Association between Dietary Protein Intake, Regular Exercise, and Low Back Pain among Middle-Aged and Older Korean Adults without Osteoarthritis of the Lumbar Spine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Measurements
2.3. Low Back Pain
2.4. Radiographic Examination and Body Composition Measurements
2.5. Assessment of Dietary Intake
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, D.; Brooks, P.; Blyth, F.; Buchbinder, R. The epidemiology of low back pain. Best Pract. Res. Clin. Rheumatol. 2010, 24, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, S.; Caro, J.; Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008, 8, 8–20. [Google Scholar] [CrossRef]
- Reid, M.C.; Eccleston, C.; Pillemer, K. Management of chronic pain in older adults. BMJ 2015, 350, h532. [Google Scholar] [CrossRef] [Green Version]
- Shiri, R.; Coggon, D.; Falah-Hassani, K. Exercise for the prevention of low back pain: Systematic review and meta-analysis of controlled trials. Am. J. Epidemiol. 2018, 187, 1093–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, J.A.; van Tulder, M.W.; Malmivaara, A.; Koes, B.W. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst. Rev. 2005, 3, CD000335. [Google Scholar] [CrossRef] [PubMed]
- van Middelkoop, M.; Rubinstein, S.M.; Verhagen, A.P.; Ostelo, R.W.; Koes, B.W.; van Tulder, M.W. Exercise therapy for chronic nonspecific low-back pain. Best Pract. Res. Clin. Rheumatol. 2010, 24, 193–204. [Google Scholar] [CrossRef]
- Mustafa, J.; Ellison, R.C.; Singer, M.R.; Bradlee, M.L.; Kalesan, B.; Holick, M.F.; Moore, L.L. Dietary protein and preservation of physical functioning among middle-aged and older adults in the Framingham Offspring Study. Am. J. Epidemiol. 2018, 187, 1411–1419. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E.; Argiles, J.M.; Evans, W.J.; Bhasin, S.; Cella, D.; Deutz, N.E.; Doehner, W.; Fearon, K.C.; Ferruci, L.; Hellerstein, M.K.; et al. Nutritional recommendations for the management of sarcopenia. J. Am. Med. Dir. Assoc. 2010, 11, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karunanayake, A.L.; Pathmeswaran, A.; Kasturiratne, A.; Wijeyaratne, L.S. Risk factors for chronic low back pain in a sample of suburban Sri Lankan adult males. Int. J. Rheum. Dis. 2013, 16, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Shell, W.E.; Pavlik, S.; Roth, B.; Silver, M.; Breitstein, M.L.; May, L.; Silver, D. Reduction in pain and inflammation associated with chronic low back pain with the use of the medical food theramine. Am. J. Ther. 2016, 23, e1353–e1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, N.; Muraki, S.; Oka, H.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Yoshida, H.; Suzuki, T.; Yamamoto, S.; et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: The Research on Osteoarthritis/Osteoporosis Against Disability Study. J. Bone Miner. Metab. 2009, 27, 620–628. [Google Scholar] [CrossRef]
- Jeon, H.; Lee, S.U.; Lim, J.Y.; Chung, S.G.; Lee, S.J.; Lee, S.Y. Low skeletal muscle mass and radiographic osteoarthritis in knee, hip, and lumbar spine: A cross-sectional study. Aging Clin. Exp. Res. 2019, 31, 1557–1562. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2019, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 1994, 843, 1–129.
