Dark Adaptation and Its Role in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Physiology and Measurement of Dark Adaptation
2.1. Dark Adaptation & Its Physiology
2.1.1. Dark Adaptation
2.1.2. Characteristics of Cone and Rod Mediated Vision
2.1.3. Phototransduction
2.1.4. Summarizing the Process to Explain the DA Response
2.2. Importance of DA Measurement
2.3. Measurement of Dark Adaptation
2.3.1. Two Approaches of DA Measurement
2.3.2. Overview of DA Measurement Procedure
2.3.3. DA Outcome Measures
2.3.4. Measurement Conditions & How They Affect DA Response
2.3.5. Physiological Factors Affecting DA Response
2.3.6. DA Measurement Instruments
3. Retinal Pathology and Dark Adaptation
3.1. Histopathologic Findings in the Aging Retina and Associated Functional Alterations
3.1.1. Histopathology
3.1.2. Function
3.2. Effects of AMD
3.2.1. Histopathology
3.2.2. Functional Deficits in AMD
3.2.3. Association of DA Dysfunction with AMD Severity including Reticular Pseudodrusen
3.2.4. Functional Phenotypes and Spatial Effect across the Macula
3.2.5. Structure-Function Correlation Using Multimodal Imaging
3.2.6. Dark Adaptation as an Early Marker in Eyes at Risk of AMD–Transition from Health to Disease
3.2.7. Longitudinal Comparison of Morphological and Psychophysical Disease Progression
3.2.8. Role of Genetic and Environmental Factors in Dark Adaptation
3.2.9. Relevance to Daily Life–Patient-Reported Outcome Measures
3.3. A Note Regarding the Choice of Instrument and DA Testing Protocol Utilized
3.4. Use of Dark Adaptation as a Screening Tool for AMD
4. Summary Paragraph
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldman, J. Practice of dark adaptation: A review. Arch. Ophthalmol. 1938, 19, 882–901. [Google Scholar] [CrossRef]
- Mandelbaum, J. Dark adaptation: Some physiologic and clinical considerations. Arch. Ophthalmol. 1941, 26, 203–239. [Google Scholar] [CrossRef]
- Lamb, T.D.; Pugh, E.N., Jr. Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 2004, 23, 307–380. [Google Scholar] [CrossRef]
- Burns, M.E.; Arshavsky, V.Y. Beyond Counting Photons: Review Trials and Trends in Vertebrate Visual Transduction. Neuron 2005, 48, 387–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, T. Fifty years of dark adaptation 1961–2011. Vis. Res. 2011, 51, 2243–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbur, J.L.; Stockman, A. Photopic, Mesopic and Scotopic Vision and Changes in Visual Performance. In Encyclopedia of the Eye; Dartt, D.A., Ed.; Oxford Academic Press: Oxford, UK, 2010; pp. 323–331. [Google Scholar]
- Owsley, C. Aging and vision. Vis. Res. 2011, 51, 1610–1622. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.J.; Hobby, A.E.; Binns, A.M.; Crabb, D.P. How does age-related macular degeneration affect real-world visual ability and quality of life? A systematic review. BMJ Open 2016, 6, e011504. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.; Chackravarthy, U. Visual Function and Dysfunction in Early Age Related Maculopathy. Prog. Retin. Eye Res. 2006, 25, 249–276. [Google Scholar] [CrossRef]
- Higgins, B.E.; Taylor, D.J.; Binns, A.M.; Crabb, D.P. Are Current Methods of Measuring Dark Adaptation Effective in Detecting the Onset and Progression of Age-Related Macular Degeneration? A Systematic Literature Review. Ophthalmol. Ther. 2021, 10, 21–38. [Google Scholar] [CrossRef]
- Dowling, J.E. The Retina: An Approachable Part of the Brain; The Belknap Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Gramatikov, B.; Irsch, K.; Guyton, D. Pupil Size Dynamics During the First Minutes of Dark Adaptation While Fixating on a Target. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4374. [Google Scholar]
- Price, M.; Thompson, H.; Judisch, G.; Corbett, J. Pupillary constriction to darkness. Br. J. Ophthalmol. 1985, 69, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, T.D. Why Rods and Cones? Eye 2016, 30, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.; Grayhem, R.; Hwang, A.D. Rapid Adaptation of Night Vision. Front. Psychol. 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hateren, J.; Lamb, T. The photocurrent response of human cones is fast and monophasic. BMC Neurosci. 2006, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylor, D.; Lamb, T.; Yau, K.-W. Responses of retinal rods to single photons. J. Physiol. 1979, 288, 613–634. [Google Scholar] [PubMed]
- Anderson, S.; Mullen, K.; Hess, R. Human peripheral spatial resolution for achromatic and chromatic stimuli: Limits imposed by optical and retinal factors. J. Physiol. 1991, 442, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, J.; Lutze, M.; Cao, D.; Zele, A.J. The color of night: Surface color perception under dim illuminations. Vis. Neurosci. 2006, 23, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Lamb, T.D.; Hunt, D.M. Evolution of the vertebrate phototransduction cascade activation steps. Dev. Biol. 2017, 431, 77–92. [Google Scholar] [CrossRef]
