Perioperative Complications of Patients with SARS-CoV-2 Infection in Neurosurgery
Abstract
:1. Introduction
2. Materials and Methods
Matching with a COVID-19-Negative Cohort
3. Results
3.1. Postoperative Complications
3.2. Clinical Outcome and Mortality
3.3. COVID-19 Symptoms and Treatment
3.4. Comparison to a Matched COVID-19-Negative Cohort
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 5 November 2021).
- Pinna, P.; Grewal, P.; Hall, J.P.; Tavarez, T.; Dafer, R.M.; Garg, R.; Osteraas, N.D.; Pellack, D.R.; Asthana, A.; Fegan, K.; et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J. Neurol. Sci. 2020, 415, 116969. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeKosky, S.T.; Kochanek, P.M.; Valadka, A.B.; Clark, R.S.B.; Chou, S.H.-Y.; Au, A.K.; Horvat, C.; Jha, R.M.; Mannix, R.; Wisniewski, S.R.; et al. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J. Neurotrauma 2021, 38, 1–43. [Google Scholar] [CrossRef]
- Nawabi, J.; Morotti, A.; Wildgruber, M.; Boulouis, G.; Kraehling, H.; Schlunk, F.; Can, E.; Kniep, H.; Thomalla, G.; Psychogios, M.; et al. Clinical and Imaging Characteristics in Patients with SARS-CoV-2 Infection and Acute Intracranial Hemorrhage. J. Clin. Med. 2020, 9, 2543. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef]
- Jiménez, D.; García-Sanchez, A.; Rali, P.; Muriel, A.; Bikdeli, B.; Ruiz-Artacho, P.; Le Mao, R.; Rodríguez, C.; Hunt, B.J.; Monreal, M. Incidence of VTE and Bleeding among Hospitalized Patients with Coronavirus Disease 2019. Chest 2021, 159, 1182–1196. [Google Scholar] [CrossRef]
- Keller, E.; Brandi, G.; Winklhofer, S.; Imbach, L.L.; Kirschenbaum, D.; Frontzek, K.; Steiger, P.; Dietler, S.; Haeberlin, M.; Willms, J.; et al. Large and Small Cerebral Vessel Involvement in Severe COVID-19: Detailed Clinical Workup of a Case Series. Stroke 2020, 51, 3719–3722. [Google Scholar] [CrossRef]
- Dakay, K.; Cooper, J.; Bloomfield, J.; Overby, P.; Mayer, S.A.; Nuoman, R.; Sahni, R.; Gulko, E.; Kaur, G.; Santarelli, J.; et al. Cerebral Venous Sinus Thrombosis in COVID-19 Infection: A Case Series and Review of The Literature. J. Stroke Cerebrovasc. Dis. 2021, 30, 105434. [Google Scholar] [CrossRef]
- Baldini, T.; Asioli, G.M.; Romoli, M.; Carvalho Dias, M.; Schulte, E.C.; Hauer, L.; Aguiar De Sousa, D.; Sellner, J.; Zini, A. Cerebral venous thrombosis and severe acute respiratory syndrome coronavirus-2 infection: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 3478–3490. [Google Scholar] [CrossRef]
- Nepogodiev, D.; Bhangu, A.; Glasbey, J.C.; Li, E.; Omar, O.M.; Simoes, J.F.; Abbott, T.E.; Alser, O.; Arnaud, A.P.; Bankhead-Kendall, B.K.; et al. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: An international cohort study. Lancet 2020, 396, 27–38. [Google Scholar] [CrossRef]
- Ashkan, K.; Jung, J.; Velicu, A.M.; Raslan, A.; Faruque, M.; Kulkarni, P.; Bleil, C.; Hasegawa, H.; Kailaya-Vasan, A.; Maratos, E.; et al. Neurosurgery and coronavirus: Impact and challenges—Lessons learnt from the first wave of a global pandemic. Acta Neurochir. 2021, 163, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.P.; Jack, A.S. Coronavirus disease 2019 (COVID-19) in neurology and neurosurgery: A scoping review of the early literature. Clin. Neurol. Neurosurg. 2020, 193, 105866. [Google Scholar] [CrossRef] [PubMed]
- Bernucci, C.; Fanti, A.; Veiceschi, P.; Costi, E.; Sicignano, A.M.; Brembilla, C. Neurosurgeons on the front line: Experience from the center of the storm in Italy. Neurosurg. Focus 2020, 49, E6. [Google Scholar] [CrossRef]
