Contact Force-Sensing versus Standard Catheters in Non-Fluoroscopic Radiofrequency Catheter Ablation of Idiopathic Outflow Tract Ventricular Arrhythmias
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Mapping and Ablation Protocol
2.3. Twenty-Four-Hour Holter Monitoring and Echocardiography
2.4. Statistical Analysis
3. Results
3.1. Baseline Patients’ Characteristic
3.2. Procedural Characteristic and Ablation Effectiveness
3.3. Complications
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, T.Y.; Liu, S.R.; Chen, Y.Y.; Xie, L.Z.; He, L.W.; Meng, S.R.; Peng, J. Zero-fluoroscopy catheter ablation for idiopathic premature ventricular contractions from the aortic sinus cusp. Nan Fang Yi Ke Da Xue Xue Bao 2016, 36, 1105–1109. [Google Scholar] [PubMed]
- Koźluk, E.; Gawrysiak, M.; Piątkowska, A.; Lodziński, P.; Kiliszek, M.; Małkowska, S.; Zaczek, R.; Piątkowski, R.; Opolski, G.; Kozłowski, D. Radiofrequency ablation without the use of fluoroscopy—In what kind of patients is it feasible? Arch. Med. Sci. 2013, 9, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Kozluk, E.; Rodkiewicz, D.; Piątkowska, A.; Opolski, G. Safety and efficacy of cryoablation without the use of fluoroscopy. Cardiol. J. 2018, 25, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styczkiewicz, K.; Ludwik, B.; Śledź, J.; Lipczyńska, M.; Zaborska, B.; Kryński, T.; Deutsch, K.; Morka, A.; Kukla, P.; Styczkiewicz, M.; et al. Long-term Follow-Up and Comparison of Techniques in Radiofrequency Ablation of Ventricular Arrhythmias Originating from the Aortic Cusps (AVATAR Registry). Pol. Arch. Intern Med. 2019, 29, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Karkowski, G.; Kuniewicz, M.; Koźluk, E.; Chyży, T.; Ząbek, A.; Dusza, M.; Lelakowski, J. Non-fluoroscopic radiofrequency catheter ablation of right and left sided ventricular arrhythmias. Postepy Kardiol. Interwencyjnej 2020, 16, 321–329. [Google Scholar] [CrossRef]
- Zheng, X.; Walcott, G.P.; Hall, J.A.; Rollins, D.L.; Smith, W.M.; Kay, G.N.; Ideker, R.E. Electrode impedance: An indicator of electrode-tissue contact and lesion dimensions during linear ablation. J. Interv. Card. Electrophysiol. 2000, 4, 645–654. [Google Scholar] [CrossRef]
- Wittkampf, F.H.M.; Nakagawa, H. RF catheter ablation: Lessons and lesions. Pacing Clin. Electrophysiol. 2006, 29, 1285–1297. [Google Scholar] [CrossRef]
- Kumar, S.; Morton, J.B.; Lee, G.; Halloran, K.; Kistler, P.M.; Kalman, J.M. High incidence of low catheter-tissue contact force at the cavotricuspid isthmus during catheter ablation of atrial flutter: Implications for achieving isthmus block. J. Cardiovasc. Electrophysiol. 2015, 26, 826–831. [Google Scholar] [CrossRef]
- Yokoyama, K.; Nakagawa, H.; Shah, D.C.; Lambert, H.; Leo, G.; Aeby, N.; Ikeda, A.; Pitha, J.V.; Sharma, T.; Lazzara, R.; et al. Novel Contact Force Sensor Incorporated in Irrigated Radiofrequency Ablation Catheter Predicts Lesion Size and Incidence of Steam Pop and Thrombus. Circ. Arrhythm. Electrophysiol. 2008, 1, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Seiler, J.; Roberts-Thomson, K.C.; Raymond, J.M.; Vest, J.; Delacretaz, E.; Stevenson, W.G. Steam pops during irrigated radiofrequency ablation: Feasibility of impedance monitoring for prevention. Heart Rhythm 2008, 5, 1411–1416. [Google Scholar] [CrossRef]
