Accuracy of Surface Electromyography in the Diagnosis of Pain-Related Temporomandibular Disorders in Children with Awake Bruxism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monteiro, U.M.; Soares, V.B.R.B.; Soares, C.B.R.B.; Pinto, T.C.C.; Ximenes, R.C.C.; Araújo Cairrão Rodrigues, M. Electromyographic patterns and the identification of subtypes of awake bruxism. Front. Hum. Neurosci. 2021, 14, 601881. [Google Scholar] [CrossRef] [PubMed]
- Lobbezoo, F.; Ahlberg, J.; Raphael, K.G.; Wetselaar, P.; Glaros, A.G.; Kato, T.; Santiago, V.; Winocur, E.; De Laat, A.; De Leeuw, R. International consensus on the assessment of bruxism: Report of a work in progress. J. Oral Rehabil. 2018, 45, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Weestselar, P.; Vermaire, E.J.H.; Lobbezoo, F.; Schuller, A.A. The prevalence of awake bruxism and sleep bruxism in the Dutch adolescent population. J. Oral Rehabil. 2021, 48, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Maltarollo, T.H.; Pedron, I.G.; Medeiros, J.M.F.; Kubo, H.; Martins, J.L.; Shitsuka, C. The dental erosion is a problem! Res. Soc. Dev. 2020, 9, e168932723. [Google Scholar] [CrossRef] [Green Version]
- Raphael, K.G.; Santiago, V.; Lobbezoo, F. Is bruxism a disorder or a behavior? Rethinking the international consensus on defining and grading of bruxism. J. Oral Rehabil. 2016, 43, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Marpaung, C.; Lobbezoo, F.; van Selms, M.K.A. Temporomandibular Disorders among Dutch Adolescents: Prevalence and Biological, Psychological, and Social Risk Indicators. Pain Res. Manag. 2018, 2018, 5053709. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, G.; van Selms, M.K.A.; Gonçalves, D.A.G.; Lobbezoo, F.; Camparis, C.M. Factors associated with temporomandibular disorders pain in adolescents. J. Oral Rehabil. 2015, 42, 113–119. [Google Scholar] [CrossRef]
- Jiménez-Silva, A.; Peña-Durán, C.; Tobar-Reyes, J.; Frugone-Zambra, R. Sleep and awake bruxism in adults and its relationship with temporomandibular disorders: A systematic review from 2003 to 2014. Acta Odontol. Scand. 2017, 75, 36–58. [Google Scholar] [CrossRef]
- de Oliveira Reis, L.; Ribeiro, R.A.; Martins, C.C.; Devito, K.L. Association between bruxism and temporomandibular disorders in children: A systematic review and meta-analysis. Int. J. Paediatr. Dent. 2019, 29, 585–595. [Google Scholar] [CrossRef]
- de Barbosa, T.; Miyakoda, L.S.; Pocztaruk, R.L.; Rocha, C.P.; Gavião, M.B.D. Temporomandibular disorders and bruxism in childhood and adolescence: Review of the literature. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 299–314. [Google Scholar] [CrossRef]
- Szyszka-Sommerfeld, L.; Matthews-Brzozowska, T.; Kawala, B.; Mikulewicz, M.; Machoy, M.; Więckiewicz, W.; Woźniak, K. Electromyographic analysis of masticatory muscles in cleft lip and palate children with pain-related temporomandibular disorders. Pain Res. Manag. 2018, 2018, 4182843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieckiewicz, M.; Boening, K.; Wiland, P.; Shiau, Y.Y.; Paradowska-Stolarz, A. Reported concepts for the treatment modalities and pain management of temporomandibular disorders. J. Headache Pain 2015, 16, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, C.S. American Association for Dental Research. Diagnosis and treatment of temporomandibular disorders: Emergence of a new care guidelines statement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 113–139. [Google Scholar] [CrossRef]
