Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal
Abstract
:1. Introduction: The Scope of the Clinical Problem
2. A Brief Review of the Pathophysiology
3. Basic Definitions
4. Chronic Coronary Syndrome and Renal Failure
4.1. Noninvasive Diagnostic Tests
4.2. The Cardiac Catheterization, Coronary Revascularization Strategies and Pharmacotherapy
4.2.1. Revascularization Options
4.2.2. The Dual Antiplatelet Therapy (DAPT)
4.3. Advanced CKD: Pre-Dialysis, Dialysis and Renal Transplant Candidates—Different Populations
4.4. Prevention of Future Events
4.4.1. Blood Pressure (BP) Control
4.4.2. Glycemic Control
4.4.3. Lipid Control
4.4.4. Lifestyle Modifications
5. Acute Coronary Syndrome and Renal Failure
5.1. Cardiac Biomarkers in the Presence of Renal Failure
5.2. The Cardiac Catheterization, Coronary Revascularization Strategies and Pharmacotherapy
Gaps of Knowledge and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.M.; Kang, J.; Lee, E.; Hwang, D.; Rhee, T.-M.; Park, J.; Kim, H.-L.; Lee, S.E.; Han, J.-K.; Yang, H.-M.; et al. Chronic Kidney Disease in the Second-Generation Drug-Eluting Stent Era: Pooled Analysis of the Korean Multicenter Drug-Eluting Stent Registry. JACC: Cardiovasc. Interv. 2016, 9, 2097–2109. [Google Scholar]
- Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.; Chalmers, J.; Heerspink, H.J.L.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 2012, 380, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- Skalsky, K.; Shiyovich, A.; Bental, T.; Vaknin-Assa, H.; Assali, A.; Gal, T.B.; Avraham, B.B.; Eisen, A.; Steinmetz, T.; Kornowski, R.; et al. Temporal trends of acute kidney injury in patients undergoing percutaneous coronary intervention over a span of 12 years. Int. J. Cardiol. 2021, 326, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Chertow, G.M.; Normand, S.-L.T.; McNeil, B.J. “Renalism”: Inappropriately Low Rates of Coronary Angiography in Elderly Individuals with Renal Insufficiency. J. Am. Soc. Nephrol. 2004, 15, 2462–2468. [Google Scholar] [CrossRef] [Green Version]
- Malyszko, J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin. Chim. Acta 2010, 411, 1412–1420. [Google Scholar] [CrossRef]
- Thomas, G.; Xie, D.; Chen, H.-Y.; Anderson, A.H.; Appel, L.J.; Bodana, S.; Brecklin, C.S.; E Drawz, P.; Flack, J.M.; Miller, E.R.; et al. Prevalence and Prognostic Significance of Apparent Treatment Resistant Hypertension in Chronic Kidney Disease. Hypertension 2016, 67, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.T.; Pinto, Y.M.; Schunkert, H.; Dzau, V.J. Potential role of the tissue renin-angiotensin system in the pathophysiology of congestive heart failure. Am. J. Cardiol. 1990, 66, D22–D32. [Google Scholar] [CrossRef]
- Volpe, M.; Savoia, C.; De Paolis, P.; Ostrowska, B.; Tarasi, D.; Rubattu, S.D. The Renin-Angiotensin System as a Risk Factor and Therapeutic Target for Cardiovascular and Renal Disease. J. Am. Soc. Nephrol. 2002, 13, S173–S178. [Google Scholar] [CrossRef] [Green Version]
- Lekawanvijit, S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Ginsberg, C.; Sugatani, T.; Monier-Faugere, M.-C.; Malluche, H.; Hruska, K.A. Early chronic kidney disease–mineral bone disorder stimulates vascular calcification. Kidney Int. 2014, 85, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement from the American Heart Association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Kruk, M.; Noll, D.; Achenbach, S.; Mintz, G.S.; Pręgowski, J.; Kaczmarska, E.; Kryczka, K.; Pracoń, R.; Dzielińska, Z.; Śleszycka, J.; et al. Impact of Coronary Artery Calcium Characteristics on Accuracy of CT Angiography. JACC Cardiovasc. Imaging 2014, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, S.; Hillis, G.S.; Haugen, E.N.; Oh, J.K.; Bailey, K.R.; Pellikka, P.A. Prognostic value of dobutamine stress echocardiography in patients with chronic kidney disease. Am. Heart J. 2007, 153, 385–391. [Google Scholar] [CrossRef]
