Locomotive Syndrome and Lumbar Spine Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. LS and Low Back Pain
3.2. LS and Vertebral Fracture
3.3. LS and Sagittal Spinopelvic Malalignment
3.4. LS and Lumbar Spinal Stenosis
4. Discussion
4.1. LS and Low Back Pain
4.2. LS and Vertebral Fracture
4.3. LS and Sagittal Spinopelvic Malalignment
4.4. LS and Lumbar Spinal Stenosis
4.5. Limitations of This Systematic Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Ministry of Internal Affairs and Communications. Available online: https://www.mhlw.go.jp/toukei/list/81-1a.html (accessed on 15 February 2022).
- Nakamura, K. A “super-aged” society and the “locomotive syndrome”. J. Orthop. Sci. 2008, 13, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Ogata, T. Locomotive syndrome: Definition and management. Clin. Rev. Bone Miner. Metab. 2016, 14, 56–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Morimoto, T.; Shimanoe, C.; Ono, R.; Otani, K.; Mawatari, M. Development of a tool for screening the severity of locomotive syndrome by the loco-check. J. Orthop. Sci. 2021. [Google Scholar] [CrossRef]
- Seichi, A.; Hoshino, Y.; Doi, T.; Akai, M.; Tobimatsu, Y.; Iwaya, T. Development of a screening tool for risk of locomotive syndrome in the elderly: The 25-question Geriatric Locomotive Function Scale. J. Orthop. Sci. 2012, 17, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ohe, T. The history of locomotive syndrome-3. Jpn. Orthop. Assoc. (JOA) News 2020, 122, 6. (In Japanese) [Google Scholar]
- Kobayashi, T.; Morimoto, T.; Shimanoe, C.; Ono, R.; Otani, K.; Mawatari, M. Development of a simple screening tool based on the 5-question geriatric locomotive function scale for locomotive syndrome. J. Orthop. Sci. 2021. [Google Scholar] [CrossRef]
- Kobayashi, T.; Morimoto, T.; Shimanoe, C.; Ono, R.; Otani, K.; Mawatari, M. The association of comorbidities with the 25-question geriatric locomotive function scale and the diagnosis of locomotive syndrome. J. Orthop. Sci. 2021. [Google Scholar] [CrossRef]
- The Japanese Orthopedic Association Official Locomotive Syndrome Prevention Awareness Official Website. Available online: https://locomo-joa.jp (accessed on 15 February 2022).
- Otani, K.; Takegami, M.; Fukumori, N.; Sekiguchi, M.; Onishi, Y.; Yamazaki, S.; Ono, R.; Otoshi, K.; Hayashino, Y.; Fukuhara, S.; et al. Locomotor dysfunction and risk of cardiovascular disease, quality of life, and medical costs: Design of the Locomotive Syndrome and Health Outcome in Aizu Cohort Study (LOHAS) and baseline characteristics of the study population. J. Orthop. Sci. 2012, 17, 261–271. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Oka, H.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Yoshida, H.; Suzuki, T.; Yamamoto, S.; et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: The research on osteoarthritis/osteoporosis against disability study. J. Bone Miner. Metab. 2009, 27, 620–628. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Nakamura, K.; Tanaka, S. Epidemiology of the locomotive syndrome: The research on osteoarthritis/osteoporosis against disability study 2005–2015. Mod. Rheumatol. 2017, 27, 1–7. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, R.; Álvarez-Pasquin, M.J.; Díaz, C.; Del Barrio, J.L.; Estrada, J.M.; Gil, Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013, 13, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasukawa, Y.; Miyakoshi, N.; Hongo, M.; Ishikawa, Y.; Kudo, D.; Kimura, R.; Ono, Y.; Shimada, Y. Locomotive syndrome is associated with health-related quality of life and low back pain in the elderly, including individuals more than 80 years old. Prog. Rehabil. Med. 2020, 5, 20200029. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, E.; Ishibashi, Y.; Tsuda, E.; Ono, A.; Yamamoto, Y.; Inoue, R.; Takahashi, I.; Umeda, T.; Nakaji, S. Evaluation of locomotive disability using loco-check: A cross-sectional study in the Japanese general population. J. Orthop. Sci. 2013, 18, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iizuka, Y.; Iizuka, H.; Mieda, T.; Tajika, T.; Yamamoto, A.; Takagishi, K. Population-based study of the association of osteoporosis and chronic musculoskeletal pain and locomotive syndrome: The Katashina study. J. Orthop. Sci. 2015, 20, 1085–1089. [Google Scholar] [CrossRef]
- Taniguchi, M.; Ikezoe, T.; Tsuboyama, T.; Tabara, Y.; Matsuda, F.; Ichihashi, N. Prevalence and physical characteristics of locomotive syndrome stages as classified by the new criteria 2020 in older Japanese people: Results from the Nagahama study. BMC Geriatr. 2021, 21, 489. [Google Scholar] [CrossRef]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Ishiguro, N.; Hasegawa, Y. Physical performance tests are useful for evaluating and monitoring the severity of locomotive syndrome. J. Orthop. Sci. 2012, 17, 782–788. [Google Scholar] [CrossRef]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Tauchi, R.; Ishiguro, N.; Hasegawa, Y. Threshold values of physical performance tests for locomotive syndrome. J. Orthop. Sci. 2013, 18, 618–626. [Google Scholar] [CrossRef]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Tauchi, R.; Ishiguro, N.; Hasegawa, Y. Waist circumference is associated with locomotive syndrome in elderly females. J. Orthop. Sci. 2014, 19, 612–619. [Google Scholar] [CrossRef]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Ishiguro, N.; Hasegawa, Y. Spinal sagittal balance substantially influences locomotive syndrome and physical performance in community-living middle-aged and elderly women. J. Orthop. Sci. 2016, 21, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Hagino, H.; Osaki, M.; Tanishima, S.; Tanimura, C.; Matsuura, A.; Makabe, T. Gait variability analysed using an accelerometer is associated with locomotive syndrome among the general elderly population: The GAINA study. J. Orthop. Sci. 2016, 21, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Sakurai, A.; Miyamoto, A.; Michikawa, T.; Otaka, Y.; Suzuki, S.; Tsuji, O.; Nagoshi, N.; Okada, E.; Yagi, M.; et al. Stride length of elderly patients with lumbar spinal stenosis: Multi-center study using the Two-Step test. J. Orthop. Sci. 2019, 24, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Imagama, S.; Hasegawa, Y.; Ando, K.; Kobayashi, K.; Hida, T.; Ito, K.; Tsushima, M.; Nishida, Y.; Ishiguro, N. Staged decrease of physical ability on the locomotive syndrome risk test is related to neuropathic pain, nociceptive pain, shoulder complaints, and quality of life in middle-aged and elderly people–The utility of the locomotive syndrome risk test. Mod. Rheumatol. 2017, 27, 1051–1056. [Google Scholar] [CrossRef]
- Nishimura, A.; Ohtsuki, M.; Kato, T.; Nagao, R.; Ito, N.; Kato, K.; Ogura, T.; Sudo, A. Locomotive syndrome testing in young and middle adulthood. Mod. Rheumatol. 2020, 30, 178–183. [Google Scholar] [CrossRef]
