3D Stereophotogrammetric Quantitative Evaluation of Posture and Spine Proprioception in Subacute and Chronic Nonspecific Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Measurement
2.4. Acquisition Protocol
2.5. Group Statistical Analysis
2.6. Intra-Subject Statistical Analysis
- Frontal plane parameters: when the parameter values approached the optimal theoretical zero value during the ISCO [26].
- Sagittal plane parameters: in this case (except for pelvis torsion (|PT|) which should be zero), there are no theoretical optimal reference values; hence, we decided to consider the normative data determined in previous studies in healthy young adults, for IO and ISCO, as reference values to be approached [25,26,33].
- |∆UL| (i.e., the difference in underfoot load between the feet): the optimal theoretical condition is achieved when there is a perfect balance of underfoot load distribution between the left and right sides; therefore, there was “improvement” when changes approached this condition.
2.7. Summarising Indices
2.8. Power Analysis and Sample Size
3. Results
3.1. Group Statistical Analysis
3.2. Intra-Subject Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, D.; Brooks, P.; Blyth, F.; Buchbinder, R. The Epidemiology of Low Back Pain. Best Pract. Res. Clin. Rheumatol. 2010, 24, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What Low Back Pain Is and Why We Need to Pay Attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [Green Version]
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Prevention and Treatment of Low Back Pain: Evidence, Challenges, and Promising Directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-Specific Low Back Pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Zaina, F.; Balagué, F.; Battié, M.; Karppinen, J.; Negrini, S. Low Back Pain Rehabilitation in 2020: New Frontiers and Old Limits of Our Understanding. Eur. J. Phys. Rehabil. Med. 2020, 56, 212–219. [Google Scholar] [CrossRef]
- Duthey, B. Background Paper 6.24 Low Back Pain. In Background Paper; WHO (World Health Organisation): Geneva, Switzerland, 2013; pp. 1–29. Available online: http://www.who.int/medicines/areas/priority_medicines/en/ (accessed on 14 September 2019).
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years Lived with Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 310 Diseases and Injuries, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Alla, F.; Allebeck, P.; Allen, C.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, R.; van Tulder, M.; Öberg, B.; Costa, L.M.; Woolf, A.; Schoene, M.; Croft, P.; Lancet Low Back Pain Series Working Group. Low Back Pain: A Call for Action. Lancet 2018, 391, 2384–2388. [Google Scholar] [CrossRef]
- Taylor, J.L. Proprioception. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; pp. 1143–1149. ISBN 978-0-08-045046-9. [Google Scholar]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef]
- Hodges, P.; Cholewicki, J.; Van Dieen, J. Spinal Control: The Rehabilitation of Back Pain: State of the Art and Science; Churchill Livingstone: London, UK, 2013; ISBN 978-0-7020-4356-7. [Google Scholar]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing Lumbo-Pelvic Kinematics in People with and without Back Pain: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef] [PubMed]
- Ghamkhar, L.; Kahlaee, A.H. Trunk Muscles Activation Pattern During Walking in Subjects With and Without Chronic Low Back Pain: A Systematic Review. PM&R 2015, 7, 519–526. [Google Scholar] [CrossRef]
- Saragiotto, B.T.; Maher, C.G.; Yamato, T.P.; Costa, L.O.; Costa, L.C.M.; Ostelo, R.W.; Macedo, L.G. Motor Control Exercise for Chronic Non-specific Low-back Pain. Cochrane Database Syst. Rev. 2016, 2016, CD012004. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Hänsel, F. Non-Specific Low Back Pain and Postural Control During Quiet Standing—A Systematic Review. Front. Psychol. 2019, 10, 586. [Google Scholar] [CrossRef]
- Paul, C.P.L.; Schoorl, T.; Zuiderbaan, H.A.; Doulabi, B.Z.; van der Veen, A.J.; van de Ven, P.M.; Smit, T.H.; van Royen, B.J.; Helder, M.N.; Mullender, M.G. Dynamic and Static Overloading Induce Early Degenerative Processes in Caprine Lumbar Intervertebral Discs. PLoS ONE 2013, 8, e62411. [Google Scholar] [CrossRef] [Green Version]
- van Dieën, J.H.; Reeves, N.P.; Kawchuk, G.; van Dillen, L.R.; Hodges, P.W. Motor Control Changes in Low Back Pain: Divergence in Presentations and Mechanisms. J. Orthop. Sports Phys. Ther. 2019, 49, 370–379. [Google Scholar] [CrossRef]
- Hodges, P.W.; Tucker, K. Moving Differently in Pain: A New Theory to Explain the Adaptation to Pain. Pain 2011, 152, S90–S98. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Reeves, N.P.; Kawchuk, G.; van Dillen, L.R.; Hodges, P.W. Analysis of Motor Control in Patients With Low Back Pain: A Key to Personalized Care? J. Orthop. Sports Phys. Ther. 2019, 49, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.L.; Vrana, A.; Schweinhardt, P. Low Back Pain: The Potential Contribution of Supraspinal Motor Control and Proprioception. Neuroscientist 2019, 25, 583–596. [Google Scholar] [CrossRef]
- Macedo, L.G.; Maher, C.G.; Latimer, J.; McAuley, J.H. Motor Control Exercise for Persistent, Nonspecific Low Back Pain: A Systematic Review. Phys. Ther. 2009, 89, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Byström, M.G.; Rasmussen-Barr, E.; Grooten, W.J.A. Motor Control Exercises Reduces Pain and Disability in Chronic and Recurrent Low Back Pain: A Meta-Analysis. Spine 2013, 38, E350–E358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, M.; Kinel, E.; Roncoletta, P. Normative 3D Opto-Electronic Stereo-Photogrammetric Posture and Spine Morphology Data in Young Healthy Adult Population. PLoS ONE 2017, 12, e0179619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, M.; Kinel, E.; Roncoletta, P. 3D Quantitative Evaluation of Spine Proprioceptive Perception/Motor Control through Instinctive Self-Correction Maneuver in Healthy Young Subjects’ Posture: An Observational Study. Eur. J. Phys. Rehabil. Med. 2018, 54, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Kinel, E.; D’Amico, M.; Roncoletta, P. 3D Quantitative Evaluation of Posture and Spine Proprioceptive Perception Through Instinctive Self-Correction Manoeuvre in Adolescent Idiopathic Scoliosis. Front. Bioeng. Biotechnol. 2021, 9, 663394. [Google Scholar] [CrossRef]
- Brumagne, S.; Dolan, P.; Pickar, J.G. What Is the Relation between Proprioception and Low Back Pain? In Spinal Control; Elsevier: Amsterdam, The Netherlands, 2013; pp. 219–230. ISBN 978-0-7020-4356-7. [Google Scholar]
- Gurfinkel, V.S.; Ivanenko, Y.; Levik, Y.; Babakova, I.A. Kinesthetic Reference for Human Orthograde Posture. Neuroscience 1995, 68, 229–243. [Google Scholar] [CrossRef]
- Lackner, J.R.; DiZio, P.A. Aspects of Body Self-Calibration. Trends Cogn. Sci. 2000, 4, 279–288. [Google Scholar] [CrossRef]
- D’Amico, M.; Kinel, E.; Roncoletta, P. Leg Length Discrepancy and Nonspecific Low Back Pain: 3D Stereophotogrammetric Quantitative Posture Evaluation Confirms Positive Effects of Customized Heel-Lift Orthotics. Front. Bioeng. Biotechnol.-Biomech. 2021. Accepted for publication.