- Purves, D.; Williams, S.M.; Nundy, S.; Lotto, R.B. Perceiving the intensity of light. Psychol. Rev. 2004, 111, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Lamb, T.D.; Pugh, E.N., Jr. Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5137–5152. [Google Scholar] [CrossRef] [Green Version]
- Demb, J.; Singer, J. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci. 2012, 29, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Lamb, T.D.; McNaughton, P.A.; Yau, K.-W. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol. 1981, 319, 463–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-S.; Nymark, S.; Frederiksen, R.; Estevez, M.E.; Shen, S.Q.; Corbo, J.C.; Cornwall, M.C.; Kefalov, V.J. Chromophore Supply Rate-Limits Mammalian Photoreceptor Dark Adaptation. J. Neurosci. 2014, 34, 11212–11221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmond, T.M.; Yu, S.; Lee, E.; Bok, D.; Hamasaki, D.; Chen, N.; Goletz, P.; Ma, J.-X.; Crouch, R.K.; Pfeifer, K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 1998, 20, 344–351. [Google Scholar] [CrossRef]
- Hetch, S. The Dark Adaptation of Human Eye. J. Gen. Physiol. 1920, 2, 499–517. [Google Scholar]
- Owsley, C.; Jackson, G.R.; Cideciyan, A.V.; Huang, Y.; Fine, S.L.; Ho, A.C.; Maguire, M.G.; Lolley, V.; Jacobson, S.G. Psychophysical Evidence for Rod Vulnerability in Age Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2000, 41, 267–273. [Google Scholar]
- Owsley, C.; Jackson, G.; White, M.; Feist, R.; Edwards, D. Delays in Rod-mediated Dark Adaptation in Early Age-related Maculopathy. Ophthalmology 2001, 108, 1196–1202. [Google Scholar] [CrossRef]
- Jackson, G.R.; Edwards, J.G. A short-duration dark adaptation protocol for assessment of age-related maculopathy. J. Ocul. Biol. Dis. Inform. 2008, 1, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Jackson, G.R.; Scott, I.U.; Kim, I.K.; Quillen, D.A.; Iannaccone, A.; Edwards, J.G. Diagnostic sensitivity and specificity of dark adaptometry for detection of age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1427–1431. [Google Scholar] [CrossRef] [Green Version]
- Iannaccone, A. Measuring Dark Adaptation in the Elderly: A Predictor of Who May Develop Macular Degeneration? Investig. Ophthalmol. Vis. Sci. 2014, 55, 4790. [Google Scholar] [CrossRef] [Green Version]
- Owsley, C.; Huisingh, C.; Jackson, G.R.; Curcio, C.A.; Szalai, A.J.; Dashti, N.; Clark, M.; Rookard, K.; McCrory, M.A.; Wright, T.T.; et al. Associations Between Abnormal Rod-Mediated Dark Adaptation and Health and Functioning in Older Adults with Normal Macular Health. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4776–4789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owsley, C.; McGwin, G.; Clark, M.E.; Jackson, G.R.; Callahan, M.A.; Kline, L.B.; Witherspoon, C.D.; Curcio, C.A. Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration. Ophthalmology 2016, 123, 344–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, J.E.; Wald, G. Vitamin A and Night Blindness. Proc. Natl. Acad. Sci. USA 1958, 44, 648–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, J.E. Chemistry of Visual Adaptation in the Rat. Nature 1960, 188, 114–118. [Google Scholar] [CrossRef]
- Sahel, J.-A.; Marazova, K.; Audo, I. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations. Cold Spring Harb. Perspect. Med. 2015, 5, a017111. [Google Scholar] [CrossRef]
- Uddin, D.; Jeffrey, B.G.; Flynn, O.; Wong, W.; Wiley, H.; Keenan, T.; Chew, E.; Cukras, C. Repeatability of Scotopic Sensitivity and Dark Adaptation Using a Medmont Dark-Adapted Chromatic Perimeter in Age-related Macular Degeneration. Transl. Vis. Sci. Technol. 2020, 9, 31. [Google Scholar] [CrossRef]
- Jackson, G.R.; Owsley, C.; McGwin, G., Jr. Aging and dark adaptation. Vis. Res. 1999, 39, 3975–3982. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, P.; Guymer, R.; Zele, A.; Anderson, A.; Vingrys, A. Measuring Rod and Cone Dynamics in Age-Related Maculopathy. Investig. Ophthalmol. Vis. Sci. 2008, 49, 55–65. [Google Scholar] [CrossRef]
- Rodrigo-Diaz, E.; Tahir, H.J.; Kelly, J.M.; Parry, N.R.A.; Aslam, T.; Murray, I.J. The Light and the Dark of Early and Intermediate AMD: Cone- and Rod-Mediated Changes Are Linked to Fundus Photograph and FAF Abnormalities. Investig. Ophthalmol. Vis. Sci. 2019, 60, 5070–5079. [Google Scholar] [CrossRef] [Green Version]
- Owsley, C.; McGwin, G.; Jackson, G.R.; Kallies, K.; Clark, M. Cone- and Rod-Mediated Dark Adaptation Impairment in Age-Related Maculopathy. Ophthalmology 2007, 114, 1728–1735. [Google Scholar] [CrossRef]
- Kelly, J.M. The Parameters of a Dark Adaptation Model Explained. Available online: https://cran.r-project.org/web/packages/Dark/vignettes/parameter_exp.html (accessed on 10 January 2022).