- Wieckiewicz, M.; Paradowska-Stolarz, A.; Wieckiewicz, W. Psychosocial aspects of bruxism: The paramount factor influencing teeth grinding. Biomed. Res. Int. 2014, 2014, 469187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medllicott, M.S.; Harris, S.R. A systematic review of the effectiveness of exercise, manual therapy, electrotherapy, relaxation training, and biofeedback in the management of temporomandibular disorder. Phys. Ther. 2006, 86, 955–973. [Google Scholar] [CrossRef]
- Gonzalez, Y.M.; Greener, C.S.; Mohl, N.D. Technological devices in the diagnosis of temporomandibular disorders. Oral Maxillofac. Surg. Clin. N. Am. 2008, 20, 211–220. [Google Scholar] [CrossRef]
- Berni, K.C.; Dibai-Filho, A.V.; Pires, P.F.; Rodrigues-Bigaton, D. Accuracy of the surface electromyography RMS processing for the diagnosis of myogenous temporomandibular disorder. J. Electromyogr. Kinesiol. 2015, 25, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, S.F.; LeResche, L. Research diagnostic criteria for temporomandibular disorders: Review, criteria, examinations and specifications, critique. J. Craniomandib. Disord. 1992, 6, 301–355. [Google Scholar]
- Wieckiewicz, M.; Grychowska, N.; Wojciechowski, K.; Pelc, A.; Augustyniak, M.; Sleboda, A.; Zietek, M. Prevalence and correlation between TMD based on RDC/TMD diagnoses, oral parafunctions and psychoemotional stress in Polish university students. Biomed. Res. Int. 2014, 2014, 472346. [Google Scholar] [CrossRef]
- Manfredini, D.; Restrepo, C.; Diaz-Serrano, K.; Winocur, E.; Lobbezoo, F. Prevalence of sleep bruxism in children: A systematic review of the literature. J. Oral Rehabil. 2013, 40, 631–642. [Google Scholar] [CrossRef]
- Winocur, E.; Messer, T.; Eli, I.; Emodi-Perlman, A.; Kedem, R.; Reiter, S.; Friedman-Rubin, P. Awake and sleep bruxism among Israeli adolescents. Front. Neurol. 2019, 10, 443. [Google Scholar] [CrossRef] [PubMed]
- Bulanda, S.; Ilczuk-Rypuła, D.; Nitecka-Buchta, A.; Nowak, Z.; Baron, S.; Postek-Stefańska, L. Sleep Bruxism in Children: Etiology, Diagnosis, and Treatment-A Literature Review. Int. J. Environ. Res. Public Health 2021, 18, 9544. [Google Scholar] [CrossRef] [PubMed]
- Lobbezoo, F.; Naeije, M. Bruxism is mainly regulated centrally, not peripherally. J. Oral Rehabil. 2001, 28, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Emodi-Perlman, A.; Manfredini, D.; Shalev, T.; Yevdayev, I.; Frideman-Rubin, P.; Bracci, A.; Arnias-Winocur, O.; Eli, I. Awake Bruxism-Single-Point Self-Report versus Ecological Momentary Assessment. J. Clin. Med. 2021, 10, 1699. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Mikami, S.; Maeda, M.; Saito, T.; Nakajima, T.; Yachida, W.; Gotouda, A. Portable and wearable electromyographic devices for the assessment of sleep bruxism and awake bruxism: A literature review. Cranio 2020, 1–9. [Google Scholar] [CrossRef]