- National Rural Resources Development Institute; Rural Development Administration. Food Composition Table, 7th ed.; Medpharm: Guildford, UK, 2006. [Google Scholar]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M.; Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Gordon, R.; Bloxham, S. A systematic review of the effects of exercise and physical activity on non-specific chronic low back pain. Healthcare 2016, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Smeets, R.J.; Severens, J.L.; Beelen, S.; Vlaeyen, J.W.; Knottnerus, J.A. More is not always better: Cost-effectiveness analysis of combined, single behavioral and single physical rehabilitation programs for chronic low back pain. Eur. J. Pain 2009, 13, 71–81. [Google Scholar] [CrossRef]
- Liu, J.; Yeung, A.; Xiao, T.; Tian, X.; Kong, Z.; Zou, L.; Wang, X. Chen-style Tai Chi for individuals (aged 50 years old or above) with chronic non-specific low back pain: A randomized controlled trial. Int. J. Environ. Res. Public Health 2019, 16, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Zhang, Y.; Liu, Y.; Tian, X.; Xiao, T.; Liu, X.; Yeung, A.S.; Liu, J.; Wang, X.; Yang, Q. The effects of Tai Chi Chuan versus core stability training on lower-limb neuromuscular function in aging individuals with non-specific chronic lower back pain. Medicina 2019, 55, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walrand, S.; Guillet, C.; Salles, J.; Cano, N.; Boirie, Y. Physiopathological mechanism of sarcopenia. Clin. Geriatr. Med. 2011, 13, 27365–27385. [Google Scholar] [CrossRef]
- Kim, I.Y.; Park, S.; Jang, J.; Wolfe, R.R. Understanding muscle protein dynamics: Technical considerations for advancing sarcopenia research. Ann. Geriatr. Med. Res. 2020, 24, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Júnior, H.J.; Rodrigues, B.; Uchida, M.; Marzetti, E. Low protein intake is associated with frailty in older adults: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulgoni, V.L., 3rd. Current protein intake in America: Analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008, 87, 1554S–1557S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.A. Adequacy of protein intake among Korean elderly: An analysis of the 2013–2014 Korea National Health and Nutrition Examination Survey Data. Korean J. Fam. Med. 2018, 39, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Beasley, J.M.; LaCroix, A.Z.; Neuhouser, M.L.; Huang, Y.; Tinker, L.; Woods, N.; Michael, Y.; Curb, J.D.; Prentice, R.L. Protein intake and incident frailty in the Women’s Health Initiative observational study. J. Am. Geriatr. Soc. 2010, 58, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.H.; Beom, J.W.; Lee, T.S.; Lim, J.H.; Lee, T.H.; Yuk, J.H. Trunk muscle strength as a risk factor for non-specific low back pain: A pilot study. Ann. Rehabil. Med. 2014, 38, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Kim, G.U.; Kim, H.J.; Kim, H.; Chang, B.S.; Lee, C.K.; Yeom, J.S. Low handgrip strength is closely associated with chronic low back pain among women aged 50 years or older: A cross-sectional study using a national health survey. PLoS ONE 2018, 13, e0207759. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Lieberman, H.R.; McLellan, T.M. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Med. 2014, 44, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Delitto, A.; George, S.Z.; Van Dillen, L.; Whitman, J.M.; Sowa, G.; Shekelle, P.; Denninger, T.R.; Godges, J.J. Orthopaedic Section of the American Physical Therapy Association: Low back pain. J. Orthop. Sports Phys. Ther. 2012, 42, A1-57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Earp, J.E.; Vadiveloo, M.; Adami, A.; Delmonico, M.J.; Lofgren, I.E.; Greaney, M.L. The relationships between total protein intake, protein sources, physical activity, and lean mass in a representative sample of the US Adults. Nutrients 2020, 12, 3151. [Google Scholar] [CrossRef] [PubMed]
- Ziegenfuss, T.N.; Kerksick, C.M.; Kedia, A.W.; Sandrock, J.; Raub, B.; Lopez, H.L. Proprietary milk protein concentrate reduces joint discomfort while improving exercise performance in non-osteoarthritic individuals. Nutrients 2019, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Muraki, S.; Oka, H.; Akune, T.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Suzuki, T.; Yoshida, H.; Ishibashi, H.; et al. Prevalence of radiographic lumbar spondylosis and its association with low back pain in elderly subjects of population-based cohorts: The ROAD study. Ann. Rheum. Dis. 2009, 68, 1401–1406. [Google Scholar] [CrossRef]
- Borenstein, D. Does osteoarthritis of the lumbar spine cause chronic low back pain? Curr. Pain Headache Rep. 2004, 8, 512–517. [Google Scholar] [CrossRef]
Variable | Men (n = 1047) | Women (n = 1320) | p-Value |
---|---|---|---|
Age (years) | 59.4 (0.34) | 59.7 (0.30) | 0.620 |
Body mass index (kg/m2) | 23.9 (0.12) | 24.3 (0.11) | 0.031 |
Educational level | <0.001 | ||
≤Elementary school | 28.9% (2.1) | 53.3% (2.1) | |
Middle and high school | 52.2% (2.1) | 40.3% (1.9) | |
≥College | 18.9% (1.8) | 6.3% (0.9) | |
Occupation | <0.001 | ||
Office work | 12.4% (1.2) | 3.4% (0.5) | |
Sales and services | 11.0% (1.3) | 13.9% (1.2) | |
Agriculture, forestry, and fisheries | 20.7% (2.5) | 11.9% (1.7) | |
Machine fitting and simple labor | 28.2% (1.9) | 15.9% (1.2) | |
Unemployed | 27.7% (1.5) | 55.0% (1.9) | |
Household income | 0.192 | ||
Low | 26.6% (1.9) | 24.1% (1.6) | |
Lower middle | 26.7% (1.7) | 24.4% (1.7) | |
Upper middle | 24.9% (1.6) | 28.5% (1.5) | |
High | 21.8% (1.6) | 23.0% (1.7) | |
Smoking status | <0.001 | ||
Ex-smoker | 50.4% (2.0) | 2.8% (0.7) | |
Current smoker | 35.7% (1.8) | 3.6% (0.7) | |
Alcohol consumption | 71.5% (1.8) | 30.5% (1.6) | <0.001 |
Muscle strengthening exercise a | 34.5% (2.0) | 15.3% (1.2) | <0.001 |
Walking for physical activity b | 40.4% (1.8) | 40.2% (1.7) | 0.935 |
DEXA | |||
Trunk lean mass (kg) | 24.69 (0.15) | 18.50 (0.09) | <0.001 |
Appendicular skeletal muscle mass/height2 | 7.48 (0.04) | 5.86 (0.03) | <0.001 |
Low skeletal muscle mass c | 28.8% (2.1) | 25.4% (1.8) | 0.146 |
Lumbar spine BMD | <0.001 | ||
Normal | 59.0% (1.9%) | 28.1% (1.7%) | |
Osteopenia | 35.6% (1.8%) | 45.9% (2.0%) | |