- Pundlik, S.; Nigalye, A.; Laíns, I.; Mendez, K.M.; Katz, R.; Kim, J.; Kim, I.K.; Miller, J.B.; Vavvas, D.; Miller, J.W.; et al. Area under the dark adaptation curve as a reliable alternate measure of dark adaptation response. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Lains, I.; Pundlik, S.J.; Nigalye, A.; Katz, R.; Luo, G.; Kim, I.K.; Vavvas, D.G.; Miller, J.W.; Miller, J.B.; Husain, D. Baseline predictors associated with 3-year changes in dark adaptation in age-related macular degeneration. Retina 2021, 41, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Pugh, E., Jr. Rushton’s paradox: Rod dark adaptation after flash photolysis. J. Physiol. 1975, 248, 413–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pundlik, S.; Luo, G. Dark adaptation measurement using a smartphone. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3425. [Google Scholar]
- Kolb, H.; Fernandez, E.; Nelson, R. (Eds.) Webvision: The Organization of the Retina and Visual System; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995. [Google Scholar]
- AdaptDx. User Manual; MacuLogix, Inc.: Hummelstown, PA, USA, 2014. [Google Scholar]
- Hetch, S.; Haig, C.; Chase, A. The influence of light adaptation on subsequent dark adaptation of the eye. J. Gen. Physiol. 1937, 20, 831–850. [Google Scholar]
- Curcio, C.; Hendrickson, A. Organization and development of the primate photoreceptor mosaic. Prog. Retin. Eye Res. 1991, 10, 89–120. [Google Scholar] [CrossRef]
- Curcio, C.A.; Medeiros, N.E.; Millican, C.L. Photoreceptor loss in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 1996, 37, 1236–1249. [Google Scholar]
- Binns, A.M.; Taylor, D.J.; Edwards, L.A.; Crabb, D.P. Determining Optimal Test Parameters for Assessing Dark Adaptation in People with Intermediate Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD114–AMD121. [Google Scholar] [CrossRef] [Green Version]
- Flynn, O.J.; Cukras, C.A.; Jeffrey, B.G. Characterization of Rod Function Phenotypes Across a Range of Age-Related Macular Degeneration Severities and Subretinal Drusenoid Deposits. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2411–2421. [Google Scholar] [CrossRef] [Green Version]
- Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulae; John Wiley and Sons: New York, NY, USA, 1982. [Google Scholar]
- Winn, B.; Whitaker, D.; Elliott, D.B.; Phillips, N.J. Factors Affecting Light-Adapted Pupil Size in Normal Human Subjects. Investig. Ophthalmol. Vis. Sci. 1994, 35, 1132–1137. [Google Scholar]
- Jackson, G.R.; Owsley, C. Scotopic sensitivity during adulthood. Vis. Res. 2000, 40, 2467–2473. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, S.G.; Cideciyan, A.V.; Wright, E.; Wright, A.F. Phenotypic marker for early disease detection in dominant late-onset retinal degeneration. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1882–1890. [Google Scholar]
- Hess, K.; Gliem, M.; Birtel, J.; Müller, P.; Hendig, D.; Andrews, C.; Murray, I.J.; Holz, F.G.; Charbel Issa, P. Impaired Dark Adaptation Associated with a Diseased Bruch Membrane in Pseudoxanthoma elasticum. Retina 2020, 40, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Bavinger, J.C.; Dunbar, G.E.; Stem, M.S.; Blachley, T.S.; Kwark, L.; Farsiu, S.; Jackson, G.R.; Gardner, T.W. The effects of diabetic retinopathy and pan-retinal photocoagulation on photoreceptor cell function as assessed by dark adaptometry. Investig. Ophthalmol. Vis. Sci. 2016, 57, 208–217. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Voigt, W.J.; Parel, J.M.; Apáthy, P.P.; Nghiem-Phu, L.; Myers, S.W.; Patella, V.M. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 1986, 93, 1604–1611. [Google Scholar] [CrossRef]
- Wald, G.; Zeavin, B.H. Rod and cone vision in retinitis pigmentosa. Am. J. Ophthalmol. 1956, 42, 253–269. [Google Scholar] [CrossRef]