- Chiba, D.; Tsuda, E.; Wada, K.; Kumagai, G.; Sasaki, E.; Nawata, A.; Nakagomi, S.; Takahashi, I.; Nakaji, S.; Ishibashi, Y. Lumbar spondylosis, lumbar spinal stenosis, knee pain, back muscle strength are associated with the locomotive syndrome: Rural population study in Japan. J. Orthop. Sci. 2016, 21, 366–372. [Google Scholar] [CrossRef]
- Machino, M.; Ando, K.; Kobayashi, K.; Nakashima, H.; Kanbara, S.; Ito, S.; Inoue, T.; Yamaguchi, H.; Koshimizu, H.; Seki, T.; et al. Influence of global spine sagittal balance and spinal degenerative changes on locomotive syndrome risk in a middle-age and elderly community-living population. BioMed Res. Int. 2020, 2020, 3274864. [Google Scholar] [CrossRef]
- Machino, M.; Ando, K.; Kobayashi, K.; Nakashima, H.; Morozumi, M.; Tanaka, S.; Kanbara, S.; Ito, S.; Seki, T.; Ishizuka, S.; et al. Differences of lumbopelvic sagittal parameters among community-dwelling middle-age and elderly individuals: Relations with locomotor physical function. J. Clin. Neurosci. 2020, 73, 80–84. [Google Scholar] [CrossRef]
- Hirano, K.; Imagama, S.; Hasegawa, Y.; Ito, Z.; Muramoto, A.; Ishiguro, N. The influence of locomotive syndrome on health-related quality of life in a community-living population. Mod. Rheumatol. 2013, 23, 939–944. [Google Scholar] [CrossRef]
- Hirano, K.; Imagama, S.; Hasegawa, Y.; Wakao, N.; Muramoto, A.; Ishiguro, N. Impact of spinal imbalance and back muscle strength on locomotive syndrome in community-living elderly people. J. Orthop. Sci. 2012, 17, 532–537. [Google Scholar] [CrossRef]
- Hirano, K.; Imagama, S.; Hasegawa, Y.; Wakao, N.; Muramoto, A.; Ishiguro, N. Impact of back muscle strength and aging on locomotive syndrome in community living Japanese women. Nagoya J. Med. Sci. 2013, 75, 47–55. [Google Scholar] [PubMed]
- Hirano, K.; Imagama, S.; Hasegawa, Y.; Wakao, N.; Muramoto, A.; Ishiguro, N. Effect of back muscle strength and sagittal spinal imbalance on locomotive syndrome in Japanese men. Orthopedics 2012, 35, e1073–e1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Morimoto, T.; Yoshihara, T.; Sonohata, M.; Rivière, C.; Mawatari, M. The relationship between pelvic incidence and anatomical acetabular anteversion in female Japanese patients with hip osteoarthritis: A retrospective iconographic study. Surg. Radiol. Anat. 2021, 43, 1141–1147. [Google Scholar] [CrossRef]
- Shigematsu, H.; Tanaka, M.; Kawasaki, S.; Iwata, E.; Masuda, K.; Morimoto, Y.; Yamamoto, Y.; Tanaka, Y. Loco-check presents a useful tool to determine health-related quality of life in elderly people with lumbar spinal stenosis. J. Orthop. Sci. 2019, 24, 715–719. [Google Scholar] [CrossRef]
- Araki, M.; Nonoshita, H.; Kitano, S.; Shigematsu, H.; Tanaka, M.; Kawasaki, S.; Suga, Y.; Yamamoto, Y.; Tanaka, Y. The critical cutoff point of the Zurich Claudication Questionnaire and the Japanese Orthopaedic Association score indicating locomotive syndrome in patients with lumbar spinal canal stenosis. J. Orthop. Sci. 2021, 26, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Sakurai, A.; Miyamoto, A.; Michikawa, T.; Tsuji, O.; Nagoshi, N.; Okada, E.; Yagi, M.; Otaka, Y.; Tsuji, T.; et al. Lumbar spinal canal stenosis leads to locomotive syndrome in elderly patients. J. Orthop. Sci. 2019, 24, 19–23. [Google Scholar] [CrossRef]