- Herzog, C.A.; Marwick, T.H.; Pheley, A.M.; White, C.W.; Rao, V.K.; Dick, C.D. Dobutamine stress echocardiography for the detection of significant coronary artery disease in renal transplant candidates. Am. J. Kidney Dis. 1999, 33, 1080–1090. [Google Scholar] [CrossRef]
- Januszko-Giergielewicz, B.; Dębska-Ślizień, A.; Górny, J.; Kozak, J.; Oniszczuk, K.; Gromadziński, L.; Dorniak, K.; Dudziak, M.; Malinowski, P.; Rutkowski, B. Dobutamine Stress Echocardiography in the Diagnosis of Asymptomatic Ischemic Heart Disease in Patients with Chronic Kidney Disease—Review of Literature and Single-Center Experience. Transpl. Proc. 2015, 47, 295–303. [Google Scholar] [CrossRef]
- Lattanzi, F.; Picano, E.; Adamo, E.; Varga, A. Dobutamine Stress Echocardiography. Drug Saf. 2000, 22, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Masson, P.; Turner, R.M.; Lord, S.W.; Baines, L.A.; Craig, J.C.; Jonathan, C.; Webster, A.C. Prognostic value of cardiac tests in potential kidney transplant recipients: A systematic review. Transplantation 2015, 99, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Winther, S.; Svensson, M.; Jørgensen, H.M.S.; Bouchelouche, K.; Gormsen, L.C.; Pedersen, B.B.; Holm, N.; Bøtker, H.E.; Ivarsen, P.; Bøttcher, M. Diagnostic Performance of Coronary CT Angiography and Myocardial Perfusion Imaging in Kidney Transplantation Candidates. JACC Cardiovasc. Imaging 2015, 8, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marwick, T.H.; Steinmuller, D.R.; Underwood, D.A.; Hobbs, R.E.; Go, R.T.; Swift, C.; Braun, W.E. Ineffectiveness of dipyridamole Spect Thallium imaging as a screening technique for coronary artery disease in patients with end-stage renal failure. Transplantation 1990, 49, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Maron, D.J.; O’Brien, S.M.; Fleg, J.L.; Kretov, E.I.; Briguori, C.; Kaul, U.; Reynolds, H.; Mazurek, T.; Sidhu, M.S.; et al. Management of Coronary Disease in Patients with Advanced Kidney Disease. N. Engl. J. Med. 2020, 382, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Stefenelli, T.; Schuster, E.; Mayer, G. Informational Contribution of Noninvasive Screening Tests for Coronary Artery Disease in Patients on Chronic Renal Replacement Therapy. Am. J. Kidney Dis. 2001, 37, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Manske, C.; Wang, Y.; Rector, T.; Wilson, R.; White, C. Coronary revascularisation in insulin-dependent diabetic patients with chronic renal failure. Lancet 1992, 340, 998–1002. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Sasso, F.C.; Pafundi, P.C.; Simeon, V.; De Nicola, L.; Chiodini, P.; Galiero, R.; Rinaldi, L.; Nevola, R.; Salvatore, T.; Sardu, C.; et al. Efficacy and durability of multifactorial intervention on mortality and MACEs: A randomized clinical trial in type-2 diabetic kidney disease. Cardiovasc. Diabetol. 2021, 20, 145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, S.; Gao, P.; Zhang, Q. Comparison of coronary artery bypass grafting and drug-eluting stents in patients with chronic kidney disease and multivessel disease: A meta-analysis. Eur. J. Intern. Med. 2017, 43, 28–35. [Google Scholar] [CrossRef]
- Milojevic, M.; Head, S.J.; Mack, M.J.; Mohr, F.W.; Morice, M.-C.; Dawkins, K.D.; Holmes, D.R.; Serruys, P.W.; Kappetein, A.P. The impact of chronic kidney disease on outcomes following percutaneous coronary intervention versus coronary artery bypass grafting in patients with complex coronary artery disease: Five-year follow-up of the SYNTAX trial. EuroIntervention 2018, 14, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Russ. J. Cardiol. 2019, 151–226. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [Green Version]