- Woźniak, K.; Piątkowska, D.; Lipski, M.; Mehr, K. Surface electromyography in orthodontics—A literature review. Med. Sci. Monit. 2013, 19, 416–423. [Google Scholar]
- Rainoldi, A.; Melchiorri, G. A Method for Positioning Electrodes during Surface EMG Recordings in Lower Limb Muscles. J. Neurosci. Methods 2004, 137, 37–43. [Google Scholar] [CrossRef]
- Szyszka-Sommerfeld, L.; Machoy, M.; Lipski, M.; Woźniak, K. The diagnostic value of electromyography in identifying patients with pain-related temporomandibular disorders. Front. Neurol. 2019, 10, 180. [Google Scholar] [CrossRef]
- Nishi, S.E.; Basri, R.; Alam, M.K. Uses of Electromyography in Dentistry: An Overview with Meta-Analysis. Eur. J. Dent. 2016, 10, 419–425. [Google Scholar] [CrossRef]
- Santana-Mora, U.; López-Ratón, M.; Mora, M.J.; Cadarso-Suárez, C.; López-Cedrún, J.; Santana-Penín, U. Surface raw electromyography has a moderate discriminatory capacity for differentiating between healthy individuals and those with TMD: A diagnostic study. J. Electromyogr. Kinesiol. 2014, 24, 332–340. [Google Scholar] [CrossRef]
- Manfredini, D.; Cocilovo, F.; Favero, L.; Ferronato, G.; Tonello, S.; Guarda-Nardini, L. Surface electromyography of jaw muscles and kinesiographic recordings: Diagnostic accuracy for myofascial pain. J. Oral Rehabil. 2011, 38, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Chaves, T.C.; dos Santos Aguiar, A.; Felicio, L.R.; Greghi, S.M.; Hallak Regalo, S.C.; Bevilaqua-Grossi, D. Electromyographic ratio of masseter and anterior temporalis muscles in children with and without temporomandibular disorders. Int. J. Pediatr. Otorhinolaryngol. 2017, 97, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Szyszka-Sommerfeld, L.; Machoy, M.; Lipski, M.; Woźniak, K. Electromyography as a Means of Assessing Masticatory Muscle Activity in Patients with Pain-Related Temporomandibular Disorders. Pain Res. Manag. 2020, 2020, 9750915. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Van der Meulen, M.J.; Lobbezoo, F.; Aartman, I.H.; Naeije, M. Self-reported oral parafunctions and pain intensity in temporomandibular disorder patients. J. Orofac. Pain 2006, 20, 31–35. [Google Scholar]
- Van Selms, M.K.; Visscher, C.M.; Naeije, M.; Lobbezoo, F. Bruxism and associated factors among Dutch adolescents. Community Dent. Oral Epidemiol. 2013, 41, 353–363. [Google Scholar] [CrossRef]
- Perlman, A.E.; Lobbezoo, F.; Zar, A.; Rubin, P.F.; van Selms, M.K.; Winocur, E. Self-reported bruxism and associated factors in Israeli adolescents. J. Oral Rehabil. 2016, 43, 443–450. [Google Scholar] [CrossRef]
- Svensson, P.; List, T.; Hector, G. Analysis of stimulus-evoked pain in patients with myofacial temporomandibular pain disorders. Pain 2001, 92, 399–409. [Google Scholar] [CrossRef]
