction in induction therapy is essential for the treatment of infants with acute myeloid leukemia: A report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int. J. Hematol. 2013, 98, 578–588. [Google Scholar] [CrossRef]
- Creutzig, U.; Reinhardt, D. Current controversies: Which patients with acute myeloid leukaemia should receive a bone marrow transplantation?—A European view. Br. J. Haematol. 2002, 118, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Diekamp, S.; Zimmermann, M.; Reinhardt, D. Longitudinal evaluation of early and late anthracycline cardiotoxicity in children with AML. Pediatr. Blood Cancer 2007, 48, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.E.S.; Wheatley, K.; Hann, I.M.; Stevens, R.F.; Webb, D.; Hills, R.K.; de Graaf, S.S.N.; Harrison, C.J. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005, 19, 2130–2138. [Google Scholar] [CrossRef] [Green Version]
- Klingebiel, T.; Ritter, J.; Schellong, G.; Creutzig, U.; Riehm, H.; Henze, G.; Bender-Götze, C.; Dopfer, R.; Ebell, W.; Friedrich, W. Role and perspectives of BMT in AML: The BFM experience. Bone Marrow Transplant. 1991, 7 (Suppl. 3), 66–70. [Google Scholar]
- Klusmann, J.-H.; Reinhardt, D.; Zimmermann, M.; Kremens, B.; Vormoor, J.; Dworzak, M.; Creutzig, U.; Klingebiel, T. The role of matched sibling donor allogeneic stem cell transplantation in pediatric high-risk acute myeloid leukemia: Results from the AML-BFM 98 study. Haematologica 2012, 97, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Masetti, R.; Rondelli, R.; Zecca, M.; Fagioli, F.; Rovelli, A.; Messina, C.; Lanino, E.; Bertaina, A.; Favre, C.; et al. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study. Bone Marrow Transplant. 2015, 50, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Lonetti, A.; Pession, A.; Masetti, R. Targeted Therapies for Pediatric AML: Gaps and Perspective. Front. Pediatr. 2019, 7, 463. [Google Scholar] [CrossRef]
- Woods, W.G.; Neudorf, S.; Gold, S.; Sanders, J.; Buckley, J.D.; Barnard, D.R.; Dusenbery, K.; DeSwarte, J.; Arthur, D.C.; Lange, B.J.; et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood 2001, 97, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, F.D.; Rumelhart, S.L.; DeAlacron, P.; Holida, M.D.; Lee, N.F.; Miller, J.; Trigg, M.; Giller, R. Poor outcome in children with refractory/relapsed leukemia undergoing bone marrow transplantation with mismatched family member donors. Bone Marrow Transplant. 2000, 25, 943–948. [Google Scholar] [CrossRef]
- Sung, L.; Buckstein, R.; Doyle, J.J.; Crump, M.; Detsky, A.S. Treatment options for patients with acute myeloid leukemia with a matched sibling donor: A decision analysis. Cancer 2003, 97, 592–600. [Google Scholar] [CrossRef]
- Chen, A.R.; Alonzo, T.A.; Woods, W.G.; Arceci, R.J. Current controversies: Which patients with acute myeloid leukaemia should receive a bone marrow transplantation?—An American view. Br. J. Haematol. 2002, 118, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, K. Current controversies: Which patients with acute myeloid leukaemia should receive a bone marrow transplantation? A statistician’s view. Br. J. Haematol. 2002, 118, 351–356. [Google Scholar] [CrossRef]
- Creutzig, U.; Ritter, J.; Zimmermann, M.; Schellong, G. Does cranial irradiation reduce the risk for bone marrow relapse in acute myelogenous leukemia? Unexpected results of the Childhood Acute Myelogenous Leukemia Study BFM-87. J. Clin. Oncol. 1993, 11, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Woods, W.G.; Kobrinsky, N.; Buckley, J.D.; Lee, J.W.; Sanders, J.; Neudorf, S.; Gold, S.; Barnard, D.R.; DeSwarte, J.; Dusenbery, K.; et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: A report from the Children’s Cancer Group. Blood 1996, 87, 4979–4989. [Google Scholar] [CrossRef] [PubMed]