- Remuzzi, G. Bleeding in renal failure. Lancet 1988, 331, 1205–1208. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Briguori, C.; Cao, D.; Baber, U.; Sartori, S.; Zhang, Z.; Dangas, G.; Angiolillo, D.J.; Mehta, S.; Cohen, D.J.; et al. Ticagrelor monotherapy in patients with chronic kidney disease undergoing percutaneous coronary intervention: TWILIGHT-CKD. Eur. Heart J. 2021, 42, 4683–4693. [Google Scholar] [CrossRef] [PubMed]
- Lentine, K.L.; Hurst, F.P.; Jindal, R.M.; Villines, T.C.; Kunz, J.S.; Yuan, C.M.; Hauptman, P.J.; Abbott, K.C. Cardiovascular Risk Assessment Among Potential Kidney Transplant Candidates: Approaches and Controversies. Am. J. Kidney Dis. 2010, 55, 152–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.W.; Fahim, M.A.; Hayen, A.; Mitchell, R.L.; Baines, L.; Lord, S.; Craig, J.C.; Webster, A.C. Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Syst. Rev. 2011, 12, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Herzog, C.A.; Simegn, M.A.; Xu, Y.; Costa, S.P.; Mathew, R.O.; El-Hajjar, M.C.; Gulati, S.; Maldonado, R.A.; Daugas, E.; Madero, M.; et al. Kidney Transplant List Status and Outcomes in the ISCHEMIA-CKD Trial. J. Am. Coll. Cardiol. 2021, 78, 348–361. [Google Scholar] [CrossRef]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R.; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar]
- Malhotra, R.; Nguyen, H.A.; Benavente, O.; Mete, M.; Howard, B.V.; Mant, J.; Odden, M.C.; Peralta, C.A.; Cheung, A.K.; Nadkarni, G.N.; et al. Association Between More Intensive vs Less Intensive Blood Pressure Lowering and Risk of Mortality in Chronic Kidney Disease Stages 3 to 5: A Systematic Review and Meta-analysis. JAMA Int. Med. 2017, 177, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Jafar, T.H.; Stark, P.C.; Schmid, C.; Landa, M.; Maschio, G.; De Jong, P.E.; De Zeeuw, D.; Shahinfar, S.; Toto, R.; Levey, A.S.; et al. Progression of Chronic Kidney Disease: The Role of Blood Pressure Control, Proteinuria, and Angiotensin-Converting Enzyme Inhibition: A Patient-Level Meta-Analysis. Ann. Int. Med. 2003, 139, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Earley, A.; Haynes, S.M.; Uhlig, K. Systematic Review: Blood Pressure Target in Chronic Kidney Disease and Proteinuria as an Effect Modifier. Ann. Intern. Med. 2011, 154, 541–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, J.J.; Shi, J.; Kovesdy, C.P.; Kalantar-Zadeh, K.; Jacobsen, S.J. Impact of Achieved Blood Pressures on Mortality Risk and End-Stage Renal Disease Among a Large, Diverse Hypertension Population. J. Am. Coll. Cardiol. 2014, 64, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Rahman, M.; Reboussin, D.M.; Craven, T.E.; Greene, T.; Kimmel, P.L.; Cushman, W.C.; Hawfield, A.T.; Johnson, K.C.; Lewis, C.E.; et al. Effects of Intensive BP Control in CKD. J. Am. Soc. Nephrol. 2017, 28, 2812–2823. [Google Scholar] [CrossRef]
- Sankaranarayanan, N.; Santos, S.F.; Peixoto, A.J. Blood pressure measurement in dialysis patients. Adv. Chronic Kidney Dis. 2004, 11, 134–142. [Google Scholar] [CrossRef] [PubMed]
- McCallum, W.; Sarnak, M.J. Blood pressure target for the dialysis patient. Semin. Dial. 2018, 32, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; A Sarafidis, P.; Weir, M.R.; Dahlöf, B.; Pitt, B.; Jamerson, K.; Velazquez, E.J.; Staikos-Byrne, L.; Kelly, R.Y.; Shi, V.; et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): A prespecified secondary analysis of a randomised controlled trial. Lancet 2010, 375, 1173–1181. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.F.; et al. 2013 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar]
- Fernandez-Fernandez, B.; Sarafidis, P.; Kanbay, M.; Navarro-González, J.F.; Soler, M.J.; Górriz, J.L.; Ortiz, A. SGLT2 inhibitors for non-diabetic kidney disease: Drugs to treat CKD that also improve glycaemia. Clin. Kidney J. 2020, 13, 728–733. [Google Scholar] [CrossRef]