- Ohlmann, B.; Waldecker, M.; Leckel, M.; Bömicke, W.; Behnisch, R.; Rammelsberg, P.; Schmitter, M. Correlations between Sleep Bruxism and Temporomandibular Disorders. J. Clin. Med. 2020, 9, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palinkas, M.; De Luca Canto, G.; Rodrigues, L.A.; Bataglion, C.; Siéssere, S.; Semprini, M.; Regalo, S.C. Comparative Capabilities of Clinical Assessment, Diagnostic Criteria, and Polysomnography in Detecting Sleep Bruxism. J. Clin. Sleep Med. 2015, 11, 1319–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleiss, J.L. Statistical Methods for Rates and Proportions, 2nd ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Cicchetti, D.V.; Sparrow, S.S. Developing criteria for establishing interrater reliability of specific items: Applications to assessment of adaptive behaviour. Am. J. Ment. Defic. 1981, 86, 127–137. [Google Scholar]
- Ferrario, V.F.; Sforza, C.; Colombo, A.; Ciusa, V. An electromyographic investigation of masticatory muscles symmetry in normo-occlusion subjects. J. Oral Rehabil. 2000, 27, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, K.; Piątkowska, D.; Lipski, M. The influence of natural head position on the assessment of facial morphology. Adv. Clin. Exp. Med. 2012, 21, 743–749. [Google Scholar]
- Donaldson, S.; Donaldson, M. Multi-Channel EMG Assessment and Treatment Techniques. In Clinical EMG for Surface Recordings; Cram, J.R., Ed.; Clinical Resources: Nevada City, CA, USA, 1990; pp. 143–174. [Google Scholar]
- Christensen, L.V.; Hutching, M.O. Methodological observations on positive and negative work (teeth grinding) by human jaw muscles. J. Oral Rehabil. 1992, 19, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Tartaglia, G.M.; Galletta, A.; Grassi, G.P.; Sforza, C. The influence of occlusion on jaw and neck muscle activity: A surface EMG study in healthy young adults. J. Oral Rehabil. 2006, 33, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Tartaglia, G.M.; Luraghi, F.E.; Sforza, C. The use of surface electromyography as a tool in differentiating temporomandibular disorders from neck disorders. Man. Ther. 2007, 12, 372–379. [Google Scholar] [CrossRef]
- De Felício, C.M.; Sidequersky, F.V.; Tartaglia, G.M.; Sforza, C. Electromyographic standardized indices in healthy Brazilian young adults and data reproducibility. J. Oral Rehabil. 2009, 36, 577–583. [Google Scholar] [CrossRef]
- Naeije, M.; McCarroll, R.S.; Weijs, W.A. Electromyographic activity of the human masticatory muscles during sub-maximal clenching in the inter-cuspal position. J. Oral Rehabil. 1989, 16, 63–70. [Google Scholar] [CrossRef]
- Greiner, M.; Pfeiffer, D.; Smith, R.D. Principles and practical application of the receiver operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- Marklund, S.; Wänman, A. Incidence and prevalence of myofascial pain in the jaw-face region. A one-year prospective study on dental students. Acta Odontol. Scand. 2008, 66, 113–121. [Google Scholar] [CrossRef]
- Farella, M.; Soneda, K.; Vilmann, A.; Thomsen, C.E.; Bakke, M. Jaw muscle soreness after tooth-clenching depends on force level. J. Dent. Res. 2010, 89, 717–721. [Google Scholar] [CrossRef]
- Li, X.L.; Lin, X.F.; Teng, W.; Li, S.H. The characteristics of masticatory muscle activity in bruxers. Hua Xi Kou Qiang Yi Xue Za Zhi 2008, 26, 640–643. [Google Scholar] [PubMed]
