Personalized Prediction of Kidney Function Decline and Network Analysis of the Risk Factors after Kidney Transplantation Using Nationwide Cohort Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development and External Validation Data
2.2. Data Preprocessing: Imputation, Discretization, One-Hot Encoding, and Standardization
2.3. Training and Testing of the XGBoost Model
2.4. Survival Analysis of the Model Prediction
2.5. Statistical and Network Analyses of Model Factors
2.6. Statistics and Software
3. Results
3.1. Selected Model Features
3.2. Model Performance and Explanation
3.3. Graft and Rejection-Free Survival for Model Prediction
3.4. Statistical Significance of Model Features
3.5. Network Analysis of Model Predictors
4. Discussion
4.1. Principal Findings
4.2. Improving the Performance of the XGBoost Model
4.2.1. Automated Machine Learning
4.2.2. Addressing the Imbalanced Classification Problem
4.3. Clinical Relevance of Discretized Factors
4.4. Factors Associated with a Decline in One-Year Renal Allograft Function
4.4.1. Donor Age, the Most Influential Factor in the Model Prediction
4.4.2. eGFR at Discharge, the Most Statistically Significant Factor
4.4.3. Other Significant Model Factors
4.4.4. Significant Non-Model Factors
4.5. Application of Factor Network for Finding Control Targets and Confounders
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patzer, R.E.; Hamoda, R.E.; Knechtle, S.J. Results of Renal Transplantation. In Kidney Transplantation—Principles and Practice, 8th ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 684–708. [Google Scholar]
- Hariharan, S.; McBride, M.A.; Cherikh, W.S.; Tolleris, C.B.; Bresnahan, B.A.; Johnson, C.P. Post-transplant renal function in the first year predicts long-term kidney transplant survival. Kidney Int. 2002, 62, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, K.E.; Lodhi, S.; Meier-Kriesche, H.U. Long-term renal allograft survival in the United States: A critical reappraisal. Am. J. Transplant. 2011, 11, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Coemans, M.; Susal, C.; Dohler, B.; Anglicheau, D.; Giral, M.; Bestard, O.; Legendre, C.; Emonds, M.P.; Kuypers, D.; Molenberghs, G.; et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int. 2018, 94, 964–973. [Google Scholar] [CrossRef] [PubMed]
- First, M.R. Renal function as a predictor of long-term graft survival in renal transplant patients. Nephrol. Dial. Transplant. 2003, 18 (Suppl. 1), i3–i6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, M.; Theruvath, T.; Kawai, T.; Tolkoff-Rubin, N.; Cosimi, A.B. Strategies to improve long-term outcomes after renal transplantation. N. Engl. J. Med. 2002, 346, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Galichon, P.; Xu-Dubois, Y.C.; Finianos, S.; Hertig, A.; Rondeau, E. Clinical and histological predictors of long-term kidney graft survival. Nephrol. Dial. Transplant. 2013, 28, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Kasiske, B.L.; Zeier, M.G.; Chapman, J.R.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: A summary. Kidney Int. 2010, 77, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Salvadori, M.; Rosati, A.; Bock, A.; Chapman, J.; Dussol, B.; Fritsche, L.; Kliem, V.; Lebranchu, Y.; Oppenheimer, F.; Pohanka, E.; et al. Estimated one-year glomerular filtration rate is the best predictor of long-term graft function following renal transplant. Transplantation 2006, 81, 202–206. [Google Scholar] [CrossRef]
- Schnitzler, M.A.; Lentine, K.L.; Axelrod, D.; Gheorghian, A.; You, M.; Kalsekar, A.; L’Italien, G. Use of 12-month renal function and baseline clinical factors to predict long-term graft survival: Application to BENEFIT and BENEFIT-EXT trials. Transplantation 2012, 93, 172–181. [Google Scholar] [CrossRef]
- Senanayake, S.; White, N.; Graves, N.; Healy, H.; Baboolal, K.; Kularatna, S. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models. Int. J. Med. Inform. 2019, 130, 103957. [Google Scholar] [CrossRef] [PubMed]
- Lasserre, J.; Arnold, S.; Vingron, M.; Reinke, P.; Hinrichs, C. Predicting the outcome of renal transplantation. J. Am. Med. Inform. Assoc. 2012, 19, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In KDD′16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Automated Machine Learning; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; The Springer Series on Challenges in Machine Learning; Springer: Cham, Switzerland, 2019; Volume 17, pp. 151–160. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, J. XGBoost with Python: Gradient Boosted Trees with XGBoost and Scikit-Learn. Machine Learning Mastery, 2018; Available online: https://books.google.com.hk/books?hl=zh-CN&lr=&id=HgmqDwAAQBAJ&oi=fnd&pg=PP1&dq=XGBoost+with+Python:+Gradient+Boosted+Trees+with+XGBoost+and+Scikit-Learn&ots=nMhHjaQeOC&sig=rIp3pYcC1oRHhQ5y0gwV9KM04Ts&redir_esc=y#v=onepage&q=XGBoost%20with%20Python%3A%20Gradient%20Boosted%20Trees%20with%20XGBoost%20and%20Scikit-Learn&f=false (accessed on 1 February 2022).