- Neuen, B.L.; Young, T.; Heerspink, H.J.L.; Neal, B.; Perkovic, V.; Billot, L.; Mahaffey, K.W.; Charytan, D.M.; Wheeler, D.C.; Arnott, C.; et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019, 7, 845–854. [Google Scholar] [CrossRef]
- Oliva, R.V.; Bakris, G.L. Blood pressure effects of sodium–glucose co-transport 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens. 2014, 8, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhong, J.; Lin, H.; Zhao, Z.; Yan, Z.; He, H.; Ni, Y.; Liu, D.; Zhu, Z. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: A meta-analysis of clinical trials. Diabetes Obes. Metab. 2013, 15, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Mansfield, E.K.; Bhaskaran, K.; Nitsch, D.; Sørensen, H.T.; Smeeth, L.; Tomlinson, L. Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: Cohort study. BMJ 2017, 356, j791. [Google Scholar] [CrossRef] [Green Version]
- Clase, C.M.; Barzilay, J.; Gao, P.; Smyth, A.; Schmieder, R.E.; Tobe, S.; Teo, K.; Yusuf, S.; Mann, J.F. Acute change in glomerular filtration rate with inhibition of the renin-angiotensin system does not predict subsequent renal and cardiovascular outcomes. Kidney Int. 2016, 91, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.K.; Gobin, R.; Kaptoge, S. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [PubMed] [Green Version]
- Shiyovich, A.; Skalsky, K.; Steinmetz, T.; Ovdat, T.; Eisen, A.; Samara, A.; Beigel, R.; Gleitman, S.; Kornowski, R.; Orvin, K. Acute Kidney Injury Following Admission with Acute Coronary Syndrome: The Role of Diabetes Mellitus. J. Clin. Med. 2021, 10, 4931. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, R.; Sasso, F.C.; Chiodini, P.; Cianciaruso, B.; Carbonara, O.; Zamboli, P.; Tirino, G.; Pota, A.; Torella, R.; Conte, G.; et al. Management of cardiovascular risk factors in advanced type 2 diabetic nephropathy: A comparative analysis in nephrology, diabetology and primary care settings. J. Hypertens. 2006, 24, 1655–1661. [Google Scholar] [CrossRef]
- Minutolo, R.; Gabbai, F.B.; Provenzano, M.; Chiodini, P.; Borrelli, S.; Garofalo, C.; Sasso, F.C.; Santoro, D.; Bellizzi, V.; Conte, G.; et al. Cardiorenal prognosis by residual proteinuria level in diabetic chronic kidney disease: Pooled analysis of four cohort studies. Nephrol. Dial. Transpl. 2018, 33, 1942–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, K.K.; Seshasai, S.R.K.; Wijesuriya, S.; Sivakumaran, R.; Nethercott, S.; Preiss, D.; Erqou, S.; Sattar, N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomised controlled trials. Lancet 2009, 373, 1765–1772. [Google Scholar] [CrossRef]
- Control Group; Turnbull, F.M.; Abraira, C.; Anderson, R.J.; Byington, R.P.; Chalmers, J.P.; Duckworth, W.C.; Evans, G.W.; Gerstein, H.C.; Holman, R.R.; et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009, 52, 2288–2298. [Google Scholar] [CrossRef] [PubMed]
- Laiteerapong, N.; Ham, S.A.; Gao, Y.; Moffet, H.H.; Liu, J.Y.; Huang, E.S.; Karter, A.J. The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study). Diabetes Care 2018, 42, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, F.A.; Inzucchi, S.E.; Wang, Y.; Havranek, E.P.; Foody, J.M.; Krumholz, H.M. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: An observational study. Circulation 2005, 111, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eurich, D.T.; Majumdar, S.R.; McAlister, F.A.; Tsuyuki, R.T.; Johnson, J.A. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care 2005, 28, 2345–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shavadia, J.; Minhas, R.; Orvold, J.; Basran, R.; Wells, C.; Devilliers, J.; Pearce, C.; Eckstein, J.; PausJenssen, E.; Haddad, H.; et al. Metformin continuation versus interruption following coronary angiography: Contemporary risk of lactic acidosis: A pilot single-center randomized control trial. Can. J. Cardiol. 2020, 36, S112–S113. [Google Scholar] [CrossRef]
