Hyperuricemia Is Associated with Significant Liver Fibrosis in Subjects with Nonalcoholic Fatty Liver Disease, but Not in Subjects without It
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Measurements
2.3. Statistically Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanyal, A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Farrell, G.C.; Wong, V.W.; Chitturi, S. NAFLD in Asia—As common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Stål, P. Liver fibrosis in non-alcoholic fatty liver disease—Diagnostic challenge with prognostic significance. World J. Gastroenterol. 2015, 21, 11077–11087. [Google Scholar] [CrossRef]
- Chalasani, N.; Wilson, L.; Kleiner, D.E.; Cummings, O.W.; Brunt, E.M.; Unalp, A. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J. Hepatol. 2008, 48, 829–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V.W.; Adams, L.A.; de Ledinghen, V.; Wong, G.L.; Sookoian, S. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, K.M.; Amarapurkar, A.; Parikh, P.; Chaubal, A.; Chauhan, S.; Khairnar, H.; Walke, S.; Ingle, M.; Pandey, V.; Shukla, A. Aspartate transaminase to platelet ratio index (APRI) but not FIB-5 or FIB-4 is accurate in ruling out significant fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) in an urban slum-dwelling population. BMJ Open Gastroenterol. 2019, 6, e000288. [Google Scholar] [CrossRef] [Green Version]
- Tovo, C.V.; Villela-Nogueira, C.A.; Leite, N.C.; Panke, C.L.; Port, G.Z.; Fernandes, S.; Buss, C.; Coral, G.P.; Cardoso, A.C.; Cravo, C.M.; et al. Transient hepatic elastography has the best performance to evaluate liver fibrosis in non-alcoholic fatty liver disease (NAFLD). Ann. Hepatol. 2019, 18, 445–449. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Hagstrom, H.; Talback, M.; Andreasson, A.; Walldius, G.; Hammar, N. Ability of Noninvasive Scoring Systems to Identify Individuals in the Population at Risk for Severe Liver Disease. Gastroenterology 2020, 158, 200–214. [Google Scholar] [CrossRef] [Green Version]
- Chou, R.; Wasson, N. Blood tests to diagnose fibrosis or cirrhosis in patients with chronic hepatitis C virus infection: A systematic review. Ann. Intern. Med. 2013, 158, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Sattui, S.E.; Singh, J.A.; Gaffo, A.L. Comorbidities in patients with crystal diseases and hyperuricemia. Rheum. Dis. Clin. N. Am. 2014, 40, 251–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Luo, L.; Ye, P.; Xiao, W. Epidemiological associations between hyperuricemia and cardiometabolic risk factors: A comprehensive study from Chinese community. BMC Cardiovasc. Disord. 2015, 15, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juraschek, S.P.; Tunstall-Pedoe, H.; Woodward, M. Serum uric acid and the risk of mortality during 23 years follow-up in the Scottish Heart Health Extended Cohort Study. Atherosclerosis 2014, 233, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Cho, Y.K.; Ryan, M.; Kim, H.; Lee, S.W.; Chang, E.; Joo, K.J.; Kim, J.T.; Kim, B.S.; Sung, K.C. Serum uric Acid as a predictor for the development of nonalcoholic Fatty liver disease in apparently healthy subjects: A 5-year retrospective cohort study. Gut Liver 2010, 4, 378–383. [Google Scholar] [CrossRef]