- D’Amico, M.; Kinel, E.; D’Amico, G.; Roncoletta, P. A 3D Spine and Full Skeleton Model for Opto-Electronic Stereo-Photogrammetric Multi-Sensor Biomechanical Analysis in Posture and Gait; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Kinel, E.; D’Amico, M.; Roncoletta, P. Normative 3D Opto-Electronic Stereo-Photogrammetric Sagittal Alignment Parameters in a Young Healthy Adult Population. PLoS ONE 2018, 13, e0203679. [Google Scholar] [CrossRef]
- D’Amico, M.; Kinel, E.; D’Amico, G.; Roncoletta, P. A Self-Contained 3D Biomechanical Analysis Lab for Complete Automatic Spine and Full Skeleton Assessment of Posture, Gait and Run. Sensors 2021, 21, 3930. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; for the STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.P.; Karoly, P. Self-Report Scales and Procedures for Assessing Pain in Adults. In Handbook of Pain Assessment, 2nd ed.; The Guilford Press: New York, NY, USA, 2001; pp. 15–34. ISBN 978-1-57230-488-8. [Google Scholar]
- Body Mass Index-BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 5 November 2020).
- D’Amico, M.; Kinel, E.; Roncoletta, P.; D’Amico, G. ASAP POSTURE. Available online: https://www.protocols.io/view/asap-posture-q5zdy76 (accessed on 22 June 2018).
- D’Amico, M.; D’Amico, G.; Roncoletta, P. Algorithm for Estimation, Classification and Graphical Representation of Clinical Parameters in the Measurement of Scoliosis and Spinal Deformities by Means of Non-Ionising Device. Three Dimens. Anal. Spinal Deform. 1995, 15, 33–38. [Google Scholar] [CrossRef]
- D’Amico, M.; D’Amico, G.; Roncoletta, P.; Tomassini, M.; Ciarrocca, F.; Vallasciani, M. A 3-D Biomechanical Skeleton Model and Processing Procedure. Eur. Med. Phys. 2007, 43, 1–6. [Google Scholar]
- D’Amico, M.; Roncoletta, P.; Di Felice, F.; Porto, D.; Bellomo, R.; Saggini, R. LBP and Lower Limb Discrepancy: 3D Evaluation of Postural Rebalancing via Underfoot Wedge Correction. Res. Spinal Deform. 2012, 176, 108–112. [Google Scholar] [CrossRef]
- D’Amico, M.; Roncoletta, P.; Di Felice, F.; Porto, D.; Bellomo, R.; Saggini, R. Leg Length Discrepancy in Scoliotic Patients. Res. Spinal Deform. 2012, 176, 146–150. [Google Scholar] [CrossRef]
- D’Amico, M.; Ferrigno, G. Technique for the Evaluation of Derivatives from Noisy Biomechanical Displacement Data Using a Model-Based Bandwidth-Selection Procedure. Med. Biol. Eng. Comput. 1990, 28, 407–415. [Google Scholar] [CrossRef]
- D’Amico, M.; Ferrigno, G. Comparison between the More Recent Techniques for Smoothing and Derivative Assessment in Biomechanics. Med. Biol. Eng. Comput. 1992, 30, 193–204. [Google Scholar] [CrossRef]
- D’Amico, M.; Roncoletta, P. A New Self-Adapted Digital Filtering Procedure for Data Smoothing and Differentiation. In Proceedings of the XVIII ISB (International Society of Biomechanics) Congress, Zurich, Switzerland, 8 July 2001. [Google Scholar]
- D’Amico, M.; Roncoletta, P. Baropodographic Measurements and Averaging in Locomotion and Postural Analysis. Res. Spinal Deform. 2002, 91, 156–161. [Google Scholar] [CrossRef]
- Seidel, G.K.; Marchinda, D.M.; Dijkers, M.; Soutas-Little, R.W. Hip Joint Center Location from Palpable Bony Landmarks—A Cadaver Study. J. Biomech. 1995, 28, 995–998. [Google Scholar] [CrossRef]
- de Leva, P. Joint Center Longitudinal Positions Computed from a Selected Subset of Chandler’s Data. J. Biomech. 1996, 29, 1231–1233. [Google Scholar] [CrossRef]
- Zatsiorsky, V.; Seluyanov, V.; Chugunova, L. In Vivo Body Segment Inertial Parameters Determination Using a Gamma-Scanner Method; Berme, N., Capozzo, A., Eds.; Bertec Corporation: Worthington, OH, USA, 1990; pp. 186–202. [Google Scholar]
- Liu, Y.K.; Wickstrom, J.K. Estimation of the Inertial Property Distribution of the Human Torso from Segmented Cadaveric Data. In Perspectives in Biomedical Engineering: Proceedings of a Symposium Organised in Association with the Biological Engineering Society and Held in the University of Strathclyde, Glasgow—Scotland, UK, June 1972; Kenedi, R.M., Ed.; Palgrave Macmillan UK: London, UK, 1973; pp. 203–213. ISBN 978-1-349-01604-4. [Google Scholar]