- Tahir, H.; Rodrigo-Diaz, E.; Parry, N.; Kelly, J.M.F.; Carden, D.; Aslam, T.M.; Murray, I.J. Slowed dark adaptation in early AMD: Dual stimulus reveals scotopic and photopic abnormalities. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD202–AMD210. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.-Q.; Chen, T.; Tao, Y.; Zhang, Z.-M. Recent advances in the dark adaptation investigations. Int. J. Ophthalmol. 2015, 8, 1245–1252. [Google Scholar] [CrossRef]
- Abbott-Johnson, W.J.; Kerlin, P.; Abiad, G.; Clague, A.E.; Cuneo, R.C. Dark adaptation in vitamin A-deficient adults awaiting liver transplantation: Improvement with intramuscular vitamin A treatment. Br. J. Ophthalmol. 2011, 95, 544–548. [Google Scholar] [CrossRef]
- Renner, A.B.; Dietrich-Ntoukas, T.; Jägle, H. Recurrent episodes of night blindness in a patient with short bowel syndrome. Doc Ophthalmol. 2015, 131, 221–230. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Cideciyan, A.V.; Regunath, G.; Rodriguez, F.J.; Vandenburgh, K.; Sheffield, V.C.; Stone, E.M. Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat. Genet. 1995, 11, 27–32. [Google Scholar] [CrossRef]
- Ayyagari, R.; Mandal, M.N.; Karoukis, A.J.; Chen, L.; McLaren, N.C.; Lichter, M.; Wong, D.T.; Hitchcock, P.F.; Caruso, R.C.; Moroi, S.E.; et al. Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3363–3371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambati, J.; Fowler, B.J. Mechanisms of age-related macular degeneration. Neuron 2012, 75, 26–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaroop, A.; Chew, E.Y.; Rickman, C.B.; Abecasis, G.R. Unraveling a multifactorial late-onset disease: From genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genom. Hum. Genet. 2009, 10, 19–43. [Google Scholar] [CrossRef] [Green Version]
- Bonilha, V.L. Age and disease-related structural changes in the retinal pigment epithelium. Clin. Ophthalmol. 2008, 2, 413–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, C.A.; Millican, C.L.; Allen, K.A.; Kalina, R.E. Aging of the human photoreceptor mosaic: Evidence for selective vulnerability of rods in central retina. Investig. Ophthalmol. Vis. Sci. 1993, 34 12, 3278–3296. [Google Scholar]
- Gao, H.; Hollyfield, J.G. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 1992, 33, 1–17. [Google Scholar]
- Saari, J.C. Biochemistry of visual pigment regeneration: The Friedenwald lecture. Investig. Ophthalmol. Vis. Sci. 2000, 41, 337–348. [Google Scholar]
- Jackson, G.R.; Owsley, C.; Curcio, C.A. Photoreceptor degeneration and dysfunction in aging and age-related maculopathy. Ageing Res. Rev. 2002, 1, 381–396. [Google Scholar] [CrossRef]
- Flynn, O.J.; Cukras, C.A.; Jeffrey, B.G. Spatial Mapping of Dark Adaptation Kinetics in Intermediate AMD and Reticular Pseudodrusen. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3202. [Google Scholar]
- Tahir, H.J.; Rodrigo-Diaz, E.; Parry, N.R.; Kelly, J.M.; Carden, D.; Murray, I.J. Slowed dark adaptation in older eyes; effect of location. Exp. Eye Res. 2017, 155, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G.R.; Owsley, C.; Cordle, E.P.; Finley, C.D. Aging and scotopic sensitivity. Vis. Res. 1998, 38, 3655–3662. [Google Scholar] [CrossRef] [Green Version]
- Curcio, C.A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD160–AMD181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F.; Ooto, S.; Curcio, C.A. Subretinal drusenoid deposits AKA pseudodrusen. Surv. Ophthalmol. 2018, 63, 782–815. [Google Scholar] [CrossRef]
- Gambril, J.A.; Sloan, K.R.; Swain, T.A.; Huisingh, C.; Zarubina, A.V.; Messinger, J.D.; Ach, T.; Curcio, C.A. Quantifying Retinal Pigment Epithelium Dysmorphia and Loss of Histologic Autofluorescence in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2481–2493. [Google Scholar] [CrossRef] [Green Version]
- Zanzottera, E.C.; Ach, T.; Huisingh, C.; Messinger, J.D.; Spaide, R.F.; Curcio, C.A. Visualizing Retinal Pigment Epithelium Phenotypes in the Transition to Geographic Atrophy in Age-Related Macular Degeneration. Retina 2016, 36 (Suppl. S1), S12–S25. [Google Scholar] [CrossRef]