- Yin, W.L.; Bain, S.C.; Min, T. The Effect of Glucagon-Like Peptide-1 Receptor Agonists on Renal Outcomes in Type 2 Diabetes. Diabetes Ther. 2020, 11, 835–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, M.; Hamano, T.; Hoshino, J.; Wada, A.; Nakai, S.; Inaba, M.; Nakai, S.; Masakane, I. SP431IS there a “burnt-out diabetes” phenomenon in patients on hemodialysis? Nephrol. Dial. Transpl. 2017, 32 (Suppl. 3), iii268. [Google Scholar] [CrossRef]
- Park, J.; Lertdumrongluk, P.; Molnar, M.Z.; Kovesdy, C.P.; Kalantar-Zadeh, K. Glycemic Control in Diabetic Dialysis Patients and the Burnt-Out Diabetes Phenomenon. Curr. Diabetes Rep. 2012, 12, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Ricks, J.; Molnar, M.Z.; Kovesdy, C.P.; Shah, A.; Nissenson, A.R.; Williams, M.; Kalantar-Zadeh, K. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: A 6-year cohort study. Diabetes 2012, 61, 708–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanner, C.; Tonelli, M.; The Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpioni, R.; Ricardi, M.; Melfa, L.; Cristinelli, L. Dyslipidemia in chronic kidney disease: Are statins still indicated in reduction cardiovascular risk in patients on dialysis treatment? Cardiovasc. Ther. 2010, 28, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Herrington, W.; Emberson, J.; Mihaylova, B.; Blackwell, L.; Reith, C. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: A meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016, 4, 829–839. [Google Scholar]
- Lins, R.L.; E Matthys, K.; A Verpooten, G.; Peeters, P.C.; Dratwa, M.; Stolear, J.-C.; Lameire, N.H. Pharmacokinetics of atorvastatin and its metabolites after single and multiple dosing in hypercholesterolaemic haemodialysis patients. Nephrol. Dial. Transpl. 2003, 18, 967–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mach, F.; Ray, K.K.; Wiklund, O.; Corsini, A.; Catapano, A.L.; Bruckert, E.; De Backer, G.; A Hegele, R.; Hovingh, G.K.; A Jacobson, T.; et al. Adverse effects of statin therapy: Perception vs. the evidence–focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur. Heart J. 2018, 39, 2526–2539. [Google Scholar] [CrossRef] [PubMed]
- Luvai, A.; Mbagaya, W.; Hall, A.S.; Barth, J.H. Rosuvastatin: A Review of the Pharmacology and Clinical Effectiveness in Cardiovascular Disease. Clin. Med. Insights Cardiol. 2012, 6, 17–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asberg, A. Interactions between cyclosporin and lipid-lowering drugs: Implications for organ transplant recipients. Drugs 2003, 63, 367–378. [Google Scholar]
- Migliozzi, D.R.; Asal, N.J. Clinical Controversy in Transplantation: Tacrolimus versus Cyclosporine in Statin Drug Interactions. Ann. Pharmacother. 2019, 54, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Orozco, C.; Garcia-Salazar, S.J.; Gómez-Navarro, B.; González-Espinoza, E.; Zepeda-González, A.; Ramírez-Robles, J.N.; Castañeda-Espinoza, R.; Yáñez-Sánchez, I.; Gálvez-Gastelum, F.J.; Cervantes-Guevara, G.; et al. Anti-Inflammatory Effect of Atorvastatin on the Kidney Graft of Living Donor Transplants. Ann. Transplant. 2018, 23, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Mechanistic Insights and Clinical Implications. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef] [PubMed]