Osteoporosis | 5.4% (0.8%) | 26.0% (1.8%) | |
Protein intake (g/day) | 81.0 (1.41) | 55.8 (1.12) | <0.001 |
Protein intake (g/kg/day) | 1.22 (0.02) | 0.98 (0.02) | <0.001 |
Low protein intake < 0.8 g/kg/day | 24.1% (1.6) | 41.6% (1.7) | <0.001 |
Total energy intake (kcal/day) | 2320.1 (34.54) | 1643.5 (28.74) | <0.001 |
Comorbidity d | 0.176 | ||
None | 45.8% (2.3) | 41.4% (1.9) | |
1–2 | 36.6% (2.0) | 39.0% (1.5) | |
≥3 | 17.6% (1.6) | 19.7% (1.5) | |
Lumbar spine osteoarthritis | 0.120 | ||
Normal | 24.3% (1.9) | 28.0% (1.8) | |
Grade 1 | 75.7% (1.9) | 72.0% (1.8) | |
Low back pain | 12.6% (1.6) | 29.7% (1.9) | <0.001 |
Variable | Low Back Pain | p-Value | |
---|---|---|---|
Yes (n = 127) | No (n = 920) | ||
Age (years) | 61.6 (0.90) | 59.1 (0.33) | 0.006 |
Body mass index (kg/m2) | 23.0 (0.23) | 24.0 (0.13) | <0.001 |
Educational level | 0.002 | ||
≤Elementary school | 45.3% (6.0) | 26.5% (2.1) | |
Middle and high school | 35.8% (5.7) | 54.6% (2.0) | |
≥College | 18.9% (4.6) | 18.9% (1.9) | |
Occupation | 0.202 | ||
Office work | 13.7% (4.0) | 15.2% (1.6) | |
Sales and services | 6.9% (3.5) | 13.3% (1.9) | |
Agriculture, forestry, and fisheries | 24.9% (6.1) | 16.5% (2.5) | |
Machine fitting and simple labor | 24.7% (5.3) | 31.4% (2.5) | |
Unemployed | 29.8% (4.9) | 23.6% (1.8) | |
Household income | 0.313 | ||
Low | 30.5% (5.2) | 26.0% (2.0) | |
Lower middle | 29.9% (5.6) | 26.3% (1.8) | |
Upper middle | 16.8% (4.0) | 26.0% (1.8) | |
High | 22.8% (3.7) | 21.7% (1.7) | |
Smoking status | 0.018 | ||
Ex-smoker | 57.9% (5.7) | 49.3% (2.2) | |
Current smoker | 38.2% (5.7) | 35.4% (2.0) | |
Alcohol consumption | 72.9% (4.5) | 71.3% (2.0) | 0.742 |
Muscle strengthening exercise a | 19.3% (3.9) | 36.7% (2.2) | 0.001 |
Walking for physical activity b | 42.0% (5.1) | 40.2% (2.0) | 0.743 |
DEXA | |||
Trunk lean mass (kg) | 23.97 (0.32) | 24.79 (0.16) | 0.015 |
Appendicular skeletal muscle mass/height2 | 7.26 (0.08) | 7.51 (0.04) | 0.003 |
Low skeletal muscle mass c | 30.6% (5.1) | 28.5% (2.1) | 0.695 |
Lumbar spine BMD | 0.078 | ||
Normal | 48.4% (5.5) | 60.5% (1.9) | |
Osteopenia | 44.8% (5.5) | 34.3% (1.8) | |
Osteoporosis | 6.8% (2.5) | 5.2% (0.8) | |
Protein intake (g/day) | 75.2 (3.55) | 81.8 (1.50) | 0.083 |
Protein intake (g/kg/day) | 1.17 (0.06) | 1.23 (0.02) | 0.382 |
Low protein intake < 0.8 g/kg/day | 27.9% (3.6) | 23.6% (1.7) | 0.267 |
Total energy intake (kcal/day) | 2126.5 (65.47) | 2348.0 (37.55) | 0.003 |
Comorbidity d | 0.717 | ||
None | 48.8% (6.1) | 45.3% (2.4) | |
1–2 | 32.8% (4.4) | 37.2% (2.2) | |
≥3 | 18.4% (4.2) | 17.5% (1.6) | |
Lumbar spine osteoarthritis | 0.039 | ||
Normal | 15.2% (3.9) | 25.6% (2.1) | |
Grade 1 | 84.8% (3.9) | 74.4% (2.1) |
Variable | Low Back Pain | p-Value | |
---|---|---|---|
Yes (n = 380) | No (n = 940) | ||
Age (years) | 61.6 (0.63) | 58.8 (0.32) | <0.001 |
BMI (kg/m2) | 24.5 (0.23) | 24.2 (0.12) | 0.222 |
Educational level | <0.001 | ||
≤Elementary school | 67.2% (3.3) | 47.5% (2.6) | |
Middle and high school | 29.3% (3.0) | 45.0% (2.4) | |
≥College | 3.5% (1.1) | 7.5% (1.2) | |
Occupation | 0.004 | ||