- Pession, A.; Rondelli, R.; Basso, G.; Rizzari, C.; Testi, A.M.; Fagioli, F.; de Stefano, P.; Locatelli, F. Treatment and long-term results in children with acute myeloid leukaemia treated according to the AIEOP AML protocols. Leukemia 2005, 19, 2043–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creutzig, U.; Büchner, T.; Sauerland, M.C.; Zimmermann, M.; Reinhardt, D.; Döhner, H.; Schlenk, R.F. Significance of age in acute myeloid leukemia patients younger than 30 years: A common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 2008, 112, 562–571. [Google Scholar] [CrossRef]
- Wells, R.J.; Woods, W.G.; Buckley, J.D.; Odom, L.F.; Benjamin, D.; Bernstein, I.; Betcher, D.; Feig, S.; Kim, T.; Ruymann, F. Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: A Childrens Cancer Group study. J. Clin. Oncol. 1994, 12, 2367–2377. [Google Scholar] [CrossRef]
- Rasche, M.; Zimmermann, M.; Borschel, L.; Bourquin, J.-P.; Dworzak, M.; Klingebiel, T.; Lehrnbecher, T.; Creutzig, U.; Klusmann, J.-H.; Reinhardt, D. Successes and challenges in the treatment of pediatric acute myeloid leukemia: A retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia 2018, 32, 2167–2177. [Google Scholar] [CrossRef] [Green Version]
- Langebrake, C.; Creutzig, U.; Dworzak, M.; Hrusak, O.; Mejstrikova, E.; Griesinger, F.; Zimmermann, M.; Reinhardt, D. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: The MRD-AML-BFM Study Group. J. Clin. Oncol. 2006, 24, 3686–3692. [Google Scholar] [CrossRef] [Green Version]
- Rubnitz, J.E.; Crews, K.R.; Pounds, S.; Yang, S.; Campana, D.; Gandhi, V.V.; Raimondi, S.C.; Downing, J.R.; Razzouk, B.I.; Pui, C.-H.; et al. Combination of cladribine and cytarabine is effective for childhood acute myeloid leukemia: Results of the St Jude AML97 trial. Leukemia 2009, 23, 1410–1416. [Google Scholar] [CrossRef] [Green Version]
- Tierens, A.; Bjørklund, E.; Siitonen, S.; Marquart, H.V.; Wulff-Juergensen, G.; Pelliniemi, T.-T.; Forestier, E.; Hasle, H.; Jahnukainen, K.; Lausen, B.; et al. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study. Br. J. Haematol. 2016, 174, 600–609. [Google Scholar] [CrossRef]
- van der Velden, V.H.J.; van der Sluijs-Geling, A.; Gibson, B.E.S.; te Marvelde, J.G.; Hoogeveen, P.G.; Hop, W.C.J.; Wheatley, K.; Bierings, M.B.; Schuurhuis, G.J.; de Graaf, S.S.N.; et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia 2010, 24, 1599–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, H.; Coustan-Smith, E.; Cao, X.; Pounds, S.B.; Shurtleff, S.A.; Wang, K.Y.; Raimondi, S.C.; Onciu, M.; Jacobsen, J.; Ribeiro, R.C.; et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 3625–3632. [Google Scholar] [CrossRef] [Green Version]
- Rasche, M.; Zimmermann, M.; Steidel, E.; Alonzo, T.; Aplenc, R.; Bourquin, J.-P.; Boztug, H.; Cooper, T.; Gamis, A.S.; Gerbing, R.B.; et al. Survival Following Relapse in Children with Acute Myeloid Leukemia: A Report from AML-BFM and COG. Cancers 2021, 13, 2336. [Google Scholar] [CrossRef] [PubMed]
- Rasche, M.; Steidel, E.; Zimmermann, M.; Bourquin, J.-P.; Boztug, H.; Janotova, I.; Kolb, E.A.; Lehrnbecher, T.; von Neuhoff, N.; Niktoreh, N.; et al. Second Relapse of Pediatric Patients with Acute Myeloid Leukemia: A Report on Current Treatment Strategies and Outcome of the AML-BFM Study Group. Cancers 2021, 13, 789. [Google Scholar] [CrossRef]