- Sarkozy, A.; Shah, D.; Saenen, J.; Sieira, J.; Phlips, T.; Boris, W.; Namdar, M.; Vrints, C. Contact force in atrial fibrillation: Role of atrial rhythm and ventricular contractions: Co-Force Atrial Fibrillation Study. Circ. Arrhythm. Electrophysiol. 2015, 8, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, Y.H.; Hou, J.W.; Lu, Z.Y.; Xiang, Y.; Li, Y.G. Role of contact force-guided radiofrequency catheter ablation for treatment of atrial fibrillation: A systematic review and meta-analysis. J. Cardiovasc. Electrophysiol. 2017, 28, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Dukkipati, S.R.; Neuzil, P.; Natale, A.; Albenque, J.P.; Kautzner, J.; Shah, D.; Michaud, G.; Wharton, M.; Harari, D.; et al. Randomized, Controlled Trial of the Safety and Effectiveness of a Contact Force-Sensing Irrigated Catheter for Ablation of Paroxysmal Atrial Fibrillation: Results of the TactiCath Contact Force Ablation Catheter Study for Atrial Fibrillation (TOCCASTAR) Study. Circulation 2015, 132, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Qu, F.; Sang, X.; Wang, X.; Nan, R. Impact of contact force sensing technology on outcome of catheter ablation of idiopathic premature ventricular contractions originating from the outflow tracts. Europace 2021, 23, 603–609. [Google Scholar] [CrossRef]
- Ábrahám, P.; Ambrus, M.; Herczeg, S.; Szegedi, N.; Nagy, K.V.; Salló, Z.; Osztheimer, I.; Széplaki, G.; Tahin, T.; Merkely, B.; et al. Similar outcomes with manual contact force ablation catheters and traditional catheters in the treatment of outflow tract premature ventricular complexes. Europace 2021, 23, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, R.; Bieganowska, K.; Cygankiewicz, I.; Guzik, P.; Kurpesa, M.; Lelonek, M.; Maciejewska, M.; Miszczak-Knecht, M.; Piotrowicz, E.; Szydło, K.; et al. Wytyczne dotyczące wykonywania długotrwałych rejestracji EKG. Stanowisko grupy ekspertów Sekcji Elektrokardiologii Nieinwazyjnej i Telemedycyny Polskiego Towarzystwa Kardiologicznego. Kardiol. Pol. 2013, 71 (Suppl. IX), 225–241. (In Polish) [Google Scholar] [CrossRef]
- Steeds, R.P.; Garbi, M.; Cardim, N.; Kasprzak, J.D.; Sade, E.; Nihoyannopoulos, P.; Popescu, B.A.; Stefanidis, A.; Cosyns, B.; Monaghan, M.; et al. 2014–2016 EACVI Scientific Documents Committee; 2014–2016 EACVI Scientific Documents Committee. EACVI appropriateness criteria for the use of transthoracic echocardiography in adults: A report of literature and current practice review. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1191–1204. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, X.; Gao, L.; Xi, Y.; Chen, Q.; Chang, D.; Xiao, X.; Cheng, J.; Yang, Y.; Xia, Y.; et al. Benefit of contact force–guided catheter ablation for treating premature ventricular contractions. Tex. Heart Inst. J. 2020, 47, 3–9. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Shah, D.; Kautzner, J.; Schmidt, B.; Saoudi, N.; Herrera, C.; Jaïs, P.; Hindricks, G.; Peichl, P.; Yulzari, A.; et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the Toccata study. Heart Rhythm 2012, 9, 1789–1795. [Google Scholar] [CrossRef]