- Shimizu, T.; Kato, S.; Demura, S.; Shinmura, K.; Yokogawa, N.; Kurokawa, Y.; Yonezawa, N.; Oku, N.; Kitagawa, R.; Handa, M.; et al. The efficacy of surgical treatment on locomotive syndrome and physical function in patients with lumbar spinal canal stenosis. J. Orthop. Sci. 2021, 26, 327–331. [Google Scholar] [CrossRef]
- Kato, S.; Kurokawa, Y.; Kabata, T.; Demura, S.; Matsubara, H.; Kajino, Y.; Okamoto, Y.; Kimura, H.; Shinmura, K.; Igarashi, K.; et al. Improvement of locomotive syndrome with surgical treatment in patients with degenerative diseases in the lumbar spine and lower extremities: A prospective cohort study. BMC Musculoskelet. Disord. 2020, 21, 515. [Google Scholar] [CrossRef]
- Fujita, N.; Michikawa, T.; Miyamoto, A.; Sakurai, A.; Otaka, Y.; Suzuki, S.; Tsuji, O.; Nagoshi, N.; Okada, E.; Yagi, M.; et al. Lumbar spinal surgery improves locomotive syndrome in elderly patients with lumbar spinal canal stenosis: A multicenter prospective study. J. Orthop. Sci. 2020, 25, 213–218. [Google Scholar] [CrossRef]
- Ohtori, S.; Ito, T.; Yamashita, M.; Murata, Y.; Morinaga, T.; Hirayama, J.; Kinoshita, T.; Ataka, H.; Koshi, T.; Sekikawa, T.; et al. Evaluation of low back pain using the Japanese Orthopaedic Association Back Pain Evaluation Questionnaire for lumbar spinal disease in a multicenter study: Differences in scores based on age, sex, and type of disease. J. Orthop. Sci. 2010, 15, 86–91. [Google Scholar] [CrossRef]
- Waterloo, S.; Ahmed, L.A.; Center, J.R.; Eisman, J.A.; Morseth, B.; Nguyen, N.D.; Nguyen, T.; Sogaard, A.J.; Emaus, N. Prevalence of vertebral fractures in women and men in the population-based Tromsø Study. BMC Musculoskelet. Disord. 2012, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, R.; Kurita, N.; Kokubun, Y.; Nikaido, T.; Sekiguchi, M.; Otani, K.; Iwabuchi, M.; Shirado, O.; Fukuhara, S.; Konno, S.I. Dose-response relationship between spino-pelvic alignment determined by sagittal modifiers and back pain-specific quality of life. Eur. Spine J. 2021, 30, 3019–3027. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Otani, K.; Tominaga, R.; Kokubun, Y.; Sekiguchi, M.; Fukuma, S.; Kamitani, T.; Nikaido, T.; Kato, K.; Kobayashi, H.; et al. Sagittal imbalance and symptoms of depression in adults: Locomotive Syndrome and Health Outcomes in the Aizu Cohort Study (LOHAS). Eur. Spine J. 2021, 30, 2450–2456. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Ungar, B.; Blondel, B.; Buchowski, J.; Coe, J.; Deinlein, D.; DeWald, C.; Mehdian, H.; Shaffrey, C.; Tribus, C.; et al. Scoliosis Research Society-Schwab adult spinal deformity classification: A validation study. Spine 2012, 37, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Morimoto, T.; Yoshihara, T.; Sonohata, M.; Rivière, C.; Mawatari, M. The significant relationship among the factors of pelvic incidence, standing lumbar lordosis, and lumbar flexibility in Japanese patients with hip osteoarthritis: A descriptive radiographic study. Orthop. Trauma Surg. Res. 2021, 103123. [Google Scholar] [CrossRef]
- Ohba, T.; Oba, H.; Koyama, K.; Oda, K.; Tanaka, N.; Fujita, K.; Haro, H. Locomotive syndrome: Prevalence, surgical outcomes, and physical performance of patients treated to correct adult spinal deformity. J. Orthop. Sci. 2021, 26, 678–683. [Google Scholar] [CrossRef]