- Charytan, D.M.; Sabatine, M.S.; Pedersen, T.R.; Im, K.; Park, J.-G.; Pineda, A.L.; Wasserman, S.M.; Deedwania, P.; Olsson, A.G.; Sever, P.S.; et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J. Am. Coll. Cardiol. 2019, 73, 2961–2970. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Fealy, C.E.; Scelsi, A.C.; Arrigain, S.; Malin, S.K.; Kirwan, J.P. A Trial of Lifestyle Modification on Cardiopulmonary, Inflammatory, and Metabolic Effects among Obese with Chronic Kidney Disease. Am. J. Nephrol. 2015, 42, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- De Filippi, C.R.; Herzog, C.A. Interpreting Cardiac Biomarkers in the Setting of Chronic Kidney Disease. Clin. Chem. 2017, 63, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Chesnaye, N.C.; Szummer, K.; Bárány, P.; Heimbürger, O.; Magin, H.; Almquist, T.; Uhlin, F.; Dekker, F.W.; Wanner, C.; Jager, K.J.; et al. Association between Renal Function and Troponin T over Time in Stable Chronic Kidney Disease Patients. J. Am. Heart Assoc. 2019, 8, e013091. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.V.; Anand, A.; Sandoval, Y.; Lee, K.K.; Smith, S.W.; Adamson, P.D.; Chapman, A.; Langdon, T.; Sandeman, D.; Vaswani, A.; et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: A cohort study. Lancet 2015, 386, 2481–2488. [Google Scholar] [CrossRef] [Green Version]
- Miller-Hodges, E.V.; Anand, A.; Shah, A.; Chapman, A.; Gallacher, P.J.; Lee, K.K.; Farrah, T.E.; Halbesma, N.; Blackmur, J.; Newby, D.E.; et al. High-Sensitivity Cardiac Troponin and the Risk Stratification of Patients with Renal Impairment Presenting with Suspected Acute Coronary Syndrome. Circulation 2018, 137, 425–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanderian, A.; Francis, G. Cardiac troponins and chronic kidney disease. Kidney Int. 2006, 69, 1112–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallacher, P.J.; Miller-Hodges, E.; Shah, A.S.V.; Anand, A.; Dhaun, N.; Mills, N.L.; for the High-STEACS Investigators. Use of High-Sensitivity Cardiac Troponin in Patients with Kidney Impairment: A Randomized Clinical Trial. JAMA Int. Med. 2021, 181, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Twerenbold, R.; Badertscher, P.; Boeddinghaus, J.; Nestelberger, T.; Wildi, K.; Puelacher, C.; Sabti, Z.; Gimenez, M.R.; Tschirky, S.; de Lavallaz, J.d.F.; et al. 0/1-Hour Triage Algorithm for Myocardial Infarction in Patients with Renal Dysfunction. Circulation 2018, 137, 436–451. [Google Scholar] [CrossRef]
- Ezekowitz, J.; McAlister, F.A.; Humphries, K.H.; Norris, C.; Tonelli, M.; Ghali, W.A.; Knudtson, M.L. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J. Am. Coll. Cardiol. 2004, 44, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Szummer, K.; Lundman, P.; Jacobson, S.H.; Schön, S.; Lindbäck, J.; Stenestrand, U.; Wallentin, L.; Jernberg, T.; For Swedeheart. Relation between renal function, presentation, use of therapies and in-hospital complications in acute coronary syndrome: Data from the SWEDEHEART register. J. Intern. Med. 2010, 268, 40–49. [Google Scholar] [CrossRef]
- De Filippo, O.; D’Ascenzo, F.; Raposeiras-Roubin, S.; Abu-Assi, E.; Peyracchia, M.; Bocchino, P.P.; Kinnaird, T.; Ariza-Sole, A.; Liebetrau, C.; Manzano-Fernandez, S.; et al. P2Y12 inhibitors in acute coronary syndrome patients with renal dysfunction: An analysis from the RENAMI and BleeMACS projects. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 6, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Wöhrle, J.; Seeger, J.; Lahu, S.; Mayer, K.; Bernlochner, I.; Gewalt, S.; Menichelli, M.; Witzenbichler, B.; Hochholzer, W.; Sibbing, D.; et al. Ticagrelor or Prasugrel in Patients with Acute Coronary Syndrome in Relation to Estimated Glomerular Filtration Rate. JACC Cardiovasc. Interv. 2021, 14, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Szummer, K.; Lundman, P.; Jacobson, S.H.; Schön, S.; Lindbäck, J.; Stenestrand, U.; Wallentin, L.; Jernberg, T.; Swedeheart, F. Influence of Renal Function on the Effects of Early Revascularization in Non-ST-Elevation Myocardial Infarction. Circulation 2009, 120, 851–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smilowitz, N.R.; Gupta, N.; Guo, Y.; Mauricio, R.; Bangalore, S. Management and outcomes of acute myocardial infarction in patients with chronic kidney disease. Int. J. Cardiol. 