- Pessina, F.; Navarria, P.; Bellu, L.; Clerici, E.; Politi, L.S.; Tropeano, M.P.; Simonelli, M.; Fornari, M.; Scorsetti, M. Treatment of patients with glioma during the COVID-19 pandemic: What we learned and what we take home for the future. Neurosurg. Focus 2020, 49, E10. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Anderson, F.A.; FitzGerald, G.; Decousus, H.; Pini, M.; Chong, B.H.; Zotz, R.B.; Bergmann, J.-F.; Tapson, V.; Froehlich, J.B.; et al. Predictive and Associative Models to Identify Hospitalized Medical Patients at Risk for VTE. Chest 2011, 140, 706–714. [Google Scholar] [CrossRef]
- Mahammedi, A.; Saba, L.; Vagal, A.; Leali, M.; Rossi, A.; Gaskill, M.; Sengupta, S.; Zhang, B.; Carriero, A.; Bachir, S.; et al. Imaging of Neurologic Disease in Hospitalized Patients with COVID-19: An Italian Multicenter Retrospective Observational Study. Radiology 2020, 297, E270–E273. [Google Scholar] [CrossRef]
- Cheruiyot, I.; Sehmi, P.; Ominde, B.; Bundi, P.; Mislani, M.; Ngure, B.; Olabu, B.; Ogeng’o, J.A. Intracranial hemorrhage in coronavirus disease 2019 (COVID-19) patients. Neurol. Sci. 2021, 42, 25–33. [Google Scholar] [CrossRef]
- Benger, M.; Williams, O.; Siddiqui, J.; Sztriha, L. Intracerebral haemorrhage and COVID-19: Clinical characteristics from a case series. Brain Behav. Immun. 2020, 88, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Liu, P.; Luo, Y.; Cui, Y.; Song, L.; Chen, Y. Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage. Aging 2020, 12, 13791–13802. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Vogrig, A.; Gigli, G.L.; Bnà, C.; Morassi, M. Stroke in patients with COVID-19: Clinical and neuroimaging characteristics. Neurosci. Lett. 2021, 743, 135564. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P. Cerebral vasculitis. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 119, pp. 475–494. ISBN 978-0-7020-4086-3. [Google Scholar] [CrossRef]
- Croci, D.M.; Kamenova, M.; Guzman, R.; Mariani, L.; Soleman, J. Novel Oral Anticoagulants in Patients Undergoing Cranial Surgery. World Neurosurg. 2017, 105, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Swan, D.; Seiffge, D.J.; Thachil, J. A review of anticoagulation in patients with central nervous system malignancy: Between a rock and a hard place. J. Neurol. 2020, 268, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Jain, R.; Cao, M.; Bilaloglu, S.; Zagzag, D.; Hochman, S.; Lewis, A.; Melmed, K.; Hochman, K.; Horwitz, L.; et al. Hemorrhagic stroke and anticoagulation in COVID-19. J. Stroke Cerebrovasc. Dis. 2020, 29, 104984. [Google Scholar] [CrossRef] [PubMed]
- Stattin, K.; Lipcsey, M.; Andersson, H.; Pontén, E.; Bülow Anderberg, S.; Gradin, A.; Larsson, A.; Lubenow, N.; von Seth, M.; Rubertsson, S.; et al. Inadequate prophylactic effect of low-molecular weight heparin in critically ill COVID-19 patients. J. Crit. Care 2020, 60, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Trunfio, M.; Salvador, E.; Cabodi, D.; Marinaro, L.; Alcantarini, C.; Gaviraghi, A.; Trentalange, A.; Lipani, F.; Sciascia, S.; Roccatello, D.; et al. Anti-Xa monitoring improves low-molecular-weight heparin effectiveness in patients with SARS-CoV-2 infection. Thromb. Res. 2020, 196, 432–434. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Al-Ani, F.; Chehade, S.; Lazo-Langner, A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb. Res. 2020, 192, 152–160. [Google Scholar] [CrossRef]
- Abou-Al-Shaar, H.; Gozal, Y.M.; Alzhrani, G.; Karsy, M.; Shelton, C.; Couldwell, W.T. Cerebral venous sinus thrombosis after vestibular schwannoma surgery: A call for evidence-based management guidelines. Neurosurg. Focus 2018, 45, E4. [Google Scholar] [CrossRef] [Green Version]