- D’Amico, M.; Vallasciani, M. Non-Ionising Opto-Electronic Measurement and X-ray Imaging. Two Complementary Techniques for Spinal Deformities Evaluation and Monitoring: Results of One Year Clinical Activity. Stud. Health Technol. Inform. 1997, 37, 151–154. [Google Scholar] [CrossRef]
- Stokes, I.A. Three-Dimensional Terminology of Spinal Deformity. A Report Presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D Terminology of Spinal Deformity. Spine 1994, 19, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Rencher, A.C. Methods of Multivariate Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 978-0-471-46172-2. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kolar, P.; Kucera, M.; Lewit, K.; Petrasek, J. Clinical Rehabilitation; Alena Kobesová: K Vápence, Czech Republic, 2014; ISBN 978-80-905438-1-2. [Google Scholar]
- Kruse, D.; Lemmen, B. Spine Injuries in the Sport of Gymnastics. Curr. Sports Med. Rep. 2009, 8, 20–28. [Google Scholar] [CrossRef]
- Ambegaonkar, J.P.; Caswell, A.M.; Kenworthy, K.L.; Cortes, N.; Caswell, S.V. Lumbar Lordosis in Female Collegiate Dancers and Gymnasts. Med. Probl. Perform. Art. 2014, 29, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Zaina, F.; Donzelli, S.; Lusini, M.; Minnella, S.; Negrini, S. Swimming and Spinal Deformities: A Cross-Sectional Study. J. Pediatr. 2015, 166, 163–167. [Google Scholar] [CrossRef]
- Kendall, F.P.; McCreary, E.K.; Provance, P.G.; Rodgers, M.M.; Romani, W.A. Muscles: Testing and Function, with Posture and Pain, 5th ed.; LWW: Baltimore, MD, USA, 2005; ISBN 978-0-7817-4780-6. [Google Scholar]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Theory and Practical Applications, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA; London, UK, 2001; ISBN 978-0-683-30643-9. [Google Scholar]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part I: The Physiologic Basis of Functional Joint Stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Jauregui-Renaud, K. Postural Balance and Peripheral Neuropathy. In Peripheral Neuropathy-A New Insight into the Mechanism, Evaluation and Management of a Complex Disorder; Souayah, N., Ed.; InTech: Lodon, UK, 2013; ISBN 978-953-51-1060-6. [Google Scholar]
- Peterka, R.J. Sensorimotor Integration in Human Postural Control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [Green Version]
- Lackner, J.R. Some Contributions of Touch, Pressure and Kinesthesis to Human Spatial Orientation and Oculomotor Control. Acta Astronaut. 1981, 8, 825–830. [Google Scholar] [CrossRef]
- Roll, J.P.; Vedel, J.P.; Roll, R. Eye, Head and Skeletal Muscle Spindle Feedback in the Elaboration of Body References. Prog. Brain Res. 1989, 80, 113–123; discussion 57–60. [Google Scholar]
- Massion, J. Movement, Posture and Equilibrium: Interaction and Coordination. Prog. Neurobiol. 1992, 38, 35–56. [Google Scholar] [CrossRef]
- Kavounoudias, A.; Gilhodes, J.C.; Roll, R.; Roll, J.P. From Balance Regulation to Body Orientation: Two Goals for Muscle Proprioceptive Information Processing? Exp. Brain Res. 1999, 124, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Day, B.L.; Steiger, M.J.; Thompson, P.D.; Marsden, C.D. Effect of Vision and Stance Width on Human Body Motion When Standing: Implications for Afferent Control of Lateral Sway. J. Physiol. 1993, 469, 479–499. [Google Scholar] [CrossRef] [PubMed]
- Darling, W.G.; Hondzinski, J.M. Visual Perceptions of Vertical and Intrinsic Longitudinal Axes. Exp. Brain Res. 1997, 116, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, G.; Gissot, A.S.; Fouque, F.; Casillas, J.M.; Pozzo, T.; Pérennou, D. Does Proprioception Contribute to the Sense of Verticality? Exp. Brain Res. 2008, 185, 545–552. [Google Scholar] [CrossRef]