- Mizuno, H.; Vergara, P.; Maccabelli, G.; Trevisi, N.; Eng, S.C.; Brombin, C.; Mazzone, P.; Della Bella, P. Contact force monitoring for cardiac mapping in patients with ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2013, 24, 519–524. [Google Scholar] [CrossRef]
- Shah, D.; Lambert, H.; Langenkamp, A.; Vanenkov, Y.; Leo, G.; Gentil-Baron, P.; Walpoth, B. Catheter tip force required for mechanical perforation of porcine cardiac chambers. Europace 2011, 13, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Nakagawa, H.; Lambert, H.; Shah, D.C.; Fonck, E.; Yulzari, A.; Sharma, T.; Pitha, J.V.; Lazzara, R.; Jackman, W.M. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: Electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion size. Circ. Arrhythm. Electrophysiol. 2014, 7, 1174–1180. [Google Scholar] [PubMed] [Green Version]
- Schönbauer, R.; Sommer, P.; Misfeld, M.; Dinov, B.; Fiedler, L.; Huo, Y.; Gaspar, T.; Breithardt, O.A.; Hindricks, G.; Arya, A. Relevant ventricular septal defect caused by steam pop during ablation of premature ventricular contraction. Circulation 2013, 127, e843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akca, F.; Janse, P.; Theuns, D.A.; Szili-Torok, T. A prospective study on safety of catheter ablation procedures: Contact force guided ablation could reduce the risk of cardiac perforation. Int. J. Cardiol. 2015, 179, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Capulzini, L.; Vergara, P.; Mugnai, G.; Salghetti, F.; Abugattas, J.P.; El Bouchaibi, S.; Iacopino, S.; Sieira, J.; Enriquez Coutiño, H.; Ströker, E.; et al. Acute and one year outcome of premature ventricular contraction ablation guided by contact force and automated pacemapping software. J. Arrhythm. 2019, 35, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.A.; Akca, F.; Dabiri Abkenari, L.; Khan, M.; Bhagwandien, R.; Yap, S.C.; Wijchers, S.; Szili-Torok, T. Safety and Clinical Outcome of Catheter Ablation of Ventricular Arrhythmias Using Contact Force Sensing. J. Cardiovasc. Electrophysiol. 2015, 26, 1224–1229. [Google Scholar] [CrossRef]
- Guckel, D.; Niemann, S.; Ditzhaus, M.; Molatta, S.; Bergau, L.; Fink, T.; Sciacca, V.; El Hamriti, M.; Imnadze, G.; Steinhauer, P.; et al. Long-Term Efficacy and Impact on Mortality of Remote Magnetic Navigation Guided Catheter Ablation of Ventricular Arrhythmias. J. Clin. Med. 2021, 10, 4695. [Google Scholar] [CrossRef]
- Deutsch, K.; Ciurzyński, M.; Śledź, J.; Zienciuk-Krajka, A.; Mazij, M.; Ludwik, B.; Stec, P.; Wileczek, A.; Pruszczyk, P.; Stec, S. Association between the geographic region and the risk of familial atrioventricular nodal reentrant tachycardia in the Polish population. Pol. Arch. Intern Med. 2021, 131. [Google Scholar] [CrossRef]
- Fadhle, A.; Hu, M.; Wang, Y. The safety and efficacy of zero-fluoroscopy ablation versus conventional ablation in patients with supraventricular tachycardia. Kardiol. Pol. 2020, 78, 552–558. [Google Scholar] [CrossRef] [Green Version]
Variable | Total (n = 102) | Standard Catheter Ablation (n = 50) | CFS Catheter Ablation (n = 52) | p-Value |
---|---|---|---|---|
Age (years) | 42.0 (32.7–55.0) | 42.0 (32.7–53.5) | 42.0 (32.2–55.7) | p = 0.987 |
Female, n (%) | 63 (61.8) | 29 (58.0) | 34 (65.4) | p = 0.443 |