- Monteiro, A.A.; Kopp, S. Estimation of blood flow by 133Xe clearance in human masseter muscle during rest, endurance of isometric contraction, and recovery. Arch. Oral Biol. 1988, 33, 561–565. [Google Scholar] [CrossRef]
- Lavigne, G.; Palla, S. Transient morning headache: Recognizing the role of sleep bruxism and sleep-disordered breathing. J. Am. Dent. Assoc. 2010, 141, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Graven-Nielsen, T.; Lund, H.; Arendt-Nielsen, L.; Danneskiold, B.; Bliddal, H. Inhibition of maximal voluntary contraction force by experimental muscle pain; a centrally mediated mechanism. Muscle Nerve 2002, 26, 708–712. [Google Scholar] [CrossRef]
- Bodéré, C.; Téa, S.H.; Giroux-Metges, M.A.; Woda, A. Activity of masticatory muscles in subjects with different orofacial pain conditions. Pain 2005, 116, 33–41. [Google Scholar] [CrossRef]
- Rodrigues-Bigaton, D.; Berto, R.; Oliveira, A.S.; Berzin, F. Does masticatory muscle hyperactivity occur in individuals presenting temporomandibular disorders? Braz. J. Oral Sci. 2008, 7, 1497–1501. [Google Scholar]
- Sessle, B.J. Acute and chronic craniofacial pain: Brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit. Rev. Oral Biol. Med. 2000, 11, 57–91. [Google Scholar] [CrossRef]
- Nickel, J.C.; Iwasaki, L.R.; Walker, R.D.; McLachlan, K.R.; McCall, W.D., Jr. Human masticatory muscle forces during static biting. J. Dent. Res. 2003, 82, 212–217. [Google Scholar] [CrossRef]
- Rodrigues, D.; Siriani, A.O.; Berzin, F. Effect of conventional TENS on pain and electromyographic activity of masticatory muscles in TMD patients. Braz. Oral Res. 2004, 18, 290–295. [Google Scholar] [CrossRef]
- Lund, J.P.; Donga, R.; Widmer, C.G.; Stohler, C.S. The pain-adaptation model: A discussion of the relationship between chronic musculoskeletal pain and motor activity. Can. J. Physiol. Pharmacol. 1991, 69, 683–694. [Google Scholar] [CrossRef]
- Tartaglia, G.M.; Moreira Rodrigues da Silva, M.A.; Bottini, S.; Sforza, C.; Ferrario, V.F. Masticatory muscle activity during maximum voluntary clench in different research diagnostic criteria for temporomandibular disorders (RDC/TMD) groups. Man. Ther. 2008, 13, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Yamagata, K.; Kasahara, Y.; Ito, G. Electromyographic examination of jaw muscles in relation to symptoms and occlusion of patients with temporomandibular joint disorders. J. Oral Rehabil. 1999, 26, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Glaros, A.G.; Glass, E.G.; Brockman, D. Electromyographic data from TMD patients with myofascial pain and from matched control subjects: Evidence for statistical, not clinical, significance. J. Orofac. Pain 1997, 11, 125–129. [Google Scholar] [PubMed]
- Feteih, R.M. Signs and symptoms of temporomandibular disorders and oral parafunctions in urban Saudi Arabian adolescents: A research report. Head Face Med. 2006, 2, 1–7. [Google Scholar] [CrossRef]
- Tecco, S.; Festa, F. Prevalence of signs and symptoms of temporomandibular disorders in children and adolescents with and without crossbites. World J. Orthod. 2010, 11, 37–42. [Google Scholar]