- Reinhardt, D.; von Neuhoff, C.; Sander, A.; Creutzig, U. Prognostische Relevanz genetischer Aberrationen der akuten myeloischen Leukämie bei Kindern und Jugendlichen. Klin. Padiatr. 2012, 224, 372–376. [Google Scholar] [CrossRef]
- Sauer, M.G.; Lang, P.J.; Albert, M.H.; Bader, P.; Creutzig, U.; Eyrich, M.; Greil, J.; Gruhn, B.; Holter, W.; Klingebiel, T.; et al. Hematopoietic stem cell transplantation for children with acute myeloid leukemia-results of the AML SCT-BFM 2007 trial. Leukemia 2020, 34, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Kalwak, K.; Mielcarek, M.; Patrick, K.; Styczynski, J.; Bader, P.; Corbacioglu, S.; Burkhardt, B.; Sykora, K.W.; Drabko, K.; Gozdzik, J.; et al. Treosulfan-fludarabine-thiotepa-based conditioning treatment before allogeneic hematopoietic stem cell transplantation for pediatric patients with hematological malignancies. Bone Marrow Transplant. 2020, 55, 1996–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, H.; Rubnitz, J.E.; Coustan-Smith, E.; Li, L.; Furmanski, B.D.; Mascara, G.P.; Heym, K.M.; Christensen, R.; Onciu, M.; Shurtleff, S.A.; et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J. Clin. Oncol. 2011, 29, 3293–3300. [Google Scholar] [CrossRef] [Green Version]
- de Rooij, J.D.E.; Branstetter, C.; Ma, J.; Li, Y.; Walsh, M.P.; Cheng, J.; Obulkasim, A.; Dang, J.; Easton, J.; Verboon, L.J.; et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat. Genet. 2017, 49, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abildgaard, L.; Ellebaek, E.; Gustafsson, G.; Abrahamsson, J.; Hovi, L.; Jonmundsson, G.; Zeller, B.; Hasle, H. Optimal treatment intensity in children with Down syndrome and myeloid leukaemia: Data from 56 children treated on NOPHO-AML protocols and a review of the literature. Ann. Hematol. 2006, 85, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Hitzler, J.K.; He, W.; Doyle, J.; Cairo, M.; Camitta, B.M.; Chan, K.W.; Diaz Perez, M.A.; Fraser, C.; Gross, T.G.; Horan, J.T.; et al. Outcome of transplantation for acute myelogenous leukemia in children with Down syndrome. Biol. Blood Marrow Transplant. 2013, 19, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Flasinski, M.; Scheibke, K.; Zimmermann, M.; Creutzig, U.; Reinhardt, K.; Verwer, F.; de Haas, V.; van der Velden, V.H.J.; von Neuhoff, C.; Zwaan, C.M.; et al. Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome: TMD Prevention 2007 study. Blood Adv. 2018, 2, 1532–1540. [Google Scholar] [CrossRef]
- Rao, A.; Hills, R.K.; Stiller, C.; Gibson, B.E.; de Graaf, S.S.N.; Hann, I.M.; O’Marcaigh, A.; Wheatley, K.; Webb, D.K.H. Treatment for myeloid leukaemia of Down syndrome: Population-based experience in the UK and results from the Medical Research Council AML 10 and AML 12 trials. Br. J. Haematol. 2006, 132, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, N.S.; Baassiri, M.J.; Liu, W.; Bhakta, N.; Chemaitilly, W.; Ehrhardt, M.J.; Inaba, H.; Krull, K.; Ness, K.K.; Rubnitz, J.E.; et al. Late outcomes in survivors of childhood acute myeloid leukemia: A report from the St. Jude Lifetime Cohort Study. Leukemia 2021, 35, 2258–2273. [Google Scholar] [CrossRef]