Office work | 1.5% (0.6) | 5.7% (0.9) | |
Sales and services | 17.3% (2.4) | 17.5% (1.8) | |
Agriculture, forestry, and fisheries | 15.4% (2.8) | 9.3% (2.5) | |
Machine fitting and simple labor | 19.3% (2.9) | 15.8% (1.6) | |
Unemployed | 46.4% (3.5) | 51.7% (2.5) | |
Household income | 0.024 | ||
Low | 29.9% (2.9) | 21.6% (1.8) | |
Lower middle | 23.7% (2.9) | 24.7% (2.2) | |
Upper middle | 29.1% (2.8) | 28.3% (1.9) | |
High | 17.2% (2.4) | 25.4% (2.2) | |
Smoking status | 0.802 | ||
Ex-smoker | 2.5% (0.9) | 2.9% (0.8) | |
Current smoker | 4.1% (1.4) | 3.4% (0.7) | |
Alcohol consumption | 26.9% (3.0) | 32.1% (1.9) | 0.149 |
Muscle strengthening exercise a | 11.4% (1.9) | 16.9% (1.6) | 0.045 |
Walking for physical activity b | 36.6% (3.1) | 41.7% (2.2) | 0.212 |
DEXA | |||
Trunk lean mass (kg) | 18.54 (0.16) | 18.49 (0.10) | 0.753 |
Appendicular skeletal muscle mass/height2 | 5.92 (0.05) | 6.32 (0.09) | 0.107 |
Low skeletal muscle mass c | 22.2% (2.4) | 26.7% (2.1) | 0.123 |
Lumbar spine BMD | 0.097 | ||
Normal | 24.9% (2.9) | 29.5% (2.0) | |
Osteopenia | 44.0% (3.5) | 46.7% (2.3) | |
Osteoporosis | 31.1% (2.0) | 23.8% (2.2) | |
Protein intake (g/day) | 51.9 (1.76) | 53.9 (2.38) | 0.015 |
Protein intake (g/kg/day) | 0.91 (0.03) | 0.93 (0.04) | 0.011 |
Low protein intake < 0.8 g/kg/day | 49.1% (3.5) | 38.5% (1.8) | 0.008 |
Total energy intake (kcal/day) | 1605.6 (46.94) | 1659.6 (30.82) | 0.269 |
Comorbidity d | 0.014 | ||
None | 34.4% (2.4) | 44.3% (2.3) | |
1–2 | 40.6% (2.9) | 38.3% (2.0) | |
≥3 | 25.0% (2.9) | 17.4% (1.6) | |
Lumbar spine osteoarthritis | <0.001 | ||
Normal | 17.6% (2.6) | 32.4% (2.3) | |
Grade 1 | 82.4% (2.6) | 67.6% (2.3) |
Crude | Model 1 a | Model 2 b | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Total study population | ||||||||
Protein intake < 0.8 g/kg/day | 1.88 | (1.42–2.49) | 1.46 | (1.09–1.95) | 1.44 | (1.05–1.96) | 1.32 c | (0.90–1.92) |
Protein intake ≥ 0.8 g/kg/day | 1 | 1 | 1 | 1 | ||||
Muscle strengthening exercise (-) | 2.38 | (1.60–3.53) | 1.69 | (1.15–2.48) | 1.48 | (1.01–2.17) | 1.43 d | (0.95–2.16) |
Muscle strengthening exercise (+) | 1 | 1 | 1 | 1 | ||||
Walking for physical activity (-) | 1.13 | (0.84–1.51) | 1.16 | (0.85–1.58) | 1.16 | (0.84–1.60) | 1.18 e | (0.84–1.66) |
Walking for physical activity (+) | 1 | 1 | 1 | 1 | ||||
Men | ||||||||
Protein intake < 0.8 g/kg/day | 1.33 | (0.87–2.01) | 1.24 | (0.80–1.90) | 1.32 | (0.82–2.11) | 1.07 c | (0.59–1.96) |
Protein intake ≥ 0.8 g/kg/day | 1 | 1 | 1 | 1 | ||||
Muscle strengthening exercise (-) | 2.57 | (1.43–4.59) | 2.45 | (1.35–4.55) | 2.29 | (1.23–4.24) | 2.34 d | (1.24–4.44) |
Muscle strengthening exercise (+) | 1 | 1 | 1 | 1 | ||||
Walking for physical activity (-) | 0.92 | (0.55–1.53) | 0.95 | (0.57–1.61) | 0.93 | (0.54–1.60) | 0.76 e | (0.42–1.39) |
Walking for physical activity (+) | 1 | 1 | 1 | 1 | ||||
Women | ||||||||
Protein intake < 0.8 g/kg/day | 1.68 | (1.16–2.43) | 1.59 | (1.08–2.32) | 1.57 | (1.04–2.36) | 1.83 c | (1.12–2.99) |
Protein intake ≥ 0.8 g/kg/day | 1 | 1 | 1 | 1 | ||||