- Dong, Z.Z.; Li, J.; Gan, Y.F.; Sun, X.R.; Leng, Y.X.; Ge, J. Amyloid beta deposition related retinal pigment epithelium cell impairment and subretinal microglia activation in aged APPswePS1 transgenic mice. Int. J. Ophthalmol. 2018, 11, 747–755. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, N.; Chu, Y.; Postnikova, O.; Varghese, R.; Horvath, A.; Cheema, A.K.; Golestaneh, N. Dysregulated metabolic pathways in age-related macular degeneration. Sci. Rep. 2020, 10, 2464. [Google Scholar] [CrossRef] [Green Version]
- Inana, G.; Murat, C.; An, W.; Yao, X.; Harris, I.R.; Cao, J. RPE phagocytic function declines in age-related macular degeneration and is rescued by human umbilical tissue derived cells. J. Transl. Med. 2018, 16, 63. [Google Scholar] [CrossRef] [Green Version]
- Curcio, C.A. Photoreceptor topography in ageing and age-related maculopathy. Eye 2001, 15, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Guymer, R.H.; Finger, R.P. Low luminance deficit and night vision symptoms in intermediate age-related macular degeneration. Br. J. Ophthalmol. 2016, 100, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, J.L.; Pecen, P.E.; Hanson, K.; Lynch, A.M.; Cathcart, J.N.; Siringo, F.S.; Mathias, M.T.; Mandava, N. Driving and Visual Acuity in Patients with Age-Related Macular Degeneration. Ophthalmol. Retin. 2019, 3, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Yazdanie, M.; Alvarez, J.; Agrón, E.; Wong, W.T.; Wiley, H.E.; Ferris, F.L., 3rd; Chew, E.Y.; Cukras, C. Decreased Visual Function Scores on a Low Luminance Questionnaire Is Associated with Impaired Dark Adaptation. Ophthalmology 2017, 124, 1332–1339. [Google Scholar] [CrossRef]
- Dimitrov, P.N.; Robman, L.D.; Varsamidis, M.; Aung, K.Z.; Makeyeva, G.; Busija, L.; Vingrys, A.J.; Guymer, R.H. Relationship between clinical macular changes and retinal function in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5213–5220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmetz, R.L.; Haimovici, R.; Jubb, C.; Fitzke, F.W.; Bird, A.C. Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change. Br. J. Ophthalmol. 1993, 77, 549–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, P.N.; Robman, L.D.; Varsamidis, M.; Aung, K.Z.; Makeyeva, G.A.; Guymer, R.H.; Vingrys, A.J. Visual Function Tests as Potential Biomarkers in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9457–9469. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.S.; Guymer, R.H.; Aung, K.Z.; Caruso, E.; Luu, C.D. Longitudinal Assessment of Rod Function in Intermediate Age-Related Macular Degeneration with and Without Reticular Pseudodrusen. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1511–1518. [Google Scholar] [CrossRef] [Green Version]
- Pfau, M.; Müller, P.L.; von der Emde, L.; Lindner, M.; Möller, P.T.; Fleckenstein, M.; Holz, F.G.; Schmitz-Valckenberg, S. Mesopic and Dark-Adapted Two-Color Fundus-Controlled Perimetry in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Retina 2020, 40, 169–180. [Google Scholar] [CrossRef]
- Coleman, H.R.; Chan, C.C.; Ferris, F.L., 3rd; Chew, E.Y. Age-related macular degeneration. Lancet 2008, 372, 1835–1845. [Google Scholar] [CrossRef]
- The Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): Design Implications AREDS Report no. 1. Control. Clin. Trials 1999, 20, 573–600. [Google Scholar] [CrossRef]
- Cocce, K.J.; Stinnett, S.S.; Luhmann, U.F.O.; Vajzovic, L.; Horne, A.; Schuman, S.G.; Toth, C.A.; Cousins, S.W.; Lad, E.M. Visual Function Metrics in Early and Intermediate Dry Age-related Macular Degeneration for Use as Clinical Trial Endpoints. Am. J. Ophthalmol. 