- Castro-Méndez, A.; Requelo-Rodríguez, I.; Pabón-Carrasco, M.; González-Elena, M.L.; Ponce-Blandón, J.A.; Palomo-Toucedo, I.C. A case-control study of the effects of chronic low back pain in spatiotemporal gait parameters. Sensors 2021, 21, 5247. [Google Scholar] [CrossRef]
- Akahane, M.; Maeyashiki, A.; Tanaka, Y.; Imamura, T. The impact of musculoskeletal diseases on the presence of locomotive syndrome. Mod. Rheumatol. 2019, 29, 151–156. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Yaguchi, C.; Kaida, C.; Irei, M.; Naka, M.; Henry, S.M.; Fujiwara, K. Effects of experimentally induced low back pain on the sit-to-stand movement and electroencephalographic contingent negative variation. Exp. Brain Res. 2011, 215, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Moissenet, F.; Rose-Dulcina, K.; Armand, S.; Genevay, S. A systematic review of movement and muscular activity biomarkers to discriminate non-specific chronic low back pain patients from an asymptomatic population. Sci. Rep. 2021, 11, 5850. [Google Scholar] [CrossRef]
- Sanfélix-Genovés, J.; Hurtado, I.; Sanfélix-Gimeno, G.; Reig-Molla, B.; Peiró, S. Impact of osteoporosis and vertebral fractures on quality-of-life. A population-based study in Valencia, Spain (The FRAVO Study). Health Qual. Life Outcomes 2011, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanghelle, B.; Bentzen, H.; Giangregorio, L.; Pripp, A.H.; Bergland, A. Associations between health-related quality of life, physical function and pain in older women with osteoporosis and vertebral fracture. BMC Geriatr. 2019, 19, 298. [Google Scholar] [CrossRef]
- Johansson, L.; Sundh, D.; Nilsson, M.; Mellström, D.; Lorentzon, M. Vertebral fractures and their association with health-related quality of life, back pain and physical function in older women. Osteoporos. Int. 2018, 29, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivière, C.; Lazennec, J.Y.; Van Der Straeten, C.; Auvinet, E.; Cobb, J.; Muirhead-Allwood, S. The influence of spine-hip relations on total hip replacement: A systematic review. Orthop. Traumatol. Surg. Res. 2017, 103, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, T.; Geiger, J.; Bouaicha, S.; Slankamenac, K.; Nguyen-Kim, T.D.; Werner, C.M. Increased pelvic incidence may lead to arthritis and sagittal orientation of the facet joints at the lower lumbar spine. BMC Med. Imaging 2013, 13, 34. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, D.S.; Liu, R.W.; Xie, K.K.; Morris, W.Z.; Gebhart, J.J.; Gordon, Z.L. Increased and decreased pelvic incidence, sagittal facet joint orientations are associated with lumbar spine osteoarthritis in a large cadaveric collection. Int. Orthop. 2017, 41, 1593–1600. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Z.; Zhou, R.; Zhu, Q.; Ji, W.; Long, Y.; Wang, J. The effects of orientation of lumbar facet joints on the facet joint contact forces: An in vitro biomechanical study. Spine 2018, 43, E216–E220. [Google Scholar] [CrossRef]
- Kim, H.J.; Chun, H.J.; Lee, H.M.; Kang, K.T.; Lee, C.K.; Chang, B.S.; Yeom, J.S. The biomechanical influence of the facet joint orientation and the facet tropism in the lumbar spine. Spine J. 2013, 13, 1301–1308. [Google Scholar] [CrossRef]
Study | Design | Subject | LS | Outcome |
---|---|---|---|---|
Kasukawa et al., 2020 [16] | Cross-sectional study | 253 healthy volunteers (118 men, 135 women), age 60–88 years | Loco-Check | Low back pain |