- Mast, K.J.; Taub, J.W.; Alonzo, T.A.; Gamis, A.S.; Mosse, C.A.; Mathew, P.; Berman, J.N.; Wang, Y.-C.; Jones, H.M.; Campana, D.; et al. Pathologic Features of Down Syndrome Myelodysplastic Syndrome and Acute Myeloid Leukemia: A Report From the Children’s Oncology Group Protocol AAML0431. Arch. Pathol. Lab. Med. 2020, 144, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Sussman, R.T.; Manning, B.; Ackerman, D.; Bigdeli, A.; Pammer, P.; Velu, P.D.; Luger, S.M.; Bagg, A.; Carroll, M.; Morrissette, J.J.D. Interpretative differences of combined cytogenetic and molecular profiling highlights differences between MRC and ELN classifications of AML. Cancer Genet. 2021, 256–257, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Reinhardt, D.; Diekamp, S.; Dworzak, M.; Stary, J.; Zimmermann, M. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 2005, 19, 1355–1360. [Google Scholar] [CrossRef]
- Uffmann, M.; Rasche, M.; Zimmermann, M.; von Neuhoff, C.; Creutzig, U.; Dworzak, M.; Scheffers, L.; Hasle, H.; Zwaan, C.M.; Reinhardt, D.; et al. Therapy reduction in patients with Down syndrome and myeloid leukemia: The international ML-DS 2006 trial. Blood 2017, 129, 3314–3321. [Google Scholar] [CrossRef] [Green Version]
- Bochennek, K.; Hassler, A.; Perner, C.; Gilfert, J.; Schöning, S.; Klingebiel, T.; Reinhardt, D.; Creutzig, U.; Lehrnbecher, T. Infectious complications in children with acute myeloid leukemia: Decreased mortality in multicenter trial AML-BFM 2004. Blood Cancer J. 2016, 6, e382. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Kaiser, J.; Varwig, D.; Ritter, J.; Groll, A.H.; Creutzig, U.; Klingebiel, T.; Schwabe, D. Antifungal usage in children undergoing intensive treatment for acute myeloid leukemia: Analysis of the multicenter clinical trial AML-BFM 93. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 735–738. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Varwig, D.; Kaiser, J.; Reinhardt, D.; Klingebiel, T.; Creutzig, U. Infectious complications in pediatric acute myeloid leukemia: Analysis of the prospective multi-institutional clinical trial AML-BFM 93. Leukemia 2004, 18, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Tramsen, L.; Salzmann-Manrique, E.; Bochennek, K.; Klingebiel, T.; Reinhardt, D.; Creutzig, U.; Sung, L.; Lehrnbecher, T. Lack of Effectiveness of Neutropenic Diet and Social Restrictions as Anti-Infective Measures in Children With Acute Myeloid Leukemia: An Analysis of the AML-BFM 2004 Trial. J. Clin. Oncol. 2016, 34, 2776–2783. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, N.; Liu, Q.; Ness, K.K.; Baassiri, M.; Eissa, H.; Yeo, F.; Chemaitilly, W.; Ehrhardt, M.J.; Bass, J.; Bishop, M.W.; et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 2017, 390, 2569–2582. [Google Scholar] [CrossRef]
- Molgaard-Hansen, L.; Glosli, H.; Jahnukainen, K.; Jarfelt, M.; Jónmundsson, G.K.; Malmros-Svennilson, J.; Nysom, K.; Hasle, H. Quality of health in survivors of childhood acute myeloid leukemia treated with chemotherapy only: A NOPHO-AML study. Pediatr. Blood Cancer 2011, 57, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Stefanski, K.J.; Anixt, J.S.; Goodman, P.; Bowers, K.; Leisenring, W.; Scott Baker, K.; Burns, K.; Howell, R.; Davies, S.; Robison, L.L.; et al. Long-Term Neurocognitive and Psychosocial Outcomes After Acute Myeloid Leukemia: A Childhood Cancer Survivor Study Report. JNCI J. Natl. Cancer Inst. 2021, 113, 481–495. [Google Scholar] [CrossRef]
- Lins, M.M.; Mello, M.J.G.; Ribeiro, R.C.; de Camargo, B.; de Fátima Pessoa Militão Albuquerque, M.; Thuler, L.C.S. Survival and risk factors for mortality in pediatric patients with acute myeloid leukemia in a single reference center in low-middle-income country. Ann. Hematol. 2019, 98, 1403–1411. [Google Scholar] [CrossRef]