- Yang, J.; Jeong, J.C.; Lee, J.; Kim, Y.H.; Paik, H.C.; Kim, J.-J.; Park, H.-Y.; Kim, M.S.; Ahn, C. Design and methods of the Korean organ transplantation registry. Transplant. Direct 2017, 3, e191. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Lu, X.; Gao, Y.; Zhang, J.; Yan, B.; Su, D.; Song, A.; Zhao, X.; Wang, G. Cluster analysis: A new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients. Sci. Rep. 2017, 7, 43965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Pereira-Morales, A.J.; Adan, A.; Forero, D.A. Network analysis of multiple risk factors for mental health in young Colombian adults. J. Ment. Health 2019, 28, 153–160. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Becker, N. Faster AutoML with TPOT and RAPIDS. Available online: https://medium.com/rapids-ai/faster-automl-with-tpot-and-rapids-758455cd89e5 (accessed on 1 February 2022).
- Brownlee, J. Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning. Machine Learning Mastery, 2020; Available online: https://books.google.com.hk/books?hl=zh-CN&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=Imbalanced+Classification+with+Python:+Better+Metrics,+Balance+Skewed+Classes,+Cost-Sensitive+Learning%3B&ots=CfKBfMVWYO&sig=cwCeJ2HQep_lqlcBFpAxaFvONwo&redir_esc=y#v=onepage&q=Imbalanced%20Classification%20with%20Python%3A%20Better%20Metrics%2C%20Balance%20Skewed%20Classes%2C%20Cost-Sensitive%20Learning%3B&f=false (accessed on 1 February 2022).
- Decreased, G. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. (2011) 2013, 3, 19–62. [Google Scholar] [CrossRef] [Green Version]
- McAdams-DeMarco, M.A.; King, E.A.; Luo, X.; Haugen, C.; DiBrito, S.; Shaffer, A.; Kucirka, L.M.; Desai, N.M.; Dagher, N.N.; Lonze, B.E.; et al. Frailty, length of stay, and mortality in kidney transplant recipients: A national registry and prospective cohort study. Ann. Surg. 2017, 266, 1084–1090. [Google Scholar] [CrossRef] [Green Version]
- Marconi, L.; Figueiredo, A.; Campos, L.; Nunes, P.; Roseiro, A.; Parada, B.; Mota, A. Renal transplantation with donors older than 70 years: Does age matter? Transplant. Proc. 2013, 45, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Englum, B.R.; Schechter, M.A.; Irish, W.D.; Ravindra, K.V.; Vikraman, D.S.; Sanoff, S.L.; Ellis, M.J.; Sudan, D.L.; Patel, U.D. Outcomes in kidney transplant recipients from older living donors. Transplantation 2015, 99, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Noppakun, K.; Cosio, F.G.; Dean, P.G.; Taler, S.J.; Wauters, R.; Grande, J.P. Living donor age and kidney transplant outcomes. Am. J. Transplant. 2011, 11, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Zeier, M.G.; Chapman, J.R.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; et al. Kidney Disease: Improving Global Outcomes Transplant Work, G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. S3), S1–S155. [Google Scholar] [CrossRef] [PubMed]
- Emamian, S.A.; Nielsen, M.B.; Pedersen, J.F.; Ytte, L. Kidney dimensions at sonography: Correlation with age, sex, and habitus in 665 adult volunteers. Am. J. Roentgenol. 1993, 160, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Brenner, B.M.; Cohen, R.; Milford, E. In renal transplantation, one size may not fit all. J. Am. Soc. Nephrol. 1992, 3, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, K.A.; Forbes, R.; Andreoni, R.M.; Phillips, G.; Stewart, H.; Ferris, M. Age-related kidney transplant outcomes: Health disparities amplified in adolescence. JAMA Intern. Med. 2013, 173, 1524–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pankhurst, T.; Evison, F.; Mytton, J.; Williamson, S.; Kerecuk, L.; Lipkin, G. Young adults have worse kidney transplant outcomes than other age groups. Nephrol. Dial. Transplant. 2020, 35, 1043–1051. [Google Scholar] [CrossRef]