- Gordon, J.E.; Davis, L.E. Leg Length Discrepancy: The Natural History (And What Do We Really Know). J. Pediatric Orthop. 2019, 39, S10–S13. [Google Scholar] [CrossRef]
- Campbell, T.M.; Ghaedi, B.B.; Ghogomu, E.T.; Welch, V. Shoe Lifts for Leg Length Discrepancy in Adults With Common Painful Musculoskeletal Conditions: A Systematic Review of the Literature. Arch. Phys. Med. Rehabil. 2018, 99, 981–993.e2. [Google Scholar] [CrossRef]
- Cambron, J.A.; Dexheimer, J.M.; Duarte, M.; Freels, S. Shoe Orthotics for the Treatment of Chronic Low Back Pain: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017, 98, 1752–1762. [Google Scholar] [CrossRef] [Green Version]
- Defrin, R.; Benyamin, S.B.; Aldubi, R.D.; Pick, C.G. Conservative Correction of Leg-Length Discrepancies of 10mm or Less for the Relief of Chronic Low Back Pain. Arch. Phys. Med. Rehabil. 2005, 86, 2075–2080. [Google Scholar] [CrossRef]
- Knutson, G.A. Anatomic and Functional Leg-Length Inequality: A Review and Recommendation for Clinical Decision-Making. Part I, Anatomic Leg-Length Inequality: Prevalence, Magnitude, Effects and Clinical Significance. Chiropr. Osteopathy 2005, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Sheha, E.D.; Steinhaus, M.E.; Kim, H.J.; Cunningham, M.E.; Fragomen, A.T.; Rozbruch, S.R. Leg-Length Discrepancy, Functional Scoliosis, and Low Back Pain. JBJS Rev. 2018, 6, e6. [Google Scholar] [CrossRef] [Green Version]
- Sekiya, T.; Aota, Y.; Yamada, K.; Kaneko, K.; Ide, M.; Saito, T. Evaluation of Functional and Structural Leg Length Discrepancy in Patients with Adolescent Idiopathic Scoliosis Using the EOS Imaging System: A Prospective Comparative Study. Scoliosis Spinal Disord. 2018, 13, 7. [Google Scholar] [CrossRef]
- Raczkowski, J.W.; Daniszewska, B.; Zolynski, K. Functional Scoliosis Caused by Leg Length Discrepancy. Arch. Med. Sci. 2010, 6, 393–398. [Google Scholar] [CrossRef]
- Lee, J.G.; Yun, Y.C.; Jo, W.J.; Seog, T.Y.; Yoon, Y.-S. Correlation of Radiographic and Patient Assessment of Spine Following Correction of Nonstructural Component in Juvenile Idiopathic Scoliosis. Ann. Rehabil. Med. 2018, 42, 863–871. [Google Scholar] [CrossRef]
- Kendall, J.C.; Bird, A.R.; Azari, M.F. Foot Posture, Leg Length Discrepancy and Low Back Pain–Their Relationship and Clinical Management Using Foot Orthoses–An Overview. Foot 2014, 24, 75–80. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex Differences in Human Adipose Tissues–the Biology of Pear Shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Bloxham, S. A Systematic Review of the Effects of Exercise and Physical Activity on Non-Specific Chronic Low Back Pain. Healthcare 2016, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.; O’Sullivan, P.B.; Burnett, A.F.; Straker, L.; Smith, A. Regional Differences in Lumbar Spinal Posture and the Influence of Low Back Pain. BMC Musculoskelet. Disord. 2008, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, P. Diagnosis and Classification of Chronic Low Back Pain Disorders: Maladaptive Movement and Motor Control Impairments as Underlying Mechanism. Man. Ther. 2005, 10, 242–255. [Google Scholar] [CrossRef]
- Henchoz, Y.; Kai-Lik So, A. Exercise and Nonspecific Low Back Pain: A Literature Review. Jt. Bone Spine 2008, 75, 533–539. [Google Scholar] [CrossRef]
- Foster, N.E.; Hill, J.C.; Hay, E.M. Subgrouping Patients with Low Back Pain in Primary Care: Are We Getting Any Better at It? Man. Ther. 2011, 16, 3–8. [Google Scholar] [CrossRef]
- Foster, N.E.; Hill, J.C.; O’Sullivan, P.; Hancock, M. Stratified Models of Care. Best Pract. Res. Clin. Rheumatol. 2013, 27, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Van Dillen, L.; van Tulder, M. Targeting Interventions to Patients. In Spinal Control; Elsevier: Amsterdam, The Netherlands, 2013; pp. 195–205. ISBN 978-0-7020-4356-7. [Google Scholar]