- Creutzig, U.; Zimmermann, M.; Reinhardt, D.; Dworzak, M.; Stary, J.; Lehrnbecher, T. Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: Analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J. Clin. Oncol. 2004, 22, 4384–4393. [Google Scholar] [CrossRef]
- Abla, O.; Angelini, P.; Di Giuseppe, G.; Kanani, M.F.; Lau, W.; Hitzler, J.; Sung, L.; Naqvi, A. Early Complications of Hyperleukocytosis and Leukapheresis in Childhood Acute Leukemias. J. Pediatr. Hematol. Oncol. 2016, 38, 111–117. [Google Scholar] [CrossRef]
- Klein, K.; van Litsenburg, R.R.L.; de Haas, V.; Dors, N.; van den Heuvel-Eibrink, M.M.; Knops, R.R.G.; Tissing, W.J.E.; Versluys, B.A.; Zwaan, C.M.; Kaspers, G.J.L. Causes of early death and treatment-related death in newly diagnosed pediatric acute myeloid leukemia: Recent experiences of the Dutch Childhood Oncology Group. Pediatr. Blood Cancer 2020, 67, e28099. [Google Scholar] [CrossRef]
- Velten, L.; Story, B.A.; Hernández-Malmierca, P.; Raffel, S.; Leonce, D.R.; Milbank, J.; Paulsen, M.; Demir, A.; Szu-Tu, C.; Frömel, R.; et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat. Commun. 2021, 12, 1366. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.; Pozzorini, C.; Reinhardt, K.; Geffers, R.; Xu, Z.; Reinhardt, D.; von Neuhoff, N.; Hanenberg, H. Single-cell whole exome and targeted sequencing in NPM1/FLT3 positive pediatric acute myeloid leukemia. Pediatr. Blood Cancer 2018, 65. [Google Scholar] [CrossRef]
- Thol, F.; Gabdoulline, R.; Liebich, A.; Klement, P.; Schiller, J.; Kandziora, C.; Hambach, L.; Stadler, M.; Koenecke, C.; Flintrop, M.; et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018, 132, 1703–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertuccio, S.N.; Anselmi, L.; Masetti, R.; Lonetti, A.; Cerasi, S.; Polidori, S.; Serravalle, S.; Pession, A. Exploiting Clonal Evolution to Improve the Diagnosis and Treatment Efficacy Prediction in Pediatric AML. Cancers 2021, 13, 1995. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Qiao, C.; Zhao, S.; Liu, L.; Wang, Y.; Jin, H.; Qian, S.; Wu, Y. Next-generation sequencing reveals gene mutations landscape and clonal evolution in patients with acute myeloid leukemia. Hematology 2021, 26, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Onecha, E.; Rapado, I.; Luz Morales, M.; Carreño-Tarragona, G.; Martinez-Sanchez, P.; Gutierrez, X.; Sáchez Pina, J.M.; Linares, M.; Gallardo, M.; Martinez-López, J.; et al. Monitoring of clonal evolution of acute myeloid leukemia identifies the leukemia subtype, clinical outcome and potential new drug targets for post-remission strategies or relapse. Haematologica 2021, 106, 2325–2333. [Google Scholar] [CrossRef]
- Creutzig, U.; Dworzak, M.; von Neuhoff, N.; Rasche, M.; Reinhardt, D. Akute Promyelozyten-Leukämie: Neue Behandlungsstrategien mit ATRA und ATO-AML-BFM-Empfehlungen. Klin. Padiatr. 2018, 230, 299–304. [Google Scholar] [CrossRef]
- Zwaan, C.M.; Meshinchi, S.; Radich, J.P.; Veerman, A.J.P.; Huismans, D.R.; Munske, L.; Podleschny, M.; Hählen, K.; Pieters, R.; Zimmermann, M.; et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: Prognostic significance and relation to cellular drug resistance. Blood 2003, 102, 2387–2394. [Google Scholar] [CrossRef] [Green Version]
- Winters, A.C.; Maloney, K.W.; Treece, A.L.; Gore, L.; Franklin, A.K. Single-center pediatric experience with venetoclax and azacitidine as treatment for myelodysplastic syndrome and acute myeloid leukemia. Pediatr. Blood Cancer 2020, 67, e28398. [Google Scholar] [CrossRef]