- Helmi, A.; Chan, A.; Towfighi, S.; Kapadia, A.; Perry, J.; Ironside, S.; Machnowska, M.; Symons, S.P.; Fox, A.J.; Sahgal, A.; et al. Incidence of Dural Venous Sinus Thrombosis in Patients with Glioblastoma and Its Implications. World Neurosurg. 2019, 125, e189–e197. [Google Scholar] [CrossRef] [PubMed]
- Afshari, F.T.; Yakoub, K.M.; Zisakis, A.; Thomas, A.; Ughratdar, I.; Sturman, S.; Belli, A. Traumatic dural venous sinus thrombosis; a challenge in management of head injury patients. J. Clin. Neurosci. 2018, 57, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Iorio, A.; Agnelli, G. Low-Molecular-Weight and Unfractionated Heparin for Prevention of Venous Thromboembolism in Neurosurgery: A Meta-analysis. Arch. Intern. Med. 2000, 160, 2327. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Cohen, S.L.; Gianos, E.; Kohn, N.; Giannis, D.; Chatterjee, S.; Goldin, M.; Lesser, M.; Coppa, K.; Hirsch, J.S.; et al. Validation of the IMPROVE-DD risk assessment model for venous thromboembolism among hospitalized patients with COVID-19. Res. Pract. Thromb. Haemost. 2021, 5, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.; Zenunaj, G.; Bonsi, B.; Bella, A.; Lopreiato, M.; Luciani, F.; Pedrini, D.; Vestita, G.; Nora, E.D.; Passaro, A. SARS-CoV-2 and finding of vein thrombosis: Can IMPROVE and IMPROVEDD scores predict COVID-19 outcomes? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2123–2130. [Google Scholar] [CrossRef]
Patient No | Age | Gender | Pathology | 1st Surgery | Time of COVID-19 Infection (Days) * | Antiviral Therapy | ICU (Days) | Intubation (Days) | IMPROVE Risk Score | Thromboembolic Complications | Hemorrhagic Complications | Other Complications | 30-Day Revision Surgery | Mortality (Cause of Death) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 61 | M | CPA Epidermoid | Retrosigmoid Craniotomy | 6 | yes | 8 | 7 | 7 | PE | IPH | SSI, hydrocephalus | Wound revision, VP shunt | yes (IPH) |
2 | 61 | M | SAH (mFisher 4) and VA aneurysm | EVD, stent-assisted Coiling | 10 | none | 16 | 0 | 3 | - | - | Vasospasm, CSW, hydrocephalus | ETV and VP shunt | no |
3 | 66 | M | Subdural empyema after resection of a GBM | Temporal craniectomy | 8 | none | 0 | 0 | 3 | - | - | Sepsis | - | yes (sepsis) |
4 | 74 | F | Cerebellar metastasis of a pulmonary adenocarcinoma | Paramedian suboccipital craniotomy | 10 | none | 7 | 2 | 4 | CSVT | IPH | - | Re-craniotomy | no |
5 | 70 | M | SSI and meningitis after facial hemispasm with neurovascular conflict | Retrosigmoid craniotomy as revision | - 4 | yes | 0 | 0 | 4 | - | - | - | - | no |
6 | 60 | F | MCA aneurysm | Pterional craniotomy and clipping | 7 | none | 1 | 0 | 1 | - | - | - | - | no |
7 | 24 | M | Pituitary adenoma and acromegaly | Endoscopic transsphenoidal surgery | 1 | none | 0 | 0 | 0 | - | - | - | - | no |
8 | 48 | M | Epidural hematoma | Frontotemporal craniotomy | 0 | yes | 20 | 11 | 2 | CSVT | - | ICP crisis | Hemicraniectomy | no |
9 | 41 | M | Falx meningioma | Frontal craniotomy | 5 | none | 1 | 0 | 6 | - | - | - | - | no |
10 | 55 | M | Falx meningioma | Frontal craniotomy | 0 § | none | 1 | 0 | 3 | - | - | - | - | no |
Overall | |
---|---|
n | 10 |
Age (mean (±SD)), years | 56.00 (±14.91) |
Gender = Male (%) | 8 (80.0) |
ASA Score (mean (±SD)) | 3.20 (±0.79) |
GCS preoperative (mean (±SD)) | 13.60 (±2.95) |
Pathology (%) | |
Tumor | 5 (50.0) |
Neurotrauma/Infection | 2 (20.0) |
Vascular pathology | 3 (30.0) |
Size of pathology (mean (±SD)), mm [3] | 218.33 (±287.39) |
MLS (mean (±SD)), mm | 2.30 (±4.11) |
Surgery (%) | |
Craniotomy | 8 (80.0) |