- Petta, S.; MacAluso, F.S.; Cabibi, D.; Cammà, C.; Di Marco, V.; Craxì, A. Hyperuricemia is associated with severe steatosis in patients with chronic hepatitis C. Dig. Liver Dis. 2012, 44, S15. [Google Scholar] [CrossRef]
- Sertoglu, E.; Ercin, C.N.; Celebi, G.; Gurel, H.; Kayadibi, H.; Genc, H.; Kara, M.; Dogru, T. The relationship of serum uric acid with non-alcoholic fatty liver disease. Clin. Biochem. 2014, 47, 383–388. [Google Scholar] [CrossRef]
- Kushiyama, A.; Nakatsu, Y.; Matsunaga, Y.; Yamamotoya, T.; Mori, K.; Ueda, K.; Inoue, Y.; Sakoda, H.; Fujishiro, M.; Ono, H.; et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Med. Inflamm. 2016, 2016, 8603164. [Google Scholar] [CrossRef]
- Petta, S.; Cammà, C.; Cabibi, D.; Di Marco, V.; Craxì, A. Hyperuricemia is associated with histological liver damage in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2011, 34, 757–766. [Google Scholar] [CrossRef]
- Sari, D.C.R.; Soetoko, A.S.; Romi, M.M.; Tranggono, U.; Setyaningsih, W.A.W.; Arfian, N. Uric acid induces liver fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice. Med. J. Malays. 2020, 75, 14–18. [Google Scholar]
- Jaruvongvanich, V.; Ahuja, W.; Wijarnpreecha, K.; Ungprasert, P. Hyperuricemia is not associated with severity of liver fibrosis in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2017, 29, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Heyens, L.J.M.; Busschots, D.; Koek, G.H.; Robaeys, G.; Francque, S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front. Med. 2021, 8, 615978. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.T.; Li, C.H.; Sun, Z.J.; Shen, W.C.; Yang, Y.C.; Lu, F.H.; Chang, C.J.; Wu, J.S. A Positive Relationship between Betel Nut Chewing and Significant Liver Fibrosis in NAFLD Subjects, but Not in Non-NAFLD Ones. Nutrients 2021, 13, 914. [Google Scholar] [CrossRef]
- Kuo, K.T.; Chang, Y.F.; Wu, I.H.; Lu, F.H.; Yang, Y.C.; Wu, J.S.; Chang, C.J. Differences in the association between glycemia and uric acid levels in diabetic and non-diabetic populations. J. Diabetes Complicat. 2019, 33, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.; Thompson, P.; Neil, F.; Gordon, M.; Linda, S.; Pescatello, P. ACSM’s Guidelines for Exercise Testing and Prescription, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Chou, Y.T.; Li, C.H.; Shen, W.C.; Yang, Y.C.; Lu, F.H.; Wu, J.S.; Chang, C.J. Association of sleep quality and sleep duration with serum uric acid levels in adults. PLoS ONE 2020, 15, e0239185. [Google Scholar] [CrossRef]
- Chu, N.F. Prevalence of obesity in Taiwan. Obes. Rev. 2005, 6, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.W.; Hall, J.E. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and evidence from new hypertension trials. Hypertension 2004, 43, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.Y.; Sun, C.C.; Wei, J.C.; Tai, H.C.; Sun, C.A.; Chung, C.F.; Chou, Y.C.; Lin, P.L.; Yang, T. Association between Hyperuricemia and Metabolic Syndrome: An Epidemiological Study of a Labor Force Population in Taiwan. Biomed. Res. Int. 2015, 2015, 369179. [Google Scholar] [CrossRef] [Green Version]
- Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43, S14–S31. [CrossRef] [Green Version]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef]
- Lin, H.F.; Lai, S.W.; Lin, W.Y.; Liu, C.S.; Lin, C.C.; Chang, C.M. Prevalence and factors of elevated alanine aminotransferase in central Taiwan—a retrospective study. Biomedicine 2016, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive Assessment of Liver Disease in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1264–1281.e4. [Google Scholar] [CrossRef] [Green Version]
- Caballería, L.; Pera, G.; Arteaga, I.; Rodríguez, L.; Alumà, A.; Morillas, R.M.; de la Ossa, N.; Díaz, A.; Expósito, C.; Miranda, D.; et al. High Prevalence of Liver Fibrosis Among European Adults with Unknown Liver Disease: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2018, 16, 1138–1145.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikolasevic, I.; Milic, S.; Orlic, L.; Stimac, D.; Franjic, N.; Targher, G. Factors associated with significant liver steatosis and fibrosis as assessed by transient elastography in patients with one or more components of the metabolic syndrome. J. Diabetes Complicat. 2016, 30, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Sandra, S.; Lesmana, C.R.A.; Purnamasari, D.; Kurniawan, J.; Gani, R.A. Hyperuricemia as an independent risk factor for non-alcoholic fatty liver disease (NAFLD) progression evaluated using controlled attenuation parameter-transient elastography: Lesson learnt from tertiary referral center. Diabetes Metabol. Syndr. Clin. Res. Rev. 2019, 13, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yu, J.; Zhang, X.; Liu, S.; Ge, Y. Association of the serum uric acid level with liver histology in biopsy-proven non-alcoholic fatty liver disease. Biomed. Rep. 2016, 5, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Rodríguez, C.M.; Aller, R.; Gutiérrez-García, M.L.; Ampuero, J.; Gómez-Camarero, J.; Martín-Mateos, R.M.; Burgos-Santamaría, D.; Miguel, J.; Aspichueta, P.; Buque, X.; et al. Higher levels of serum uric acid influences hepatic damage in patients with non-alcoholic fatty liver disease (NAFLD). Rev. Esp. Enferm. Dig. 2019, 111, 264–269. [Google Scholar] [CrossRef]
- Ballestri, S.; Nascimbeni, F.; Romagnoli, D.; Lonardo, A. The independent predictors of non-alcoholic steatohepatitis and its individual histological features.: Insulin resistance, serum uric acid, metabolic syndrome, alanine aminotransferase and serum total cholesterol are a clue to pathogenesis and candidate targets for treatment. Hepatol Res. 2016, 46, 1074–1087. [Google Scholar] [CrossRef]
- Huang, J.F.; Yeh, M.L.; Yu, M.L.; Huang, C.F.; Dai, C.Y.; Hsieh, M.Y.; Hsieh, M.H.; Huang, C.I.; Lin, Z.Y.; Chen, S.C.; et al. Hyperuricemia Inversely Correlates with Disease Severity in Taiwanese Nonalcoholic Steatohepatitis Patients. PLoS ONE 2015, 10, e0139796. [Google Scholar] [CrossRef]