- Karol, S.E.; Alexander, T.B.; Budhraja, A.; Pounds, S.B.; Canavera, K.; Wang, L.; Wolf, J.; Klco, J.M.; Mead, P.E.; Das Gupta, S.; et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: A phase 1, dose-escalation study. Lancet Oncol. 2020, 21, 551–560. [Google Scholar] [CrossRef]
- Merker, M.; Salzmann-Manrique, E.; Katzki, V.; Huenecke, S.; Bremm, M.; Bakhtiar, S.; Willasch, A.; Jarisch, A.; Soerensen, J.; Schulz, A.; et al. Clearance of Hematologic Malignancies by Allogeneic Cytokine-Induced Killer Cell or Donor Lymphocyte Infusions. Biol. Blood Marrow Transplant. 2019, 25, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.; Wu, H.; Pounds, S.; Inaba, H.; Ribeiro, R.C.; Cullins, D.; Rooney, B.; Bell, T.; Lacayo, N.J.; Heym, K.; et al. A phase II clinical trial of adoptive transfer of haploidentical natural killer cells for consolidation therapy of pediatric acute myeloid leukemia. J. Immunother. Cancer 2019, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Sendker, S.; Waack, K.; Reinhardt, D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. Children 2021, 8, 371. [Google Scholar] [CrossRef]
- Sendker, S.; Reinhardt, D.; Niktoreh, N. Redirecting the Immune Microenvironment in Acute Myeloid Leukemia. Cancers 2021, 13, 1423. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Morgan, M.A.; Kloos, A.; Lenz, D.; Kattre, N.; Nowak, J.; Bentele, M.; Keisker, M.; Dahlke, J.; Zimmermann, K.; Sauer, M.; et al. Improved Activity against Acute Myeloid Leukemia with Chimeric Antigen Receptor (CAR)-NK-92 Cells Designed to Target CD123. Viruses 2021, 13, 1365. [Google Scholar] [CrossRef]
- Tang, X.; Yang, L.; Li, Z.; Nalin, A.P.; Dai, H.; Xu, T.; Yin, J.; You, F.; Zhu, M.; Shen, W.; et al. First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am. J. Cancer Res. 2018, 8, 1083–1089. [Google Scholar] [PubMed]
- Zhang, H.; Wang, P.; Li, Z.; He, Y.; Gan, W.; Jiang, H. Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clin. Cancer Res. 2021, 27, 3549–3555. [Google Scholar] [CrossRef]
- Epperly, R.; Gottschalk, S.; Velasquez, M.P. Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. Children 2020, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Pizzitola, I.; Anjos-Afonso, F.; Rouault-Pierre, K.; Lassailly, F.; Tettamanti, S.; Spinelli, O.; Biondi, A.; Biagi, E.; Bonnet, D. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 2014, 28, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.D.J.; Zwaan, C.M.; Kolb, E.A.; Karres, D.; Guillot, J.; Kim, S.Y.; Marshall, L.; Tasian, S.K.; Smith, M.; Cooper, T.; et al. Paediatric Strategy Forum for medicinal product development for acute myeloid leukaemia in children and adolescents: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur. J. Cancer 2020, 136, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Pession, A.; Masetti, R.; Rizzari, C.; Putti, M.C.; Casale, F.; Fagioli, F.; Luciani, M.; Lo Nigro, L.; Menna, G.; Micalizzi, C.; et al. Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood 2013, 122, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waack, K. Improved Outcome in Pediatric AML—THe AML-BFM 2012 Study. Blood 2020, 136, 12–14. [Google Scholar] [CrossRef]