RVOT PVCs origin, n (%) | 70 (68.6) | 35 (70) | 35 (67.3) | p = 0.770 |
LVOT PVCs origin, n (%) | 32 (31.4) | 15 (30) | 17 (32.7) | |
Hypertension, n (%) | 27 (26.5) | 13 (26.0) | 14 (26.9) | p = 0.916 |
History of CAD, n (%) | 12 (11.8) | 6 (12.0) | 6 (11.5) | p = 0.942 |
Diabetes mellitus, n (%) | 5 (4.9) | 4 (8.0) | 1 (1.9) | p = 0.200 |
Presence of CIED, n (%) | 2 (2.0) | 2 (4.0) | 0 (0.0) | p = 0.238 |
History of AF, n (%) | 2 (2.0) | 0 (0.0) | 2 (3.8) | p = 0.495 |
Invasive correction of atrial septal defect *, n (%) | 2 (2.0) | 1 (2.0) | 1 (1.9) | p > 0.99 |
Beta blocker, n (%) | 26 (25.5) | 12 (24.0) | 14 (26.9) | p = 0.735 |
Calcium-channel blocker **, n (%) | 3 (2.9) | 2 (4.0) | 1 (1.9) | p = 0.614 |
Propafenone, n (%) | 11 (10.8) | 7 (14.0) | 4 (7.7) | p = 0.305 |
Number of antiarrhythmic drugs after ablation | 0.0 (0.0–1.0) | 0.0 (0.0–1.0) | 0.0 (0.0–1.0) | p = 0.605 |
Parameter | Total (n = 102) | Standard Catheter Ablation (n = 50) | CFS Catheter Ablation (n = 52) | p-Value |
---|---|---|---|---|
Duration of procedure (min) | 85.0 (65.0–100.7) | 80.0 (65.0–90.0) | 90.0 (70.0–120.0) | p = 0.029 |
Duration of procedure in only RVOT ablation site (min) | 80.0 (60.0–106.2) | 70.0 (65.0–85.0) | 85.0 (60.0–120.0) | p = 0.074 |
Duration of procedure in only LVOT ablation site (min) | 90.0 (76.2–100.0) | 90.0 (75.0–96.0) | 96.0 (76.0–125.0) | p = 0.261 |
Re-ablation at baseline, n (%) | 17 (16.7) | 5 (10) | 12 (23.1) | p = 0.132 |
Use of isoproterenol, n (%) | 21 (20.6) | 11 (22.0) | 10 (19.2) | p = 0.730 |
Overall acute success, n (%) | 98 (96.1) | 48 (96.0) | 50 (96.2) | p > 0.99 |
RVOT acute success, n (%) | 68 (97.1) | 34 (97.1) | 34 (97.1) | p > 0.99 |
LVOT acute success, n (%) | 30 (93.7) | 14 (93.3%) | 16 (94.1) | p > 0.99 |
Overall long-term success, n (%) | 87 (85.3) | 41 (82.0) | 46 (88.5) | p = 0.357 |
RVOT long-term success, n (%) | 61 (87.1) | 29 (82.9) | 32 (91.4) | p = 0.477 |
LVOT long-term success, n (%) | 26 (81.2) | 12 (80.0) | 14 (82.3) | p > 0.99 |
Complications, n (%) | 3 (2.9) | 2 (4.0) | 1 (1.9) | p = 0.614 |
Duration of follow-up (months) | 52.5 (34.5–69.5) | 69.5 (46.2–77.5) | 40.0 (24.0–56.7) | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karkowski, G.; Kuniewicz, M.; Ząbek, A.; Koźluk, E.; Dębski, M.; Matusik, P.T.; Lelakowski, J. Contact Force-Sensing versus Standard Catheters in Non-Fluoroscopic Radiofrequency Catheter Ablation of Idiopathic Outflow Tract Ventricular Arrhythmias. J. Clin. Med. 2022, 11, 593. https://doi.org/10.3390/jcm11030593
Karkowski G, Kuniewicz M, Ząbek A, Koźluk E, Dębski M, Matusik PT, Lelakowski J. Contact Force-Sensing versus Standard Catheters in Non-Fluoroscopic Radiofrequency Catheter Ablation of Idiopathic Outflow Tract Ventricular Arrhythmias. Journal of Clinical Medicine. 2022; 11(3):593. https://doi.org/10.3390/jcm11030593
Chicago/Turabian StyleKarkowski, Grzegorz, Marcin Kuniewicz, Andrzej Ząbek, Edward Koźluk, Maciej Dębski, Paweł T. Matusik, and Jacek Lelakowski. 2022. "Contact Force-Sensing versus Standard Catheters in Non-Fluoroscopic Radiofrequency Catheter Ablation of Idiopathic Outflow Tract Ventricular Arrhythmias" Journal of Clinical Medicine 11, no. 3: 593. https://doi.org/10.3390/jcm11030593