- Subasi, C.F.; Aykut, U.E.; Yilmaz, Y. Comparison of noninvasive scores for the detection of advanced fibrosis in patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2015, 27, 137–141. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Pham, H.; Felix, S.; Stepanova, M.; Jeffers, T.; Younossi, E.; Allawi, H.; Lam, B.; Cable, R.; Afendy, M.; et al. Identification of High-Risk Patients with Nonalcoholic Fatty Liver Disease Using Noninvasive Tests From Primary Care and Endocrinology Real-World Practices. Clin. Transl. Gastroenterol. 2021, 12, e00340. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef]
- Sanchez-Valle, V.; Chavez-Tapia, N.C.; Uribe, M.; Mendez-Sanchez, N. Role of Oxidative Stress and Molecular Changes in Liver Fibrosis: A Review. Curr. Med. Chem. 2012, 19, 4850–4860. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef]
- Pasarin, M.; La Mura, V.; Gracia-Sancho, J.; Garcia-Caldero, H.; Rodriguez-Vilarrupla, A.; Garcia-Pagan, J.C.; Bosch, J.; Abraldes, J.G. Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS ONE 2012, 7, e32785. [Google Scholar] [CrossRef] [Green Version]
- Sautin, Y.Y.; Nakagawa, T.; Zharikov, S.; Johnson, R.J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol.-Cell Physiol. 2007, 293, C584–C596. [Google Scholar] [CrossRef]
- McLean, A.J.; Cogger, V.C.; Chong, G.C.; Warren, A.; Markus, A.M.; Dahlstrom, J.E.; Le Couteur, D.G. Age-related pseudocapillarization of the human liver. J. Pathol. 2003, 200, 112–117. [Google Scholar] [CrossRef]
- Fiel, M.I.; Deniz, K.; Elmali, F.; Schiano, T.D. Increasing hepatic arteriole wall thickness and decreased luminal diameter occur with increasing age in normal livers. J. Hepatol. 2011, 55, 582–586. [Google Scholar] [CrossRef]
- Poynard, T.; Lebray, P.; Ingiliz, P.; Varaut, A.; Varsat, B.; Ngo, Y.; Norha, P.; Munteanu, M.; Drane, F.; Messous, D.; et al. Prevalence of liver fibrosis and risk factors in a general population using non-invasive biomarkers (FibroTest). BMC Gastroenterol. 2010, 10, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Torres, M.; Poynard, T. Risk factors for liver fibrosis progression in patients with chronic hepatitis C. Ann. Hepatol. 2003, 2, 5–11. [Google Scholar] [CrossRef]
- Cole, S.A.; Henderson, W.C.; Ali, T.; West, C.; Middleton, M.S.; Silva, A.; Batakis, D.N.; Louie, A.L.; Howard, B.V.; Dvorak, J.D.; et al. Factors related to hepatic fat and fibrosis in American Indians. Diabetes 2019, 68, db19–db1908. [Google Scholar] [CrossRef]
- Ciardullo, S.; Monti, T.; Sala, I.; Grassi, G.; Mancia, G.; Perseghin, G. Nonalcoholic Fatty Liver Disease and Advanced Fibrosis in US Adults Across Blood Pressure Categories. Hypertension 2020, 76, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, L.; Axnick, J.; Buschmann, T.; Henning, C.; Urner, S.; Fang, S.; Nurmi, H.; Eichhorst, N.; Holtmeier, R.; Bódis, K.; et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018, 562, 128–132. [Google Scholar] [CrossRef]