- Creutzig, U.; Zimmermann, M.; Bourquin, J.-P.; Dworzak, M.N.; Fleischhack, G.; Graf, N.; Klingebiel, T.; Kremens, B.; Lehrnbecher, T.; von Neuhoff, C.; et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: Results from Study AML-BFM 2004. Blood 2013, 122, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, T.M.; Franklin, J.; Gerbing, R.B.; Alonzo, T.A.; Hurwitz, C.; Raimondi, S.C.; Hirsch, B.; Smith, F.O.; Mathew, P.; Arceci, R.J.; et al. AAML03P1, a pilot study of the safety of gemtuzumab ozogamicin in combination with chemotherapy for newly diagnosed childhood acute myeloid leukemia: A report from the Children’s Oncology Group. Cancer 2012, 118, 761–769. [Google Scholar] [CrossRef]
- Gamis, A.S.; Alonzo, T.A.; Meshinchi, S.; Sung, L.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Kahwash, S.B.; Heerema-McKenney, A.; Winter, L.; et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: Results from the randomized phase III Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 2014, 32, 3021–3032. [Google Scholar] [CrossRef] [Green Version]
- Aplenc, R.; Meshinchi, S.; Sung, L.; Alonzo, T.; Choi, J.; Fisher, B.; Gerbing, R.; Hirsch, B.; Horton, T.; Kahwash, S.; et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: A report from the Children’s Oncology Group. Haematologica 2020, 105, 1879–1886. [Google Scholar] [CrossRef]
- Burnett, A.K.; Hills, R.K.; Russell, N. Twenty five years of UK trials in acute myeloid leukaemia: What have we learned? Br. J. Haematol. 2020, 188, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Dłuzniewska, A.; Balwierz, W.; Balcerska, A.; Chybicka, A.; Kamieńska, E.; Karolczyk, G.; Karpińska-Derda, I.; Krawczuk-Rybak, M.; Kowalczyk, J.R.; Lewandowska, D.; et al. Niepowodzenia leczenia w ostrej białaczce szpikowej u dzieci: Ponad 25-letnie doświadczenia Polskiej Pediatrycznej Grupy ds. Leczenia Białaczek i Chłoniaków. Przegl. Lek. 2010, 67, 366–370. [Google Scholar] [PubMed]
- Czogała, M.; Balwierz, W.; Pawińska-Wąsikowska, K.; Książek, T.; Bukowska-Strakova, K.; Czogała, W.; Sikorska-Fic, B.; Matysiak, M.; Skalska-Sadowska, J.; Wachowiak, J.; et al. Advances in the First Line Treatment of Pediatric Acute Myeloid Leukemia in the Polish Pediatric Leukemia and Lymphoma Study Group from 1983 to 2019. Cancers 2021, 13, 4356. [Google Scholar] [CrossRef] [PubMed]
- Rubnitz, J.E.; Lacayo, N.J.; Inaba, H.; Heym, K.; Ribeiro, R.C.; Taub, J.; McNeer, J.; Degar, B.; Schiff, D.; Yeoh, A.E.-J.; et al. Clofarabine Can Replace Anthracyclines and Etoposide in Remission Induction Therapy for Childhood Acute Myeloid Leukemia: The AML08 Multicenter, Randomized Phase III Trial. J. Clin. Oncol. 2019, 37, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
Risk Group | Genetic Risk Criteria | Response Criteria |
---|---|---|
Standard Risk (SR) |
| Genetic standard risk and
|
Intermediate Risk (IR) |
| Genetic standard or intermediate risk and
|
High Risk (HR) |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinhardt, D.; Antoniou, E.; Waack, K. Pediatric Acute Myeloid Leukemia—Past, Present, and Future. J. Clin. Med. 2022, 11, 504. https://doi.org/10.3390/jcm11030504
Reinhardt D, Antoniou E, Waack K. Pediatric Acute Myeloid Leukemia—Past, Present, and Future. Journal of Clinical Medicine. 2022; 11(3):504. https://doi.org/10.3390/jcm11030504
Chicago/Turabian StyleReinhardt, Dirk, Evangelia Antoniou, and Katharina Waack. 2022. "Pediatric Acute Myeloid Leukemia—Past, Present, and Future" Journal of Clinical Medicine 11, no. 3: 504. https://doi.org/10.3390/jcm11030504
APA StyleReinhardt, D., Antoniou, E., & Waack, K. (2022). Pediatric Acute Myeloid Leukemia—Past, Present, and Future. Journal of Clinical Medicine, 11(3), 504. https://doi.org/10.3390/jcm11030504