- Karayannis, N.V.; Jull, G.A.; Hodges, P.W. Movement-Based Subgrouping in Low Back Pain: Synergy and Divergence in Approaches. Physiotherapy 2016, 102, 159–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, S.M.; Cheung, J.P.Y.; Samartzis, D.; Karppinen, J.; Zheng, Y.; Pang, M.Y.C.; Wong, A.Y.L. Differences in Proprioception Between Young and Middle-Aged Adults With and Without Chronic Low Back Pain. Front. Neurol. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
Population Characteristics | Females (n = 43) | Males (n = 40) | t-Test Females vs. Males | ||
---|---|---|---|---|---|
Range | Mean (SD) | Range | Mean (SD) | ||
Age (years) * | 21–40 | 31.2 ± 5.6 | 21–40 | 30.8 ± 5.1 | ns |
Height (cm) | 149–180 | 163.1 ± 6.0 | 154–193 | 176.4 ± 8.7 | p = 2.0 × 10−11 |
Weight (kg) | 47–89 | 62.0 ± 10.7 | 54–108 | 77.1 ± 12.2 | p = 7.4 × 10−8 |
BMI (kg/m2) | 17.7–33.1 | 23.4 ± 4.3 | 20.5–33.3 | 24.7 ± 2.8 | ns |
NSLBP Mean (SD) | HYAP Mean (SD) | t-Test | |
---|---|---|---|
Age males (years) | 30.8 ± 5.1 | 24.9 ± 3.9 | p = 3.5 × 10−8 |
Age females (years) | 31.2 ± 5.6 | 23.5 ± 3.2 | p = 3.6 × 10−11 |
Weight males (kg) | 77.1 ± 12.2 | 73.9 ± 9.3 | ns |
Weight females (kg) | 62.0 ± 10.7 | 57.7 ± 9.1 | p = 0.036 |
Height males (cm) | 176.4 ± 8.7 | 178.3 ± 6.5 | ns |
Height females (cm) | 163.1 ± 6.0 | 164.3 ± 5.3 | ns |
BMI males (kg/m2) | 24.7 ± 2.8 | 23.2 ± 2.1 | p = 0.0056 |
BMI females (kg/m2) | 23.4 ± 4.3 | 21.3 ± 2.6 | p = 0.0065 |
Global Summarising Index | Parameters | Specific Summarising Indices | ||
---|---|---|---|---|
GPI Global postural index | Acronyms | Descriptions | Definitions | |
|ASO FR| (mm) | |Average frontal spinal offsets| | The ASO is the mean of the horizontal distances in the frontal plane of each labelled spine landmark with respect to the vertical axis passing by S3; absolute value of the average to disregard the side | FPI Frontal postural index | |
|AGO FR| (mm) | |Average frontal global offsets| | The AGO is the mean of the horizontal distances in the frontal plane of each labelled spine landmark respect to the vertical axis passing through the middle point between heels; absolute value of the average to disregard the side | ||
|∆ASIS| (mm) | |∆Anterior superior iliac spine| | Absolute ASIS height difference in frontal plane | ||
|∆PSIS| (mm) | |∆Posterior superior iliac spine| | Absolute PSIS height difference in frontal plane | ||
CA1; CA2 (°) | 1° Cobb angle; 2° Cobb angles | Cobb angles of the two main “spinal deformities” found in the frontal plane | ||
|PT (mm)| | |Pelvis torsion| = |(∆ASIS − ∆PSIS)| | Rotation of the right respect to the left innominate bone. Rotations are intended around a horizontal axis running through the symphysis pubis. Absolute value to disregard the side | SPI Sagittal postural index | |
ASO SG (mm) | Average sagittal spinal offsets | The ASO SG is the mean of horizontal distances in the sagittal plane of each labelled spine landmark respect to the vertical axis passing by S3; negative values represent forward leaning | ||
AGO SG (mm) | Average sagittal spinal offsets | The AGO SG is the mean of horizontal distances in the sagittal plane of each labelled spine landmark respect to the vertical axis passing through the middle point between heels; negative values represent forward leaning | ||
SA (°) | Sacral angle | The inclination of the S1–S3 line with respect to the vertical line | ||
TKA (°) | “Thoracic” kyphosis angles | Kyphosis and lordosis are correctly identified following spine curvature spatial changes at inflexion points; thus, limit vertebrae are not strictly bounded to the specific anatomical region | ||
LLA (°) | “Lumbar” lordosis angles | |||
|∆UL| (%BW) | |∆Underfoot load| | Left vs. right side body weight (bw) percentage difference; absolute value to disregard the side |
Hotelling T2 Test for Independent Samples NSLBP Male: vs. Female in IO and ISCO Comparison | |||||||||
---|---|---|---|---|---|---|---|---|---|