- Christidis, N.; Lindström Ndanshau, E.; Sandberg, A.; Tsilingaridis, G. Prevalence and treatment strategies regarding temporomandibular disorders in children and adolescents—A systematic review. J. Oral Rehabil. 2019, 46, 291–301. [Google Scholar] [CrossRef]
- Manfredini, D.; Winocur, E.; Guarda-Nardini, L.; Lobbezzo, F. Self-reported bruxism and temporomandibular disorders: Finding from two specialized centres. J. Oral Rehabil. 2012, 39, 319–325. [Google Scholar] [CrossRef]
- Carra, M.C.; Huynh, N.; Lavigne, G. Sleep bruxism: A comprehensive overview for the dental clinician interested in sleep medicine. Dent. Clin. N. Am. 2012, 56, 387–413. [Google Scholar] [CrossRef]
- Kato, T.; Lavigne, G.J. Sleep Bruxism: A Sleep-Related Movement Disorder. Sleep Med. Clin. 2010, 5, 9–35. [Google Scholar] [CrossRef]
- Raphael, K.G.; Janal, M.N.; Sirois, D.A.; Dubrovsky, B.; Klausner, J.J.; Krieger, A.C. Validity of self-reported sleep bruxism among myofascial temporomandibular disorder patients and controls. J. Oral Rehabil. 2015, 42, 751–758. [Google Scholar] [CrossRef]
- Restrepo, C.; Manfredini, D.; Castrillon, E.; Svensson, P.; Santamaria, A.; Alvarez, C.; Manrique, R.; Lobbezoo, F. Diagnostic accuracy of the use of parental-reported sleep bruxism in a polysomnographic study in children. Int. J. Paediatr. Dent. 2017, 27, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Maluly, M.; Andersen, M.L.; Dal-Fabbro, C.; Garbuio, S.; Bittencourt, L.; de Siqueira, J.T.; Tufik, S. Polysomnographic study of the prevalence of sleep bruxism in a population sample. J. Dent. Res. 2013, 92, 97S–103S. [Google Scholar] [CrossRef] [PubMed]
- Peck, C.C.; Murray, G.M.; Gerzina, T.M. How does pain affect jaw muscle activity? The integrated pain adaptation model. Aust. Dent. J. 2008, 53, 201–207. [Google Scholar] [CrossRef] [PubMed]
Variable | Myofascial Pain Group Mean Age 9.65 ± 1.25 | Control Group Mean Age 9.33 ± 1.25 | p-Value | |
---|---|---|---|---|
n (%) | n (%) | |||
Gender | Girls | 17 (56.7) | 14 (46.7) | 0.3777 |
Boys | 13 (43.3) | 16 (53.3) | 0.4615 | |
BMI for age | Underweight (<5th percentile) | 2 (6.7) | 2 (6.7) | 1.0000 |
Healthy Weight (>5th and <85th percentile) | 25 (83.3) | 25 (83.3) | 1.0000 | |
Overweight (>85th and <95th percentile) | 2 (6.7) | 3 (10.0) | 0.6404 | |
Obesity (≥95th percentile) | 1 (3.3) | 1 (3.3) | 1.0000 | |
Vertical overlap | ≥0 and <3 mm | 17 (56.7) | 19 (63.3) | 0.5982 |
≥3 mm | 10 (33.3) | 9 (30.0) | 0.7814 | |
Reverse (anterior open bite) | 3 (10.0) | 2 (6.7) | 0.6404 | |
Overjet | ≥0 and <3 mm | 15 (50.0) | 17 (56.7) | 0.6048 |
≥3 mm | 12 (40.0) | 10 (33.3) | 0.5921 | |
Negative (anterior crossbite) | 3 (10.0) | 3 (10.0) | 1.0000 | |
Angle Class | I | 18 (60.0) | 20 (66.6) | 0.5921 |
II | 10 (33.3) | 8 (26.7) | 0.5731 | |
III | 2 (6.7) | 2 (6.7) | 1.0000 | |
Posterior crossbite | No | 20 (66.7) | 22 (73.3) | 0.5807 |
Yes | 10 (33.3) | 8 (26.7) | 0.5731 | |
Lateral open bite | No | 27 (90.0) | 28 (93.3) | 0.6472 |
Yes | 3 (10.0) | 2 (6.7) | 0.6404 |
Region | Variable | Gender | Myofascial Pain Group | Control Group | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | ||||