Sasaki et al., 2013 [17] | Cross-sectional study | 727 healthy volunteers (264 men, 463 women), age 56.6 ± 13.6 (21–87) years | Loco-Check | Low back pain |
Iizuka et al., 2015 [18] | Cross-sectional study | 287 healthy volunteers (100 men, 187 women), age 64.7 ± 11.2 (40–89) years | GLFS-25 | Low back pain |
Taniguchi et al., 2021 [19] | Cross-sectional study | 2077 healthy volunteers (730 men, 1347 women), age 68.3 ± 5.4 (30–74) years | GLFS-25 | Low back pain |
Muramoto et al., 2012 [20] | Cross-sectional study | 358 healthy volunteers (128 men, 230 women), age 66.0 ± 10.0 (40–91) years | GLFS-25 | Low back pain |
Muramoto et al., 2013 [21] | Cross-sectional study | 406 healthy volunteers (167 men, 239 women), age 68.8 ± 6.7 (60–88) years | GLFS-25 | Low back pain |
Muramoto et al., 2014 [22] | Cross-sectional study | 217 healthy volunteers (217 women), age 68.2 ± 5.0 (60–79) years | GLFS-25 | Low back pain |
Muramoto et al., 2016 [23] | Cross-sectional study | 125 healthy volunteers (125 women), age 66.2 ± 9.7 (40–88) years | GLFS-25 | Low back pain, sagittal spinopelvic alignment |
Matsumoto et al., 2016 [24] | Cross-sectional study | 223 healthy volunteers (82 men, 141 women), age 73.6 ± 8.3 years | GLFS-5 | Low back pain, lumbar spinal stenosis |
Fujita et al., 2019 [25] | Cross-sectional study | 357 patients scheduled to undergo primary surgery for lumbar spinal stenosis (201 men, 156 women), 73.3 ± 5.5 years | Two-Step Test | Low back pain, sagittal spinopelvic alignment, lumbar spinal stenosis |
Imagama 2017 [26] | Cross-sectional study | 523 healthy volunteers (240 men, 283 women), age 63.3 ± 10.0 years | Total assessment | Low back pain |
Nishimura 2020 [27] | Cross-sectional study | 715 workers (579 men, 136 women), age 44.6 ± 10.0 (18–64) years | Total assessment | Low back pain |
Chiba et al., 2016 [28] | Cross-sectional study | 647 healthy volunteers (247 men, 400 women), age 58.4 ± 11.0 years | GLFS-25 | Vertebral fracture, lumbar spinal stenosis |
Machino et al., 2020 [29] | Cross-sectional study | 211 healthy volunteers (89 men, 122 women), age 64.0 ± 10.1 years | GLFS-25 | Sagittal spinopelvic alignment |
Machino et al., 2020 [30] | Cross-sectional study | 448 healthy volunteers (184 men, 264 women), age 62.7 years | GLFS-25 | Sagittal spinopelvic alignment |
Hirano et al., 2012 [31] | Cross-sectional study | 386 healthy volunteers (131 men, 233 women), age 67.6 ± 8.7 (50–91) years | Loco-Check | Sagittal spinopelvic alignment |
Hirano et al., 2012 [32] | Cross-sectional study | 135 healthy volunteers (54 men, 81 women), 76.5 ± 4.7 (70–90) years | Loco-Check | Sagittal spinopelvic alignment |
Hirano et al., 2013 [33] | Cross-sectional study | 187 healthy volunteers (187 women), age 68.0 ± 8.3 years | Loco-Check | Sagittal spinopelvic alignment |
Hirano et al., 2012 [34] | Cross-sectional study | 105 healthy volunteers (105 men), age 69.5 ± 8.2 (50–90) years | Loco-Check | Sagittal spinopelvic alignment |
Ohba et al., 2021 [35] | Retrospective cohort study | 40 patients with a diagnosis of adult spinal deformity who underwent spinal surgery (3 men, 37 women), age 72.6 ± 5.9 years | GLFS-25 | Sagittal spinopelvic alignment |
Shigematsu et al., 2019 [36] | Case–control study | 28 patients with lumbar spinal stenosis who underwent spinal surgery (15 men, 13 women), age 73.7 ± 5.6 years 46 elderly persons (16 men, 30 women), age 73.9 ± 5.4 years | Loco-Check | Lumbar spinal stenosis |