- Foster, B.J. Heightened graft failure risk during emerging adulthood and transition to adult care. Pediatric. Nephrol. 2015, 30, 567–576. [Google Scholar] [CrossRef]
- Bestard, O.; Sarwal, M.M. Antibody-mediated rejection in young kidney transplant recipients: The dilemma of noncompliance and insufficient immunosuppression. Pediatr. Nephrol. 2015, 30, 397–403. [Google Scholar] [CrossRef]
- Lepeytre, F.; Dahhou, M.; Zhang, X.; Boucquemont, J.; Sapir-Pichhadze, R.; Cardinal, H.; Foster, B.J. Association of Sex with Risk of Kidney Graft Failure Differs by Age. J. Am. Soc. Nephrol. 2017, 28, 3014–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.C.; Wadia, P.P.; Coram, M.; Grumet, F.C.; Kambham, N.; Miller, K.; Pereira, S.; Vayntrub, T.; Miklos, D.B. H-Y antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation 2008, 86, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foroutan, F.; Friesen, E.L.; Clark, K.E.; Motaghi, S.; Zyla, R.; Lee, Y.; Kamran, R.; Ali, E.; De Snoo, M.; Orchanian-Cheff, A. Risk factors for 1-year graft loss after kidney transplantation: Systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2019, 14, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Cravedi, P.; Ruggenenti, P.; Remuzzi, G. Old donors for kidney transplantation: How old? Gerontology 2011, 57, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.J.; Dahhou, M.; Zhang, X.; Platt, R.W.; Hanley, J.A. Relative importance of HLA mismatch and donor age to graft survival in young kidney transplant recipients. Transplantation 2013, 96, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C. Ischaemia-reperfusion injury: A major protagonist in kidney transplantation. Nephrol. Dial. Transplant. 2014, 29, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Skeans, M.A.; Peng, Y.; Weinhandl, E.D. A simple tool to predict outcomes after kidney transplant. Am. J. Kidney Dis. 2010, 56, 947–960. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, S. Causation and causal inference in epidemiology. Am. J. Public Health 2005, 95 (Suppl. S1), S144–S150. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Munoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Keany, E. BorutaShap 1.0.15. Available online: https://pypi.org/project/BorutaShap (accessed on 1 February 2022).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Lachenbruch, P.A.; Mickey, M.R. Estimation of error rates in discriminant analysis. Technometrics 1968, 10, 1–11. [Google Scholar] [CrossRef]
- Epskamp, S.; Cramer, A.O.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
Recipient Variables |
---|
General characteristics age, sex, BMI, smoking, primary renal disease, dialysis vintage, dialysis type, transplantation history, medication a |
Comorbidities diabetes, hypertension, cardiovascular disease, tumor |
Laboratory findings WBC count, neutrophil count (%), hemoglobin, hematocrit, platelet, BUN, creatinine, eGFR, uric acid, albumin, calcium b, phosphorus, fasting serum glucose, hsCRP c, PTH level c, total cholesterol, LDL, HDL, triglyceride |
Immunology and immunosuppression ABO incompatibility; T and B cell crossmatch; HLA A, B, DR mismatch numbers; donor-specific antibody; desensitization; induction immunosuppression d; maintenance immunosuppression e |
Perioperative findings delayed graft function, creatinine at discharge c, eGFR at discharge c, post-transplantation stay c |