Muscle strengthening exercise (-) | 1.24 | (0.74–2.10) | 1.16 | (0.70–1.93) | 0.95 | (0.58–1.54) | 0.89 d | (0.51–1.55) |
Muscle strengthening exercise (+) | 1 | 1 | 1 | 1 | ||||
Walking for physical activity (-) | 1.26 | (0.87–1.85) | 1.29 | (0.89–1.88) | 1.32 | (0.89–1.95) | 1.53 e | (0.99–2.35) |
Walking for physical activity (+) | 1 | 1 | 1 | 1 |
Crude | Model 1 b | Model 2 c | Model 3 d | |||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Total study population | ||||||||
Low protein intake and exercise a (-) | 2.62 | (1.84–3.74) | 1.86 | (1.29–2.67) | 1.99 | (1.27–3.11) | 2.00 | (1.20–3.33) |
Low protein intake and exercise (+) | 1.35 | (0.93–1.96) | 1.01 | (0.69–1.50) | 1.11 | (0.72–1.72) | 0.97 | (0.58–1.63) |
Good protein intake and exercise (-) | 1.38 | (1.004–1.91) | 1.26 | (0.92–1.74) | 1.19 | (0.82–1.73) | 1.17 | (0.78–1.75) |
Good protein intake and exercise (+) | 1 | 1 | 1 | 1 | ||||
Men | ||||||||
Low protein intake and exercise (-) | 2.08 | (1.23–3.50) | 1.83 | (1.06–3.15) | 1.93 | (1.04–3.59) | 1.55 | (0.72–3.34) |
Low protein intake and exercise (+) | 0.92 | (0.43–1.96) | 0.83 | (0.38–1.82) | 1.06 | (0.44–2.54) | 0.89 | (0.35–2.26) |
Good protein intake and exercise (-) | 1.32 | (0.77–2.26) | 1.37 | (0.80–2.34) | 1.27 | (0.66–2.46) | 1.18 | (0.63–2.24) |
Good protein intake and exercise (+) | 1 | 1 | 1 | 1 | ||||
Women | ||||||||
Low protein intake and exercise (-) | 2.08 | (1.32–3.28) | 1.87 | (1.17–2.96) | 2.06 | (1.15–3.67) | 2.91 | (1.48–5.72) |
Low protein intake and exercise (+) | 1.23 | (0.80–1.88) | 1.09 | (0.69–1.70) | 1.24 | (0.74–2.08) | 1.36 | (0.72–2.54) |
Good protein intake and exercise (-) | 1.24 | (0.84–1.84) | 1.21 | (0.82–1.78) | 1.16 | (0.73–1.86) | 1.21 | (0.70–2.08) |
Good protein intake and exercise (+) | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, H.-M.; Choi, Y.H.; Lee, S.K.; Song, H.J.; Park, Y.S.; Kim, N.; Cho, J. Association between Dietary Protein Intake, Regular Exercise, and Low Back Pain among Middle-Aged and Older Korean Adults without Osteoarthritis of the Lumbar Spine. J. Clin. Med. 2022, 11, 1220. https://doi.org/10.3390/jcm11051220
Noh H-M, Choi YH, Lee SK, Song HJ, Park YS, Kim N, Cho J. Association between Dietary Protein Intake, Regular Exercise, and Low Back Pain among Middle-Aged and Older Korean Adults without Osteoarthritis of the Lumbar Spine. Journal of Clinical Medicine. 2022; 11(5):1220. https://doi.org/10.3390/jcm11051220
Chicago/Turabian StyleNoh, Hye-Mi, Yi Hwa Choi, Soo Kyung Lee, Hong Ji Song, Yong Soon Park, Namhyun Kim, and Jeonghoon Cho. 2022. "Association between Dietary Protein Intake, Regular Exercise, and Low Back Pain among Middle-Aged and Older Korean Adults without Osteoarthritis of the Lumbar Spine" Journal of Clinical Medicine 11, no. 5: 1220. https://doi.org/10.3390/jcm11051220
APA StyleNoh, H. -M., Choi, Y. H., Lee, S. K., Song, H. J., Park, Y. S., Kim, N., & Cho, J. (2022). Association between Dietary Protein Intake, Regular Exercise, and Low Back Pain among Middle-Aged and Older Korean Adults without Osteoarthritis of the Lumbar Spine. Journal of Clinical Medicine, 11(5), 1220. https://doi.org/10.3390/jcm11051220