2018, 189, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Flamendorf, J.; Agrón, E.; Wong, W.T.; Thompson, D.; Wiley, H.E.; Doss, E.L.; Al-Holou, S.; Ferris, F.L., 3rd; Chew, E.Y.; Cukras, C. Impairments in Dark Adaptation Are Associated with Age-Related Macular Degeneration Severity and Reticular Pseudodrusen. Ophthalmology 2015, 122, 2053–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.G.; Alvarez, J.A.; Yazdanie, M.; Papudesu, C.; Wong, W.T.; Wiley, H.E.; Keenan, T.D.; Chew, E.Y.; Ferris, F.L., 3rd; Cukras, C.A. Longitudinal Study of Dark Adaptation as a Functional Outcome Measure for Age-Related Macular Degeneration. Ophthalmology 2019, 126, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Echols, B.S.; Clark, M.E.; Swain, T.A.; Chen, L.; Kar, D.; Zhang, Y.; Sloan, K.R.; McGwin, G., Jr.; Singireddy, R.; Mays, C.; et al. Hyperreflective Foci and Specks Are Associated with Delayed Rod-Mediated Dark Adaptation in Nonneovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2020, 4, 1059–1068. [Google Scholar] [CrossRef]
- Ferris, F.L.; Davis, M.D.; Clemons, T.E.; Lee, L.Y.; Chew, E.Y.; Lindblad, A.S.; Milton, R.C.; Bressler, S.B.; Klein, R. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch. Ophthalmol. 2005, 123, 1570–1574. [Google Scholar] [CrossRef]
- Fraser, R.G.; Tan, R.; Ayton, L.N.; Caruso, E.; Guymer, R.H.; Luu, C.D. Assessment of Retinotopic Rod Photoreceptor Function Using a Dark-Adapted Chromatic Perimeter in Intermediate Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5436–5442. [Google Scholar] [CrossRef] [Green Version]
- Luu, C.D.; Tan, R.; Caruso, E.; Fletcher, E.L.; Lamb, T.D.; Guymer, R.H. Topographic Rod Recovery Profiles after a Prolonged Dark Adaptation in Subjects with Reticular Pseudodrusen. Ophthalmol. Retin. 2018, 2, 1206–1217. [Google Scholar] [CrossRef]
- Zweifel, S.A.; Spaide, R.F.; Curcio, C.A.; Malek, G.; Imamura, Y. Reticular Pseudodrusen Are Subretinal Drusenoid Deposits. Ophthalmology 2010, 117, 303–312.e301. [Google Scholar] [CrossRef]
- Spaide, R.F.; Curcio, C.A. Drusen Characterization with Multimodal Imaging. Retina 2010, 30, 1441–1454. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, M.; Malek, G.; Messinger, J.D.; Clark, M.E.; Wang, L.; Curcio, C.A. Sub-retinal drusenoid deposits in human retina: Organization and composition. Exp. Eye Res. 2008, 87, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, S.A.; Imamura, Y.; Spaide, T.C.; Fujiwara, T.; Spaide, R.F. Prevalence and Significance of Subretinal Drusenoid Deposits (Reticular Pseudodrusen) in Age-Related Macular Degeneration. Ophthalmology 2010, 117, 1775–1781. [Google Scholar] [CrossRef]
- Finger, R.P.; Wu, Z.; Luu, C.D.; Kearney, F.; Ayton, L.N.; Lucci, L.M.; Hubbard, W.C.; Hageman, J.L.; Hageman, G.S.; Guymer, R.H. Reticular Pseudodrusen: A Risk Factor for Geographic Atrophy in Fellow Eyes of Individuals with Unilateral Choroidal Neovascularization. Ophthalmology 2014, 121, 1252–1256. [Google Scholar] [CrossRef] [Green Version]
- Gliem, M.; Hendig, D.; Finger, R.P.; Holz, F.G.; Charbel Issa, P. Reticular pseudodrusen associated with a diseased bruch membrane in pseudoxanthoma elasticum. JAMA Ophthalmol. 2015, 133, 581–588. [Google Scholar] [CrossRef]
- Gliem, M.; Müller, P.L.; Mangold, E.; Bolz, H.J.; Stöhr, H.; Weber, B.H.; Holz, F.G.; Charbel Issa, P. Reticular Pseudodrusen in Sorsby Fundus Dystrophy. Ophthalmology 2015, 122, 1555–1562. [Google Scholar] [CrossRef]
- Cukras, C.; Flamendorf, J.; Wong, W.T.; Ayyagari, R.; Cunningham, D.; Sieving, P.A. Longitudinal Structural Changes in Late-Onset Retinal Degeneration. Retina 2016, 36, 2348–2356. [Google Scholar] [CrossRef] [Green Version]
- Lains, I.; Park, D.H.; Mukai, R.; Silverman, R.; Oellers, P.; Mach, S.; Kim, I.K.; Vavvas, D.G.; Miller, J.W.; Miller, J.B.; et al. Peripheral Changes Associated with Delayed Dark Adaptation in Age-related Macular Degeneration. Am. J. Ophthalmol. 2018, 190, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Christenbury, J.G.; Folgar, F.A.; O’Connell, R.V.; Chiu, S.J.; Farsiu, S.; Toth, C.A. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 2013, 120, 1038–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, Y.; Heussen, F.M.; Hariri, A.; Keane, P.A.; Sadda, S.R. Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration. Ophthalmology 2013, 120, 2656–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleiman, K.; Veerappan, M.; Winter, K.P.; McCall, M.N.; Yiu, G.; Farsiu, S.; Chew, E.Y.; Clemons, T.; Toth, C.A. Optical Coherence Tomography Predictors of Risk for Progression to Non-Neovascular Atrophic Age-Related Macular Degeneration. Ophthalmology 2017, 124, 1764–1777. [Google Scholar] [CrossRef]