Donor Variables |
General characteristics age, sex, BMI, smoking, donor type f, cold ischemic time c, donation after cardiac death |
Comorbidities diabetes, hypertension, cardiovascular disease, tumor |
Laboratory findings WBC count c, neutrophil count (%) c, hemoglobin c, hematocrit c, platelet c, BUN c, creatinine c, eGFR c, uric acid c, albumin c, calcium b,c, phosphorus c, fasting serum glucose c, hsCRP c, total cholesterol c, proteinuria |
Donor–recipient Relationship Variables |
age difference, sex match, height difference, weight difference, BSA ratio, viral serostatus g |
eGFR ≥ 45 (N = 3453) | eGFR < 45 (N = 864) | OR (95% CI) | p Value | |
---|---|---|---|---|
Categorical Factors | n (%) | n (%) | ||
eGFR (mL/min/1.73 m2) a | ||||
<59.8 | 871 (23%) | 315 (67%) | 2.1 (1.5–2.9) | <0.001 |
59.8–88.0 | 1725 (45%) | 133 (28%) | NA | NA |
≥88.0 | 1248 (32%) | 25 (5.3%) | 0.4 (0.2–0.6) | <0.001 |
Recipient age (year) b | ||||
<29 | 214 (5.6%) | 29 (6.1%) | 2.3 (1.5–3.7) | <0.001 |
29–57 | 2755 (72%) | 263 (56%) | NA | NA |
>57 | 875 (23%) | 181 (38%) | 1.5 (1.2–1.9) | <0.001 |
Post-transplantation stay (day) a | ||||
≤25 | 3501 (91%) | 354 (75%) | NA | NA |
>25 | 343 (8.9%) | 119 (25%) | 2.4 (1.8–3.2) | <0.001 |
Serum creatinine (mg/dL) a | ||||
≤1.24 | 2787 (73%) | 151 (32%) | NA | NA |
>1.24 | 1057 (27%) | 322 (68%) | 2.0 (1.4–2.8) | <0.001 |
Female recipient c | 1602 (42%) | 162 (34%) | 1.6 (1.2–2.2) | 0.002 |
Deceased donor d | 1331 (35%) | 253 (53%) | 1.2 (1.0–1.6) | 0.08 |
Male donor c | 2064 (54%) | 238 (50%) | 1.1 (0.8–1.5) | 0.49 |
Delayed graft function d | 116 (3.0%) | 43 (9.1%) | 1.1 (0.7–1.7) | 0.68 |
Continuous Factors | mean (SE) | mean (SE) | ||
Donor Age (year) | 46 (0.2) | 56 (0.5) | 1.9 (1.7–2.2) e | <0.001 |
Height (R)−Height (D) (cm) | −1 (0.2) | 3 (0.6) | 1.3 (1.1–1.5) e | 0.007 |
HLA mismatch numbers d (range 0–6) | 3.2 (0.03) | 3.6 (0.07) | 1.1 (1.0–1.3) e | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.S.; Lee, Y.-H.; Kong, J.-M.; Kwon, O.-J.; Jung, C.-W.; Yang, J.; Kim, M.-S.; Han, H.-W.; Nam, S.-M.; Korean Organ Transplantation Registry Study Group. Personalized Prediction of Kidney Function Decline and Network Analysis of the Risk Factors after Kidney Transplantation Using Nationwide Cohort Data. J. Clin. Med. 2022, 11, 1259. https://doi.org/10.3390/jcm11051259
Hong MS, Lee Y-H, Kong J-M, Kwon O-J, Jung C-W, Yang J, Kim M-S, Han H-W, Nam S-M, Korean Organ Transplantation Registry Study Group. Personalized Prediction of Kidney Function Decline and Network Analysis of the Risk Factors after Kidney Transplantation Using Nationwide Cohort Data. Journal of Clinical Medicine. 2022; 11(5):1259. https://doi.org/10.3390/jcm11051259
Chicago/Turabian StyleHong, Moongi Simon, Yu-Ho Lee, Jin-Min Kong, Oh-Jung Kwon, Cheol-Woong Jung, Jaeseok Yang, Myoung-Soo Kim, Hyun-Wook Han, Sang-Min Nam, and Korean Organ Transplantation Registry Study Group. 2022. "Personalized Prediction of Kidney Function Decline and Network Analysis of the Risk Factors after Kidney Transplantation Using Nationwide Cohort Data" Journal of Clinical Medicine 11, no. 5: 1259. https://doi.org/10.3390/jcm11051259
APA StyleHong, M. S., Lee, Y.-H., Kong, J.-M., Kwon, O.-J., Jung, C.-W., Yang, J., Kim, M.-S., Han, H.-W., Nam, S.-M., & Korean Organ Transplantation Registry Study Group. (2022). Personalized Prediction of Kidney Function Decline and Network Analysis of the Risk Factors after Kidney Transplantation Using Nationwide Cohort Data. Journal of Clinical Medicine, 11(5), 1259. https://doi.org/10.3390/jcm11051259