- Arima, S.; Uto, H.; Ibusuki, R.; Kumamoto, R.; Tanoue, S.; Mawatari, S.; Oda, K.; Numata, M.; Fujita, H.; Oketani, M.; et al. Hypertension exacerbates liver injury and hepatic fibrosis induced by a choline-deficient L-amino acid-defined diet in rats. Int. J. Mol. Med. 2014, 33, 68–76. [Google Scholar] [CrossRef]
- Lomonaco, R.; Godinez Leiva, E.; Bril, F.; Shrestha, S.; Mansour, L.; Budd, J.; Portillo Romero, J.; Schmidt, S.; Chang, K.-L.; Samraj, G.; et al. Advanced Liver Fibrosis Is Common in Patients with Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care 2021, 44, 399–406. [Google Scholar] [CrossRef]
- Li, X.; Jiao, Y.; Xing, Y.; Gao, P. Diabetes Mellitus and Risk of Hepatic Fibrosis/Cirrhosis. BioMed. Res. Int. 2019, 2019, 5308308. [Google Scholar] [CrossRef] [Green Version]
- Martinou, E.; Pericleous, M.; Stefanova, I.; Kaur, V.; Angelidi, A.M. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics 2022, 12, 407. [Google Scholar] [CrossRef]
- Mendes, L.C.; Ferreira, P.A.; Miotto, N.; Zanaga, L.; Gonçales, E.; Lazarini, M.S.; Gonçales, F.L.J.; Stucchi, R.S.; Vigani, A.G. Transient elastography and APRI score: Looking at false positives and false negatives. Diagnostic performance and association to fibrosis staging in chronic hepatitis C. Braz. J. Med. Biol. Res. 2016, 49, e5432. [Google Scholar] [CrossRef] [Green Version]
- Fracanzani, A.L.; Valenti, L.; Bugianesi, E.; Andreoletti, M.; Colli, A.; Vanni, E.; Bertelli, C.; Fatta, E.; Bignamini, D.; Marchesini, G.; et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: A role for insulin resistance and diabetes. Hepatology 2008, 48, 792–798. [Google Scholar] [CrossRef] [PubMed]
Significant Liver Fibrosis | |||
---|---|---|---|
No | Yes | ||
N = 11,181 | N = 509 | p Value | |
Age, years | 48.0 ± 12.6 | 53.2 ± 14.0 | <0.001 |
Age ≥ 65 years | 1028 (9.2%) | 113 (22.2%) | <0.001 |
Male | 6414 (57.4%) | 371 (72.9%) | <0.001 |
BMI, kg/m2 | 24.1 ± 3.5 | 26.1 ± 4.1 | <0.001 |
Obesity (BMI ≥ 27 kg/m2) | 2066 (18.5%) | 187 (36.7%) | <0.001 |
Systolic BP, mmHg | 117.0 ± 17.0 | 127.3 ± 18.9 | <0.001 |
Diastolic BP, mmHg | 69.2 ± 10.8 | 74.9 ± 12.0 | <0.001 |
Hypertension | 1843 (16.5%) | 164 (32.2%) | <0.001 |
Cholesterol, mg/dL | 198.1 ± 37.1 | 201.4 ± 38.8 | 0.056 |
Cholesterol ≥ 200 mg/dL | 5059 (45.2%) | 277 (54.4%) | <0.001 |
Triglyceride, mg/dL | 129.8 ± 90.9 | 175.4 ± 141.7 | <0.001 |
Triglyceride ≥ 150 mg/dL | 3048 (27.3 %) | 225 (44.2%) | <0.001 |
HDL-C, mg/dL | 49.6 ± 13.6 | 45.6 ± 14.9 | <0.001 |
FPG, mg/dL | 90.8 ± 17.3 | 100.4 ± 31.4 | <0.001 |
2 h PG, mg/dL | 122.2 ± 51.3 | 158.6 ± 79.2 | <0.001 |
Hba1c, % | 5.6 ± 0.7 | 6.0 ± 1.2 | <0.001 |
Diabetes mellitus | 930 (8.3%) | 115 (22.6%) | <0.001 |
Creatinine, mg/dL | 0.88 ± 0.38 | 0.94 ± 0.46 | 0.004 |
ALT, U/L | 27.2 ± 16.5 | 81.0 ± 58.2 | <0.001 |
AST, U/L | 23.5 ± 7.0 | 58.6 ± 42.8 | <0.001 |
Uric acid, mg/dL | 6.0 ± 1.5 | 6.7 ± 1.7 | <0.001 |
Hyperuricemia | 3164 (28.3%) | 235 (46.2%) | <0.001 |
Platelet, 103/μL | 255.8 ± 58.8 | 195.9 ± 59.4 | <0.001 |
NAFLD | 7318 (34.5%) | 336 (66.0%) | <0.001 |
APRI | 0.28 ± 0.17 | 1.07 ± 1.15 | <0.001 |
Total bilirubin, mg/dL | 0.8 ± 0.4 | 1.0 ± 0.6 | <0.001 |