- Munch, I.C.; Altuntas, C.; Li, X.Q.; Jackson, G.R.; Klefter, O.N.; Larsen, M. Dark adaptation in relation to choroidal thickness in healthy young subjects: A cross-sectional, observational study. BMC Ophthalmol. 2016, 16, 105. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.T.; Fraser, R.G.; Tan, R.; Caruso, E.; Lek, J.J.; Guymer, R.H.; Luu, C.D. Longitudinal Changes in Retinotopic Rod Function in Intermediate Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD19–AMD24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorin, M.B.; Weeks, D.E.; Baron, R.V.; Conley, Y.P.; Ortube, M.C.; Nusinowitz, S. Endophenotypes for Age-Related Macular Degeneration: Extending Our Reach into the Preclinical Stages of Disease. J. Clin. Med. 2014, 3, 1335–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patryas, L.; Parry, N.R.A.; Carden, D.; Baker, D.H.; Kelly, J.M.F.; Aslam, T.; Murray, I.J. Assessment of age changes and repeatability for computer-based rod dark adaptation. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 1821–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogg, R.E.; Dimitrov, P.N.; Dirani, M.; Varsamidis, M.; Chamberlain, M.D.; Baird, P.N.; Guymer, R.H.; Vingrys, A.J. Gene-environment interactions and aging visual function: A classical twin study. Ophthalmology 2009, 116, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.F.; McGwin, G., Jr.; Searcey, K.; Clark, M.E.; Kennedy, E.L.; Curcio, C.A.; Stone, E.M.; Owsley, C. The ARMS2 A69S Polymorphism Is Associated with Delayed Rod-Mediated Dark Adaptation in Eyes at Risk for Incident Age-Related Macular Degeneration. Ophthalmology 2019, 126, 591–600. [Google Scholar] [CrossRef]
- Lains, I.; Miller, J.B.; Mukai, R.; Mach, S.; Vavvas, D.; Kim, I.K.; Miller, J.W.; Husain, D. Health Conditions Linked to Age-Related Macular Degeneration Associated with Dark Adaptation. Retina 2018, 38, 1145–1155. [Google Scholar] [CrossRef]
- Pereira, S.E.; Saboya, C.J.; Saunders, C.; Ramalho, A. Serum levels and liver store of retinol and their association with night blindness in individuals with class III obesity. Obes. Surg. 2012, 22, 602–608. [Google Scholar] [CrossRef]
- Trasino, S.E.; Tang, X.H.; Jessurun, J.; Gudas, L.J. Obesity Leads to Tissue, but not Serum Vitamin A Deficiency. Sci. Rep. 2015, 5, 15893. [Google Scholar] [CrossRef]
- Jeyakumar, S.M.; Vajreswari, A. Vitamin A as a key regulator of obesity & its associated disorders: Evidences from an obese rat model. Indian J. Med. Res. 2015, 141, 275–284. [Google Scholar] [CrossRef]
- Russell, R.M. Vitamin A and zinc metabolism in alcoholism. Am. J. Clin. Nutr. 1980, 33, 2741–2749. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, L.H.; Wassen, A. Preliminary report on the effect of alcohol on dark adaptation, determined by an objective method. Acta Ophthalmol. 1959, 37, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Fletcher, A.E.; Wormald, R.P. 28,000 Cases of age related macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br. J. Ophthalmol. 2005, 89, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Thornton, J.; Edwards, R.; Mitchell, P.; Harrison, R.A.; Buchan, I.; Kelly, S.P. Smoking and age-related macular degeneration: A review of association. Eye 2005, 19, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; McGwin, G.; Jackson, G.R.; Heimburger, D.C.; Piyathilake, C.J.; Klein, R.; White, M.F.; Kallies, K. Effect of short-term, high-dose retinol on dark adaptation in aging and early age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1310–1318. [Google Scholar] [CrossRef] [Green Version]