Endoscopic transsphenoidal surgery | 1 (10.0) |
EVD | 1 (10.0) |
Comorbidities (%) | |
Hypertension = yes (%) | 5 (50.0) |
DM = yes (%) | 1 (10.0) |
CAD = yes (%) | 2 (20.0) |
CVD = yes (%) | 1 (10.0) |
COPD = yes (%) | 1 (10.0) |
CKD = yes (%) | 0 (0.0) |
Smoking = yes (%) | 4 (40.0) |
Alcohol = yes (%) | 3 (30.0) |
Thromboembolic events = yes (%) | 3 (30.0) |
IMPROVE Risk Score VTE (±SD) | 3.30 (±2.11) |
Blood Thinners = Yes (%) | 6 (60.0) |
Types of Blood thinners (%) | |
Low-dose aspirin | 4 (66.7) |
Heparin | 1 (16.7) |
Rivaroxaban | 1 (16.7) |
Preoperative Neurologic Symptoms (%) | |
Cranial nerve deficit | 3 (30.0) |
Acromegaly | 1 (10.0) |
Confusion | 2 (20.0) |
Hemiparesis | 2 (20.0) |
None | 2 (20.0) |
COVID-19 Symptoms (%) | |
Fever | 3 (30.0) |
Rhinitis | 2 (20.0) |
None | 6 (60.0) |
Overall | |
---|---|
n (%) | 10 |
GCS postoperative (mean (±SD)) | 14.30 (±1.57) |
mRS postoperative (mean (±SD)) | 1.50 (1.58) |
Postoperative favorable outcome (mRS < 3) = yes (%) | 8 (80) |
Clinical improvement postoperative = better (%) | 6 (60.0) |
Postoperative ICU = yes (%) | 7 (70.0) |
Days ICU (mean (±SD)) | 4.70 (±7.36) |
Postoperative intubation = yes (%) | 3 (30.0) |
Intubation due to COVID-19 = yes (%) | 1 (10.0) |
Intubation days (mean (±SD)) | 2.22 (±4.02) |
Postoperative complication = yes (%) | 5 (50.0) |
Thromboembolic complication = yes (%) | 3 (30.0) |
Bleeding complication = yes (%) | 2 (20.0) |
Revision surgery = yes (%) | 6 (60.0) |
LOS (mean (±SD)) | 23.30 (±18.28) |
Discharge location (%) | |
Home | 5 (50) |
Hospice | 1 (10) |
Rehabilitation | 2 (20) |
In-hospital mortality = yes (%) | 2 (20) |
GCS at FU (mean (±SD)) | 15.00 (±0.00) |
mRS at FU (mean (±SD)) | 0.20 (±0.45) |
Favorable outcome at FU (mRS < 3) = yes (%) | 5 (50) |
Matched Cohort | |||
---|---|---|---|
COVID-19 | Negative | Positive | p-Value |
n (%) | 52 | 10 | |
Age (mean (±SD)) | 63.50 (±13.39) | 56.00 (±14.91) | 0.784 |
Gender (male %) | 28 (56.0) | 8 (80.0) | 0.289 |
Hypertension = yes (%) | 29 (55.8) | 5 (50.0) | 1.0 |
Diabetes Mellitus Type 2 = yes (%) | 3 (5.8) | 1 (10.0) | 1.0 |
Coronary Artery Disease = yes (%) | 10 (19.2) | 2 (20.0) | 1.0 |
ASA Score (±SD) | 3.12 (±0.43) | 3.20 (±0.79) | 0.625 |
Pathology (%) | 0.135 | ||
Aneurysm | 20 (38.5) | 2 (20.0) | |
Glioma | 15 (28.8) | 1 (10.0) | |
Meningioma | 9 (17.3) | 2 (20.0) | |
Metastasis | 1 (1.9) | 1 (10.0) | |
Other | 7 (13.5) | 4 (40.0) | |
Postoperative Complication = yes (%) | 10 (19.2) | 6 (60.0) | 0.021 |
Thrombotic Complication = yes (%) | 1 (1.9) | 3 (30.0) | 0.009 |
Bleeding Complication = yes (%) | 9 (17.3) | 2 (20.0) | 1 |
In-Hospital Mortality = yes (%) | 0 (0.0) | 2 (20.0) | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greuter, L.; Zweifel, C.; Guzman, R.; Soleman, J. Perioperative Complications of Patients with SARS-CoV-2 Infection in Neurosurgery. J. Clin. Med. 2022, 11, 657. https://doi.org/10.3390/jcm11030657
Greuter L, Zweifel C, Guzman R, Soleman J. Perioperative Complications of Patients with SARS-CoV-2 Infection in Neurosurgery. Journal of Clinical Medicine. 2022; 11(3):657. https://doi.org/10.3390/jcm11030657
Chicago/Turabian StyleGreuter, Ladina, Christian Zweifel, Raphael Guzman, and Jehuda Soleman. 2022. "Perioperative Complications of Patients with SARS-CoV-2 Infection in Neurosurgery" Journal of Clinical Medicine 11, no. 3: 657. https://doi.org/10.3390/jcm11030657
APA StyleGreuter, L., Zweifel, C., Guzman, R., & Soleman, J. (2022). Perioperative Complications of Patients with SARS-CoV-2 Infection in Neurosurgery. Journal of Clinical Medicine, 11(3), 657. https://doi.org/10.3390/jcm11030657