IO (n1 = 40, n2 = 43, k = 13, T2 = 64.3, p = 3.9 × 10−5, d = 1.76, Power = 0.99) | ISCO (n1 = 40, n2 = 43, k = 13, T2 = 78.7, p = 2.6 × 10−6, d = 1.94, Power = 0.99) | ||||||||
Parameter | Descriptions | Males Mean | Females Mean | Difference in Means | CI 95% Lower, Upper | Males Mean | Females Mean | Difference in Means | CI 95% Lower, Upper |
|ASO FR| (mm) | |Average frontal spinal offsets| | 7.3 ± 4.9 | 5.9 ± 3.9 | 1.47 | −0.93, 3.07 | 6.6 ± 5.6 | 5.4 ± 3.9 | 1.15 | −0.94, 3.25 |
|AGO FR| (mm) | |Average frontal global offsets| | 12.1 ± 11.1 | 8.4 ± 6.1 | 3.61 | −2.13, 4.41 | 10.9 ± 9.2 | 8.4 ± 5.9 | 2.43 | −0.92, 5.78 |
CA1 (°) | 1° Cobb angle; | 13.1 ± 8.1 | 13.4 ± 6.4 | −0.28 | −3.92, 1.35 | 13.1 ± 7.6 | 12.6 ± 6.2 | 0.42 | −2.61, 3.46 |
CA2 (°) | 2° Cobb angles | 8.4 ± 6.9 | 9.2 ± 5.9 | −0.76 | −4.79, −0.19 | 9.4 ± 6.9 | 9.2 ± 5.2 | 0.19 | −2.47, 2.85 |
TKA (°) | “Thoracic” kyphosis angles | 48.2 ± 12.0 | 45.5 ± 10.4 | 2.71 | 0.54, 7.45 | 39.4 ± 13.0 | 37.6 ± 10.3 | 1.83 | −3.27, 6.93 |
LLA (°) | “Lumbar” lordosis angles | 33.5 ± 9.3 | 41.4 ± 8.8 | −7.87 * | −6.49, −0.23 | 34.6 ± 9.5 | 42.1 ± 9.0 | −7.49 * | −11.52, −3.45 |
|∆ASIS| (mm) | |∆Anterior superior iliac spine| | 10.5 ± 7.9 | 7.8 ± 5.0 | 2.76 | −0.10, 4.68 | 10.6 ± 8.2 | 7.6 ± 4.7 | 3.05 * | 0.16, 5.94 |
|∆PSIS| (mm) | |∆Posterior superior iliac spine| | 7.5 ± 4.0 | 6.2 ± 3.2 | 1.29 | −0.60, 2.43 | 7.5 ± 4.4 | 6.0 ± 3.1 | 1.53 | −0.14, 3.19 |
|PT| (mm) | |Pelvis torsion| = |(∆ASIS − ∆PSIS)| | 6.3 ± 4.5 | 6.5 ± 5.5 | −0.25 | 0.13, 3.28 | 6.8 ± 4.7 | 6.4 ± 5.7 | 0.42 | −1.86, 2.71 |
SA (°) | Sacral angle | 13.4 ± 6.3 | 17.4 ± 6.6 | −4.00 * | −4.22, −0.03 | 15.7 ± 6.4 | 19.1 ± 6.1 | −3.32 * | −6.05, −0.59 |
ASO SG (mm) | Average sagittal spinal offsets | −8.2 ± 16.0 | −21.5 ± 15.0 | 13.30 * | 5.75, 14.56 | −11.2 ± 12.5 | −25.6 ± 13.9 | 14.36 * | 8.58, 20.14 |
AGO SG (mm) | Average sagittal global offsets | 3.3 ± 24.4 | 7.5 ± 26.0 | −4.22 | −14.81, −0.24 | 6.8 ± 24.0 | 9.8 ± 23.7 | −3.02 | −13.44, 7.41 |
|∆UL| (%BW) | |∆Underfoot load| | 8.1 ± 6.2 | 5.4 ± 4.6 | 2.68 * | −1.46, 1.64 | 7.3 ± 6.1 | 5.5 ± 4.1 | 1.83 | −0.44, 4.09 |
Hotelling T2 Test for Paired Samples: per Gender IO vs. ISCO Comparison | |||||||||
---|---|---|---|---|---|---|---|---|---|
Males (n = 40, k = 13, T2 = 347.3, p = 3.8 × 10−10, d = 2.94, Power = 0.99) | Females (n = 43, k = 13, T2= 82.3, p = 3.1 × 10−4, d = 1.38, Power = 1.0) | ||||||||
Parameter | Descriptions | IO Mean | ISCO Mean | Difference in Means | CI 95% Lower, Upper | IO Mean | ISCO Mean | Difference in Means | CI 95% Lower, Upper |
|ASO FR| (mm) | |Average frontal spinal offsets| | 7.3 ± 4.9 | 6.6 ± 5.6 | 0.78 | −0.67, 2.23 | 5.9 ± 3.9 | 5.4 ± 3.9 | 0.46 | −0.32, 1.25 |
|AGO FR| (mm) | |Average frontal global offsets| | 12.1 ± 11.1 | 10.9 ± 9.2 | 1.19 | −2.02, 4.41 | 8.4 ± 6.1 | 8.4 ± 5.9 | 0.02 | −1.68, 1.71 |
CA1 (°) | 1° Cobb angle; | 13.1 ± 8.1 | 13.1 ± 7.6 | 0.06 | −1.45, 1.58 | 13.4 ± 6.4 | 12.6 ± 6.2 | 0.77 | −1.22, 2.75 |
CA2 (°) | 2° Cobb angles | 8.4 ± 6.9 | 9.4 ± 6.9 | −0.97 | −2.60, 0.66 | 9.2 ± 5.9 | 9.2 ± 5.2 | −0.01 | −1.24, 1.22 |
TKA (°) | “Thoracic” kyphosis angles | 48.2 ± 12.0 | 39.4 ± 13.0 | 8.82 * | 6.32, 11.32 | 45.5 ± 10.4 | 37.6 ± 10.3 | 7.94 * | 4.10, 11.78 |
LLA (°) | “Lumbar” lordosis angles | 33.5 ± 9.3 | 34.6 ± 9.5 | −1.06 | −3.12, 1.00 | 41.4 ± 8.8 | 42.1 ± 9.0 | -0.68 | −3.00, 1.65 |
|∆ASIS| (mm) | |∆Anterior superior iliac spine| | 10.5 ± 7.9 | 10.6 ± 8.2 | −0.09 | −1.10, 0.92 | 7.8 ± 5.0 | 7.6 ± 4.7 | 0.19 | −0.52, 0.91 |
|∆PSIS| (mm) | |∆Posterior superior iliac spine| | 7.5 ± 4.0 | 7.5 ± 4.4 | −0.01 | −0.49, 0.46 | 6.2 ± 3.2 | 6.0 ± 3.1 | 0.22 | −0.02, 0.46 |
|PT| (mm) | |Pelvis torsion| = |(∆ASIS − ∆PSIS)| | 6.3 ± 4.5 | 6.8 ± 4.7 | −0.53 | −1.39, 0.32 | 6.5 ± 5.5 | 6.4 ± 5.7 | 0.14 | −0.57, 0.85 |
SA (°) | Sacral angle | 13.4 ± 6.3 | 15.7 ± 6.4 | −2.38 * | −3.17, -1.59 | 17.4 ± 6.6 | 19.1 ± 6.1 | −1.71 * | −2.71, -0.70 |