- Owsley, C.; McGwin, G., Jr.; Scilley, K.; Kallies, K. Development of a questionnaire to assess vision problems under low luminance in age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 2006, 47, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Mangione, C.M.; Phillips, R.S.; Seddon, J.M.; Lawrence, M.G.; Cook, E.F.; Dailey, R.; Goldman, L. Development of the ‘Activities of Daily Vision Scale’. A measure of visual functional status. Med. Care 1992, 30, 1111–1126. [Google Scholar] [CrossRef]
- Finger, R.P.; Fenwick, E.; Owsley, C.; Holz, F.G.; Lamoureux, E.L. Visual functioning and quality of life under low luminance: Evaluation of the German Low Luminance Questionnaire. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8241–8249. [Google Scholar] [CrossRef]
- Ying, G.S.; Maguire, M.G.; Liu, C.; Antoszyk, A.N. Night vision symptoms and progression of age-related macular degeneration in the Complications of Age-related Macular Degeneration Prevention Trial. Ophthalmology 2008, 115, 1876–1882. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, M.B.; Fraser, R.G.; Tan, R.; Luu, C.D.; Guymer, R.H. Relationship Between Rod-Mediated Sensitivity, Low-Luminance Visual Acuity, and Night Vision Questionnaire in Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2020, 9, 30. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Cruickshanks, K.J. The prevalence of age-related maculopathy by geographic region and ethnicity. Prog. Retin. Eye Res. 1999, 18, 371–389. [Google Scholar] [CrossRef]
- Lesmes, L.A.; Jackson, M.L.; Bex, P. Visual Function Endpoints to Enable Dry AMD Clinical Trials. Drug Discov. Today Ther. Strateg. 2013, 10, e43–e50. [Google Scholar] [CrossRef]
Instrument/Model | Type/Primary Use | Instrument Output |
---|---|---|
Goldman-Weekers | Perimetry (modified to measure DA) | DA curve–DA parameters derived after offline data processing |
Modified Humphry Filed Analyzer * | Perimetry (modified to measure DA) | DA curve–DA parameters derived after offline data processing |
Metrovision MonCvOne * | Perimetry (built-in DA measurement functionality) | DA curve–DA parameters, including RIT, final threshold etc. Raw data accessible |
Medmont Dark Adapted Chromatic Perimeter * | Perimetry (DA measurement requires user supplied system for delivery of background light for rhodopsin bleaching | DA curve and parameters derived after offline data processing. Raw data accessible |
Roland Consult DARK-adaptometer * | Perimetry (built-in DA measurement functionality) | DA curve–DA parameters derived after offline data processing |
Maculogix AdaptDx Tabletop * | Dedicated DA measurement | Rod-intercept time with DA curve up to a criterion threshold. Fixation error percentage, Raw data accessible |
Maculogix Adapt Dx Pro Wearble, with inbult tracking, artificial intelligence guided | Dedicated DA measurement for screening | Rod-intercept time and percentage of fixation errors, machine data not accessible |
Heru re:Vive 2.0 | Dedicated DA measurement for screening |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigalye, A.K.; Hess, K.; Pundlik, S.J.; Jeffrey, B.G.; Cukras, C.A.; Husain, D. Dark Adaptation and Its Role in Age-Related Macular Degeneration. J. Clin. Med. 2022, 11, 1358. https://doi.org/10.3390/jcm11051358
Nigalye AK, Hess K, Pundlik SJ, Jeffrey BG, Cukras CA, Husain D. Dark Adaptation and Its Role in Age-Related Macular Degeneration. Journal of Clinical Medicine. 2022; 11(5):1358. https://doi.org/10.3390/jcm11051358
Chicago/Turabian StyleNigalye, Archana K., Kristina Hess, Shrinivas J. Pundlik, Brett G. Jeffrey, Catherine A. Cukras, and Deeba Husain. 2022. "Dark Adaptation and Its Role in Age-Related Macular Degeneration" Journal of Clinical Medicine 11, no. 5: 1358. https://doi.org/10.3390/jcm11051358
APA StyleNigalye, A. K., Hess, K., Pundlik, S. J., Jeffrey, B. G., Cukras, C. A., & Husain, D. (2022). Dark Adaptation and Its Role in Age-Related Macular Degeneration. Journal of Clinical Medicine, 11(5), 1358. https://doi.org/10.3390/jcm11051358