Albumin, g/dL | 4.4 ± 0.3 | 4.4 ± 0.4 | 0.314 |
Alkaline Phosphatase, U/L | 63.3 ± 19.6 | 71.3 ± 26.7 | <0.001 |
Current smoking | 1211 (10.8 %) | 64 (12.6%) | 0.215 |
Current drinking | 1235 (11.0 %) | 69 (13.6 %) | 0.081 |
Habitual exercise | 909 (8.1%) | 31 (6.1%) | 0.117 |
OR (95% CI) | p Value | |
---|---|---|
Age ≥ 65 years, yes vs. no | 2.45 (1.93–3.11) | <0.001 |
Male vs. female | 1.58 (1.27–1.96) | <0.001 |
Obesity, yes vs. no | 1.32 (1.07–1.63) | 0.009 |
Hypertension, yes vs. no | 1.40 (1.13–1.72) | 0.002 |
Cholesterol ≥ 200 mg/dL yes vs. no | 1.11 (0.92–1.34) | 0.271 |
Triglyceride ≥ 150 mg/dL, yes vs. no | 1.15 (0.94–1.41) | 0.176 |
Diabetes, yes vs. no | 1.88 (1.49–2.38) | <0.001 |
Hyperuricemia, yes vs. no | 1.39 (1.15–1.69) | 0.001 |
NAFLD, yes vs. no | 2.37 (1.90–2.95) | <0.001 |
Current smoking, yes vs. no | 1.00 (0.74–1.34) | 0.989 |
Current drinking, yes vs. no | 1.03 (0.77–1.37) | 0.859 |
Habitual exercise, yes vs. no | 0.78 (0.53–1.14) | 0.193 |
NAFLD (+) N = 4199 | NAFLD (−) N = 7401 | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age ≥ 65 years, yes vs. no | 1.79 (1.29–2.47) | <0.001 | 3.98 (2.75–5.74) | <0.001 |
Male vs. female | 1.61 (1.21–2.14) | 0.001 | 1.44 (1.03–2.01) | 0.032 |
Obesity, yes vs. no | 1.37 (1.09–1.72) | 0.008 | 1.00 (0.57–1.74) | 0.997 |
Hypertension, yes vs. no | 1.43 (1.12–1.83) | 0.004 | 1.19 (0.80–1.76) | 0.397 |
Cholesterol ≥ 200 mg/dL, yes vs. no | 1.26 (0.99–1.59) | 0.055 | 0.87 (0.63–1.19) | 0.382 |
Triglyceride ≥ 150 mg/dL, yes vs. no | 0.96 (0.76–1.21) | 0.707 | 1.82 (1.26–2.62) | 0.001 |
Diabetes, yes vs. no | 1.84 (1.41–2.41) | <0.001 | 2.18 (1.38–3.46) | 0.001 |
Hyperuricemia, yes vs. no | 1.47 (1.17–1.85) | 0.001 | 1.23 (0.86–1.74) | 0.256 |
Current smoking, yes vs. no | 1.21 (0.86–1.69) | 0.280 | 0.59 (0.32–1.11) | 0.102 |
Current drinking, yes vs. no | 1.00 (0.71–1.41) | 0.985 | 1.12 (0.67–1.88) | 0.656 |
Habitual exercise, yes vs. no | 0.53 (0.31–0.93) | 0.027 | 1.22 (0.73–2.05) | 0.444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, P.-C.; Chou, Y.-T.; Li, C.-H.; Sun, Z.-J.; Wu, C.-H.; Chang, Y.-F.; Lu, F.-H.; Yang, Y.-C.; Chang, C.-J.; Wu, J.-S. Hyperuricemia Is Associated with Significant Liver Fibrosis in Subjects with Nonalcoholic Fatty Liver Disease, but Not in Subjects without It. J. Clin. Med. 2022, 11, 1445. https://doi.org/10.3390/jcm11051445
Yen P-C, Chou Y-T, Li C-H, Sun Z-J, Wu C-H, Chang Y-F, Lu F-H, Yang Y-C, Chang C-J, Wu J-S. Hyperuricemia Is Associated with Significant Liver Fibrosis in Subjects with Nonalcoholic Fatty Liver Disease, but Not in Subjects without It. Journal of Clinical Medicine. 2022; 11(5):1445. https://doi.org/10.3390/jcm11051445
Chicago/Turabian StyleYen, Pei-Chia, Yu-Tsung Chou, Chung-Hao Li, Zih-Jie Sun, Chih-Hsing Wu, Yin-Fan Chang, Feng-Hwa Lu, Yi-Ching Yang, Chih-Jen Chang, and Jin-Shang Wu. 2022. "Hyperuricemia Is Associated with Significant Liver Fibrosis in Subjects with Nonalcoholic Fatty Liver Disease, but Not in Subjects without It" Journal of Clinical Medicine 11, no. 5: 1445. https://doi.org/10.3390/jcm11051445