ASO SG (mm) | Average sagittal spinal offsets | −8.2 ± 16.0 | -11.2 ± 12.5 | 3.05 | −1.30, 7.40 | −21.5 ± 15.0 | −25.6 ± 13.9 | 4.11 * | 1.18, 7.04 |
AGO SG (mm) | Average sagittal global offsets | 3.3 ± 24.4 | 6.8 ± 24.0 | −3.46 | −8.28, 1.36 | 7.5 ± 26.0 | 9.8 ± 23.7 | −2.26 | −7.71, 3.20 |
|∆UL| (%BW) | |∆Underfoot load| | 8.1 ± 6.2 | 7.3 ± 6.1 | 0.76 | 1.32, 2.84 | 5.4 ± 4.6 | 5.5 ± 4.1 | −0.09 | −1.83, 1.65 |
Hotelling T2 Test for Independent Samples: NSLBP vs. HEALTHY YOUNG ADULTS in IO and ISCO Comparison | |||||||||
---|---|---|---|---|---|---|---|---|---|
Females | |||||||||
IO (n1 = 43, n2 = 57, k = 13, T2 = 43.9, p = 6.0 × 10−4, d = 1.16, Power = 0.99) | ISCO (n1 = 43, n2 = 57, k = 13, T2 = 54.1, p = 1.3 × 10−4, d = 1.48, Power = 0.99) | ||||||||
Parameter | Descriptions | NSLBP Mean | Healthy Young Adults Mean | Difference in Means | CI 95% Lower, Upper | NSLBPP Mean | Healthy Young Adults Mean | Difference in Means | CI 95% Lower, Upper |
|ASO FR| (mm) | |Average frontal spinal offsets| | 5.9 ± 3.9 | 6.5 ± 4.6 | −0.69 | −2.40, 1.03 | 5.4 ± 3.9 | 6.3 ± 4.1 | −0.93 | −2.53, 0.68 |
|AGO FR| (mm) | |Average frontal global offsets| | 8.4 ± 6.1 | 12.1 ± 8.1 | −3.63 * | −6.56, −0.69 | 8.4 ± 5.9 | 11.0 ± 8.1 | −2.61 | −5.53, 0.30 |
CA1 (°) | 1° Cobb angle; | 13.4 ± 6.4 | 10.3 ± 5.0 | 3.12 * | 0.86, 5.37 | 12.6 ± 6.2 | 9.5 ± 4.8 | 3.19 * | 1.00, 5.38 |
CA2 (°) | 2° Cobb angles | 9.2 ± 5.9 | 7.5 ± 4.1 | 1.73 | −0.25, 3.70 | 9.2 ± 5.2 | 7.2 ± 3.9 | 2.04 * | 0.22, 3.86 |
TKA (°) | “Thoracic” kyphosis angles | 45.5 ± 10.4 | 47.2 ± 8.6 | −1.71 | −5.49, 2.07 | 37.6 ± 10.3 | 40.8 ± 8.7 | −3.28 | −7.06, 0.49 |
LLA (°) | “Lumbar” lordosis angles | 41.4 ± 8.8 | 44.2 ± 9.7 | −2.80 | −6.52, 0.93 | 42.1 ± 9.0 | 43.7 ± 10.4 | −1.63 | −5.58, 2.31 |
|∆ASIS| (mm) | |∆Anterior superior iliac spine| | 7.8 ± 5.0 | 8.2 ± 5.5 | −0.45 | −2.58, 1.67 | 7.6 ± 4.7 | 8.0 ± 5.6 | −0.48 | −2.58, 1.62 |
|∆PSIS| (mm) | |∆Posterior superior iliac spine| | 6.2 ± 3.2 | 4.8 ± 2.6 | 1.46 * | 0.32, 2.60 | 6.0 ± 3.1 | 4.7 ± 2.6 | 1.28 * | 0.15, 2.41 |
|PT| (mm) | |Pelvis torsion| = |(∆ASIS − ∆PSIS)| | 6.5 ± 5.5 | 5.45 ± 3.9 | 1.05 | −0.82, 2.92 | 6.4 ± 5.7 | 5.6 ± 4.4 | 0.80 | −1.10, 2.71 |
SA (°) | Sacral angle | 17.4 ± 6.6 | 17.3 ± 5.9 | 0.08 | −2.40, 2.56 | 19.1 ± 6.1 | 18.2 ± 5.0 | 0.83 | −1.38, 3.03 |
ASO SG (mm) | Average sagittal spinal offsets | −21.5 ± 15.0 | −20.6 ± 11.9 | −0.85 | −6.20, 4.50 | −25.6 ± 13.9 | −23.5 ± 11.6 | −2.09 | −7.15, 2.97 |
AGO SG (mm) | Average sagittal global offsets | 7.5 ± 26.0 | −1.8 ± 26.7 | 9.32 | −1.26, 19.89 | 9.8 ± 23.7 | −0.4 ± 26.9 | 10.18 | −0.08, 20.45 |
|∆UL| (%BW) | |∆Underfoot load| | 5.4 ± 4.6 | 5.1 ± 4.3 | 0.33 | −1.44, 2.10 | 5.5 ± 4.1 | 5.4 ± 3.7 | 0.13 | −1.43, 1.70 |
Males | |||||||||
IO (n1 = 40, n2 = 64, k = 13, T2 = 67.7, p = 5.4× 10−6, d = 1.65, Power = 0.99) | ISCO (n1 = 40, n2 = 64, k = 13, T2 = 56.4, p = 6.7× 10−5, d = 1.51, Power = 0.99) | ||||||||
Parameter | Descriptions | NSLBP Mean | Healthy Young Adults Mean | Difference in Means | CI 95% Lower, Upper | NSLBP Mean | Healthy Young Adults Mean | Difference in Means | CI 95% Lower, Upper |
|ASO FR| (mm) | |Average frontal spinal offsets| | 7.3 ± 4.9 | 6.2 ± 5.1 | 1.09 | −0.92, 3.10 | 6.6 ± 5.6 | 5.8 ± 4.6 | 0.73 | −1.26, 2.72 |
|AGO FR| (mm) | |Average frontal global offsets| | 12.1 ± 11.1 | 11.6 ± 8.4 | 0.45 | −3.36, 4.26 | 10.9 ± 9.2 | 12.8 ± 8.7 | −1.90 | −5.45, 1.65 |
CA1 (°) | 1° Cobb angle; | 13.1 ± 8.1 | 11.5 ± 5.4 | 1.68 | −0.94, 4.30 | 13.1 ± 7.6 | 10.4 ± 5.3 | 2.69 * | 0.16, 5.22 |
CA2 (°) | 2° Cobb angles | 8.4 ± 6.9 | 7.2 ± 4.3 | 1.18 | −0.99, 3.36 | 9.4 ± 6.9 | 7.0 ± 4.7 | 2.39 * | 0.14, 4.65 |
TKA (°) | “Thoracic” kyphosis angles | 48.2 ± 12.0 | 45.1 ± 8.9 | 3.13 | −0.94, 7.20 | 39.4 ± 13.0 | 36.4 ± 8.4 | 2.96 | −1.19, 7.11 |
LLA (°) | “Lumbar” lordosis angles | 33.5 ± 9.3 | 32.6 ± 8.1 | 0.87 | −2.57, 4.30 | 34.6 ± 9.5 | 32.3 ± 8.4 | 2.27 | −1.26, 5.81 |