RTA | EA | Females | 17 | 5.89 | 1.65 | 14 | 4.88 | 1.44 | 0.1877 a |
Males | 13 | 6.75 | 1.85 | 16 | 4.84 | 2.20 | 0.9601 b | ||
Total | 30 | 6.26 | 1.76 | 30 | 4.86 | 1.85 | 0.0039 * | ||
LTA | EA | Females | 17 | 6.71 | 2.11 | 14 | 5.59 | 1.19 | 0.9102 a |
Males | 13 | 6.81 | 2.79 | 16 | 5.29 | 1.83 | 0.6143 b | ||
Total | 30 | 6.75 | 2.39 | 30 | 5.43 | 1.55 | 0.0137 * | ||
TAmean | EA | Females | 17 | 6.50 | 1.72 | 14 | 5.23 | 1.11 | 0.2088 a |
Males | 13 | 7.32 | 1.75 | 16 | 5.07 | 1.97 | 0.7860 b | ||
Total | 30 | 6.85 | 1.75 | 30 | 5.15 | 1.60 | 0.0002 * | ||
AsI | Females | 17 | 13.05 | 9.37 | 14 | 13.24 | 9.40 | 0.7376 a | |
Males | 13 | 10.56 | 8.92 | 16 | 11.35 | 11.70 | 0.4667 b | ||
Total | 30 | 11.97 | 9.11 | 30 | 12.23 | 10.55 | 0.9000 | ||
RMM | EA | Females | 17 | 5.06 | 2.43 | 14 | 3.81 | 2.26 | 0.7375 a |
Males | 13 | 4.82 | 2.21 | 16 | 3.71 | 1.72 | 0.5882 b | ||
Total | 30 | 4.96 | 2.30 | 30 | 3.75 | 1.96 | 0.0179 * | ||
LMM | EA | Females | 17 | 5.36 | 2.26 | 14 | 3.68 | 1.86 | 0.6600 a |
Males | 13 | 5.22 | 2.58 | 16 | 4.03 | 2.23 | 0.5742 b | ||
Total | 30 | 5.30 | 2.37 | 30 | 3.87 | 2.04 | 0.0149 * | ||
MMmean | EA | Females | 17 | 5.30 | 2.15 | 14 | 3.74 | 1.95 | 0.8292 a |
Males | 13 | 5.46 | 1.90 | 16 | 3.87 | 1.81 | 0.8558 b | ||
Total | 30 | 5.37 | 2.02 | 30 | 3.81 | 1.84 | 0.0028 * | ||
AsI | Females | 17 | 13.88 | 9.74 | 14 | 14.75 | 10.70 | 0.7614 a | |
Males | 13 | 12.79 | 9.54 | 16 | 14.57 | 13.91 | 0.9677 b | ||
Total | 30 | 13.40 | 9.50 | 30 | 14.65 | 12.31 | 0.6616 |
Region | Variable | Gender | Myofascial Pain Group | Control Group | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | ||||
RTA | EA | Females | 17 | 114.55 | 28.80 | 14 | 140.46 | 51.17 | 0.1547 a |
Males | 13 | 98.01 | 33.06 | 16 | 134.32 | 59.67 | 0.7663 b | ||
Total | 30 | 107.38 | 31.29 | 30 | 137.19 | 55.00 | 0.0125 * | ||
LTA | EA | Females | 17 | 113.27 | 34.76 | 14 | 126.92 | 49.65 | 0.9025 a |
Males | 13 | 114.92 | 37.71 | 16 | 133.71 | 50.06 | 0.7127 b | ||
Total | 30 | 113.98 | 35.44 | 30 | 130.54 | 49.13 | 0.1399 | ||
TAmean | EA | Females | 17 | 113.91 | 28.06 | 14 | 133.69 | 34.59 | 0.4025 a |
Males | 13 | 106.46 | 33.71 | 16 | 134.01 | 53.54 | 0.5742 b | ||
Total | 30 | 110.68 | 30.31 | 30 | 133.86 | 44.93 | 0.0797 | ||
AsI | Females | 17 | 11.27 | 7.80 | 14 | 14.41 | 19.09 | 0.2954 a | |
Males | 13 | 8.48 | 9.67 | 16 | 6.36 | 9.63 | 0.0702 b | ||
Total | 30 | 10.06 | 8.62 | 30 | 10.12 | 15.10 | 0.2771 | ||
RMM | EA | Females | 17 | 103.08 | 35.99 | 14 | 128.38 | 32.81 | 0.7764 a |
Males | 13 | 106.86 | 35.47 | 16 | 118.05 | 51.68 | 0.5258 b | ||
Total | 30 | 104.72 | 35.20 | 30 | 122.87 | 43.49 | 0.0807 | ||
LMM | EA | Females | 17 | 105.16 | 41.09 | 14 | 117.40 | 33.94 | 0.7439 a |
Males | 13 | 100.17 | 41.02 | 16 | 131.26 | 49.23 | 0.3841 b | ||
Total | 30 | 103.00 | 40.42 | 30 | 124.79 | 42.66 | 0.0468 * | ||
MMmean | EA | Females | 17 | 104.12 | 36.33 | 14 | 122.89 | 28.12 | 0.9639 a |
Males | 13 | 103.51 | 35.60 | 16 | 124.66 | 49.56 | 0.9073 b | ||
Total | 30 | 103.86 | 35.40 | 30 | 123.83 | 40.32 | 0.0460 * | ||
AsI | Females | 17 | 9.67 | 8.96 | 14 | 10.99 | 10.85 | 0.9371 a | |