2017, 227, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Skalsky, K.; Levi, A.; Bental, T.; Vaknin-Assa, H.; Assali, A.; Steinmetz, T.; Kornowski, R.; Perl, L. The Definition of “Acute Kidney Injury” Following Percutaneous Coronary Intervention and Cardiovascular Outcomes. Am. J. Cardiol. 2021, 156, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Banda, J.; Duarte, R.; Dix-Peek, T.; Dickens, C.; Manga, P.; Naicker, S. Biomarkers for Diagnosis and Prediction of Outcomes in Contrast-Induced Nephropathy. Int. J. Nephrol. 2020, 2020, 8568139. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Dent, C.; Pfriem, H.; Allen, J.; Beekman, R.H.; Ma, Q.; Dastrala, S.; Bennett, M.; Mitsnefes, M.; Devarajan, P. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr. Nephrol. 2007, 22, 2089–2095. [Google Scholar] [CrossRef]
- Tummalapalli, L.; Nadkarni, G.N.; Coca, S.G. Biomarkers for predicting outcomes in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2016, 25, 480–486. [Google Scholar] [CrossRef]
- Giacoppo, D.; Gargiulo, G.; Buccheri, S.; Aruta, P.; Byrne, R.A.; Cassese, S.; Dangas, G.; Kastrati, A.; Mehran, R.; Tamburino, C.; et al. Preventive Strategies for Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Procedures. Circ. Cardiovasc. Interv. 2017, 10, e004383. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.I.; Shilane, D.; Kazi, D.S.; Montez-Rath, M.E.; Hlatky, M.; Winkelmayer, W.C. Multivessel Coronary Artery Bypass Grafting Versus Percutaneous Coronary Intervention in ESRD. J. Am. Soc. Nephrol. 2012, 23, 2042–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Xue, S.; Lian, F.; Huang, R.-T.; Hu, Z.-L.; Wang, Y.-Y. Meta-analysis of clinical studies comparing coronary artery bypass grafting with percutaneous coronary intervention in patients with end-stage renal disease. Eur. J. Cardio-Thorac. Surg. 2012, 43, 459–467. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Budaj, A.; Aylward, P.; Buck, K.K.; Cannon, C.P.; Cornel, J.; Harrington, R.A.; Horrow, J.; Katus, H.; Keltai, M.; et al. Ticagrelor Versus Clopidogrel in Acute Coronary Syndromes in Relation to Renal Function. Circulation 2010, 122, 1056–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnani, G.; Storey, R.F.; Steg, G.; Bhatt, D.L.; Cohen, M.; Kuder, J.; Im, K.; Aylward, P.; Ardissino, D.; Isaza, D.; et al. Efficacy and safety of ticagrelor for long-term secondary prevention of atherothrombotic events in relation to renal function: Insights from the PEGASUS-TIMI 54 trial. Eur. Heart J. 2015, 37, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GFR Category | GFR (mL/min/1.73 m2) | Terms |
---|---|---|
G1 | ≥90 | Normal or high |
G2 | 60–89 | Mildly decreased |
G3a | 45–59 | Mildly to moderately decreased |
G3b | 30–44 | Moderately to severely decreased |
G4 | 15–30 | Severely decreased |
G5 * | <15 | Kidney failure |
Diagnosis |
|
Treatment |
|
Advanced CKD (3 different populations) |
|
Prevention of future events |
|
Diagnosis |
|
Treatment |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skalsky, K.; Shiyovich, A.; Steinmetz, T.; Kornowski, R. Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal. J. Clin. Med. 2022, 11, 1335. https://doi.org/10.3390/jcm11051335
Skalsky K, Shiyovich A, Steinmetz T, Kornowski R. Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal. Journal of Clinical Medicine. 2022; 11(5):1335. https://doi.org/10.3390/jcm11051335
Chicago/Turabian StyleSkalsky, Keren, Arthur Shiyovich, Tali Steinmetz, and Ran Kornowski. 2022. "Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal" Journal of Clinical Medicine 11, no. 5: 1335. https://doi.org/10.3390/jcm11051335
APA StyleSkalsky, K., Shiyovich, A., Steinmetz, T., & Kornowski, R. (2022). Chronic Renal Failure and Cardiovascular Disease: A Comprehensive Appraisal. Journal of Clinical Medicine, 11(5), 1335. https://doi.org/10.3390/jcm11051335