Araki et al., 2021 [37] | Cross-sectional study | 82 patients with lumbar spinal stenosis who underwent decompression surgery (47 men, 35 women), age 73.4 ± 8.4 years | GLFS-25 | Lumbar spinal stenosis |
Fujita et al., 2019 [38] | Cross-sectional study | 200 patients scheduled to undergo primary surgery for lumbar spinal stenosis (120 men, 80 women), age 73.2 years | Total assessment | Lumbar spinal stenosis |
Shimizu et al., 2021 [39] | Prospective cohort study | 101 patients scheduled to undergo primary surgery for lumbar spinal stenosis (46 men, 55 women), age 69.3 ± 8.1 years | Total assessment | Surgery for lumbar spinal stenosis |
Kato et al., 2020 [40] | Prospective cohort study | 257 patients who underwent surgery for degenerative diseases of the lumbar spine (209 men, 48 women), age 71.5 ± 6.9 years | Total assessment | Surgery for lumbar spinal stenosis |
Fujita et al., 2020 [41] | Prospective cohort study | 166 patients scheduled to undergo primary surgery for lumbar spinal stenosis (95 men, 71 women), age 72.8 ± 5.5 years | Total assessment | Surgery for lumbar spinal stenosis |
Study | Selection | Comparability | Outcome/Exposure | Total Score |
---|---|---|---|---|
Kasukawa et al., 2020 [16] | ★★★★ | ★★ | 6 | |
Sasaki et al., 2013 [17] | ★★★★ | ★★ | ★★ | 8 |
Iizuka et al., 2015 [18] | ★★★★ | ★★ | ★★ | 8 |
Taniguchi et al., 2021 [19] | ★★★★ | ★★ | 6 | |
Muramoto et al., 2012 [20] | ★★★★ | ★★ | ★★ | 8 |
Muramoto et al., 2013 [21] | ★★★ | ★★ | ★★ | 7 |
Muramoto et al., 2014 [22] | ★★ | ★★ | ★★ | 6 |
Muramoto et al., 2016 [23] | ★★ | ★★ | ★★ | 6 |
Matsumoto et al., 2016 [24] | ★★★★ | ★★ | 6 | |
Fujita et al., 2019 [25] | ★★★★★ | ★★ | ★★ | 9 |
Imagama 2017 [26] | ★★★★ | ★★★ | 7 | |
Nishimura 2020 [27] | ★★★ | ★★ | 5 | |
Chiba et al., 2016 [28] | ★★★ | ★★ | ★★ | 7 |
Machino et al., 2020 [29] | ★★★★ | ★★★ | 7 | |
Machino et al., 2020 [30] | ★★★★★ | ★★★ | 8 | |
Hirano et al., 2013 [31] | ★★★★ | ★★★ | 7 | |
Hirano et al., 2012 [32] | ★★★★ | ★★ | ★★★ | 9 |
Hirano et al., 2013 [33] | ★★★ | ★★ | ★★★ | 8 |
Hirano et al., 2012 [34] | ★★★ | ★★ | ★★★ | 8 |
Ohba et al., 2021 [35] | ★★★★ | ★★ | ★★★ | 9 |
Shigematsu et al., 2019 [36] | ★★★ | ★★ | ★★ | 7 |
Araki et al., 2021 [37] | ★★★ | ★★ | 5 | |
Fujita et al., 2019 [38] | ★★★★ | ★★★ | 7 | |
Shimizu et al., 2021 [39] | ★★★★ | ★★ | ★★ | 8 |
Kato et al., 2020 [40] | ★★★★ | ★★ | ★★ | 8 |
Fujita et al., 2020 [41] | ★★★★ | ★★ | ★★ | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, T.; Morimoto, T.; Otani, K.; Mawatari, M. Locomotive Syndrome and Lumbar Spine Disease: A Systematic Review. J. Clin. Med. 2022, 11, 1304. https://doi.org/10.3390/jcm11051304
Kobayashi T, Morimoto T, Otani K, Mawatari M. Locomotive Syndrome and Lumbar Spine Disease: A Systematic Review. Journal of Clinical Medicine. 2022; 11(5):1304. https://doi.org/10.3390/jcm11051304
Chicago/Turabian StyleKobayashi, Takaomi, Tadatsugu Morimoto, Koji Otani, and Masaaki Mawatari. 2022. "Locomotive Syndrome and Lumbar Spine Disease: A Systematic Review" Journal of Clinical Medicine 11, no. 5: 1304. https://doi.org/10.3390/jcm11051304
APA StyleKobayashi, T., Morimoto, T., Otani, K., & Mawatari, M. (2022). Locomotive Syndrome and Lumbar Spine Disease: A Systematic Review. Journal of Clinical Medicine, 11(5), 1304. https://doi.org/10.3390/jcm11051304