|∆ASIS| (mm) | |∆Anterior superior iliac spine| | 10.5 ± 7.9 | 7.5 ± 5.3 | 3.00 * | 0.43, 5.56 | 10.6 ± 8.2 | 7.6 ± 5.2 | 2.98 * | 0.38, 5.57 |
|∆PSIS| (mm) | |∆Posterior superior iliac spine| | 7.5 ± 4.0 | 5.1 ± 2.2 | 2.43 * | 1.22, 3.65 | 7.5 ± 4.4 | 5.1 ± 2.2 | 2.42 * | 1.12, 3.72 |
|PT| (mm) | |Pelvis torsion| = |(∆ASIS − ∆PSIS)| | 6.3 ± 4.5 | 5.3 ± 4.5 | 0.84 | −0.98, 2.65 | 6.8 ± 4.7 | 5.6 ± 4.8 | 1.15 | −0.75, 3.05 |
SA (°) | Sacral angle | 13.4 ± 6.3 | 15.7 ± 5.5 | −2.34 * | −4.66, −0.02 | 15.7 ± 6.4 | 16.8 ± 5.5 | −1.06 | −3.40, 1.28 |
ASO SG (mm) | Average sagittal spinal offsets | −8.2 ± 16.0 | −14.0 ± 12.4 | 5.83 * | 0.29, 11.38 | −11.2 ± 12.5 | −17.4 ± 13.5 | 6.22 * | 0.98, 11.46 |
AGO SG (mm) | Average sagittal global offsets | 3.3 ± 24.4 | −10.2 ± 21.5 | 13.47 * | 4.42, 22.52 | 6.8 ± 24.0 | −8.8 ± 19.4 | 15.54 * | 7.03, 24.04 |
|∆UL| (%BW) | |∆Underfoot load| | 8.1 ± 6.2 | 4.5 ± 3.8 | 3.55 * | 1.61, 5.50 | 7.3 ± 6.1 | 5.1 ± 4.5 | 2.25 * | 0.17, 4.32 |
NSLBP Males | NSLBP Females | Healthy Young Adults | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
3D Posture Parameter | Descriptions | Improvement | Worsening | Unchanged | Improvement | Worsening | Unchanged | Improvement | Worsening | Unchanged |
|ASO FR| | |Average frontal spinal offsets| | 42.5% | 15.0% | 42.5% | 37.2% | 23.3% | 39.5% | 29.8% | 20.7% | 49.6% |
|AGO FR| | |Average frontal global offsets| | 25.0% | 17.5% | 57.5% | 7.0% | 23.3% | 69.8% | 26.4% | 30.6% | 43.0% |
|∆ASIS| | |∆Anterior superior iliac spine| | 32.5% | 32.5% | 35.0% | 30.2% | 20.9% | 48.8% | 19.8% | 14.0% | 66.1% |
|∆PSIS| | |∆Posterior superior iliac spine| | 35.0% | 22.5% | 42.5% | 25.6% | 14.0% | 60.5% | 21.5% | 19.0% | 59.5% |
CA1 | 1° Cobb angle | 30.0% | 25.0% | 45.0% | 32.6% | 11.6% | 55.8% | 28.1% | 23.1% | 48.8% |
CA2 | 2° Cobb angles | 5.0% | 35.0% | 60.0% | 27.9% | 20.9% | 51.2% | 25.6% | 26.4% | 47.9% |
|PT| | |Pelvis torsion| = |(∆ASIS − ∆PSIS)| | 30.0% | 37.5% | 32.5% | 32.6% | 34.9% | 32.6% | 29.8% | 35.5% | 34.7% |
SA | Sacral angle | 47.5% | 20.0% | 32.5% | 34.9% | 9.4% | 55.8% | 35.5% | 5.8% | 58.7% |
TKA | “Thoracic” kyphosis angles | 37.5% | 35.0% | 27.5% | 25.6% | 35.3% | 39.5% | 36.4% | 27.3% | 36.4% |
LLA | “Lumbar” lordosis angles | 25.0% | 12.5% | 62.5% | 20.9% | 16.5% | 62.8% | 20.7% | 12.4% | 66.9% |
|∆UL| | |∆Underfoot load average| | 35.1% | 27.0% | 37.8% | 40.0% | 22.5% | 37.5% | 22.5% | 27.5% | 50.0% |
FPI | Frontal postural index | 17.5% | 17.5% | 65.0% | 11.6% | 7.0% | 81.4% | 14.0% | 9.9% | 76.0% |
SPI | Sagittal postural index | 27.5% | 15.0% | 57.5% | 14.0% | 7.0% | 79.1% | 27.3% | 10.7% | 62.0% |
GPI | Global postural index | 15.0% | 5.0% | 80.0% | 4.7% | 2.3% | 93.0% | 6.6% | 6.6% | 86.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinel, E.; Roncoletta, P.; Pietrangelo, T.; D’Amico, M. 3D Stereophotogrammetric Quantitative Evaluation of Posture and Spine Proprioception in Subacute and Chronic Nonspecific Low Back Pain. J. Clin. Med. 2022, 11, 546. https://doi.org/10.3390/jcm11030546
Kinel E, Roncoletta P, Pietrangelo T, D’Amico M. 3D Stereophotogrammetric Quantitative Evaluation of Posture and Spine Proprioception in Subacute and Chronic Nonspecific Low Back Pain. Journal of Clinical Medicine. 2022; 11(3):546. https://doi.org/10.3390/jcm11030546
Chicago/Turabian StyleKinel, Edyta, Piero Roncoletta, Tiziana Pietrangelo, and Moreno D’Amico. 2022. "3D Stereophotogrammetric Quantitative Evaluation of Posture and Spine Proprioception in Subacute and Chronic Nonspecific Low Back Pain" Journal of Clinical Medicine 11, no. 3: 546. https://doi.org/10.3390/jcm11030546
APA StyleKinel, E., Roncoletta, P., Pietrangelo, T., & D’Amico, M. (2022). 3D Stereophotogrammetric Quantitative Evaluation of Posture and Spine Proprioception in Subacute and Chronic Nonspecific Low Back Pain. Journal of Clinical Medicine, 11(3), 546. https://doi.org/10.3390/jcm11030546