Males | 13 | 9.95 | 10.45 | 16 | 6.84 | 8.37 | 0.2471 b | ||
Total | 30 | 9.79 | 9.46 | 30 | 8.78 | 9.67 | 0.6822 |
Region | Variable | AUC (95% CI) | SE | p-Value | Cut-Off Value | TP | FP | FN | TN | Se (%) | Sp (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
RTA | EA | 0.681 (0.546–0.816) | 0.069 | 0.0160 * | 4.50 | 27 | 17 | 3 | 13 | 90.0 | 43.3 |
LTA | EA | 0.644 (0.504–0.785) | 0.072 | 0.0546 | 7.85 | 11 | 2 | 19 | 28 | 36.7 | 93.3 |
TAmean | EA | 0.738 (0.614–0.862) | 0.063 | 0.0016 * | 5.75 | 20 | 10 | 10 | 20 | 66.7 | 66.7 |
AsI | 0.509 (0.361–0.658) | 0.076 | 0.9000 | 2.83 | 27 | 23 | 3 | 7 | 90.0 | 23.3 | |
RMM | EA | 0.689 (0.541–0.815) | 0.070 | 0.0180 * | 3.95 | 19 | 9 | 11 | 21 | 63.3 | 70.0 |
LMM | EA | 0.711 (0.577–0.844) | 0.068 | 0.0051 * | 3.80 | 23 | 12 | 7 | 18 | 76.7 | 60.0 |
MMmean | EA | 0.744 (0.616–0.873) | 0.066 | 0.0011 * | 3.45 | 26 | 12 | 4 | 18 | 86.7 | 60.0 |
AsI | 0.521 (0.366–0.675) | 0.079 | 0.7845 | 6.42 | 26 | 18 | 4 | 12 | 86.7 | 40.0 |
Region | Variable | AUC (95% CI) | SE | p-Value | Cut-Off Value | TP | FP | FN | TN | Se (%) | Sp (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
RTA | EA | 0.667 (0.529–0.805) | 0.070 | 0.0266 * | 145.5 | 28 | 18 | 2 | 12 | 93.3 | 40.0 |
LTA | EA | 0.559 (0.412–0.706) | 0.075 | 0.4333 | 165.9 | 28 | 22 | 2 | 8 | 93.3 | 26.7 |
TAmean | EA | 0.632 (0.491–0.773) | 0.072 | 0.0798 | 145.3 | 28 | 19 | 2 | 11 | 93.3 | 36.7 |
AsI | 0.582 (0.433–0.730) | 0.076 | 0.2772 | 12.4 | 12 | 4 | 18 | 26 | 40.0 | 86.7 | |
RMM | EA | 0.624 (0.481–0.767) | 0.073 | 0.0993 | 104.6 | 18 | 10 | 12 | 20 | 60.0 | 66.7 |
LMM | EA | 0.636 (0.495–0.776) | 0.072 | 0.0713 | 69.5 | 9 | 0 | 21 | 30 | 30.0 | 100.0 |
MMmean | EA | 0.653 (0.514–0.792) | 0.071 | 0.0421 * | 109.7 | 21 | 12 | 9 | 18 | 70.0 | 60.0 |
AsI | 0.567 (0.418–0.717) | 0.076 | 0.3711 | 6.5 | 18 | 10 | 12 | 20 | 60.0 | 66.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyszka-Sommerfeld, L.; Sycińska-Dziarnowska, M.; Budzyńska, A.; Woźniak, K. Accuracy of Surface Electromyography in the Diagnosis of Pain-Related Temporomandibular Disorders in Children with Awake Bruxism. J. Clin. Med. 2022, 11, 1323. https://doi.org/10.3390/jcm11051323
Szyszka-Sommerfeld L, Sycińska-Dziarnowska M, Budzyńska A, Woźniak K. Accuracy of Surface Electromyography in the Diagnosis of Pain-Related Temporomandibular Disorders in Children with Awake Bruxism. Journal of Clinical Medicine. 2022; 11(5):1323. https://doi.org/10.3390/jcm11051323
Chicago/Turabian StyleSzyszka-Sommerfeld, Liliana, Magdalena Sycińska-Dziarnowska, Agata Budzyńska, and Krzysztof Woźniak. 2022. "Accuracy of Surface Electromyography in the Diagnosis of Pain-Related Temporomandibular Disorders in Children with Awake Bruxism" Journal of Clinical Medicine 11, no. 5: 1323. https://doi.org/10.3390/jcm11051323
APA StyleSzyszka-Sommerfeld, L., Sycińska-Dziarnowska, M., Budzyńska, A., & Woźniak, K. (2022). Accuracy of Surface Electromyography in the Diagnosis of Pain-Related Temporomandibular Disorders in Children with Awake Bruxism. Journal of Clinical Medicine, 11(5), 1323. https://doi.org/10.3390/jcm11051323