Long Term Impact of Epicardial Left Atrial Appendage Ligation on Systemic Hemostasis: LAA HOMEOSTASIS-2
Abstract
:1. Introduction
2. Methods
2.1. Patient Population
2.2. Inclusion/Exclusion Criteria
2.3. Procedure Details
2.4. Clinical Follow Up
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Impact of Epicardial LAA Ligation on Electrolytes
3.3. Impact of Epicardia; LAA Closure on Natriuretic Peptides and Adrenaline
3.4. Impact of LAA Closure on Adrenergic System and RAAS
3.5. Impact of Epicardial LAA Closure on Systolic and Diastolic Blood Pressure
4. Discussion
4.1. Main Findings
4.2. Impact of Epicardial LAAC on Serum Electrolytes
4.3. Impact of Epicardial LAAC on Natriuretic Peptides and Adrenergic System
4.4. Impact of Epicardial LAAC on Renin Angiotensin Aldosterone System
4.5. Impact of Epicardial LAAC on Systemic Blood Pressure
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sievert, H.; Rasekh, A.; Bartus, K.; Morelli, R.L.; Fang, Q.; Kuropka, J.; Le, D.; Gafoor, S.; Heuer, L.; Safavi-Naeini, P.; et al. Left Atrial Appendage Ligation in Nonvalvular Atrial Fibrillation Patients at High Risk for Embolic Events with Ineligibility for Oral Anticoagulation: Initial Report of Clinical Outcomes. JACC Clin. Electrophysiol. 2015, 1, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Lakkireddy, D.; Turagam, M.; Afzal, M.R.; Rajasingh, J.; Atkins, D.; Dawn, B.; Di Biase, L.; Bartus, K.; Kar, S.; Natale, A.; et al. Left Atrial Appendage Closure and Systemic Homeostasis. J. Am. Coll. Cardiol. 2018, 71, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Bartus, K.; Han, F.T.; Bednarek, J.; Myc, J.; Kapelak, B.; Sadowski, J.; Lelakowski, J.; Bartus, S.; Yakubov, S.J.; Lee, R.J. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: Initial clinical experience. J. Am. Coll. Cardiol. 2013, 62, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartus, K.; Gafoor, S.; Tschopp, D.; Foran, J.P.; Tilz, R.; Wong, T.; Lakkireddy, D.; Sievert, H.; Lee, R.J. Left atrial appendage ligation with the next generation LARIAT+ suture delivery device: Early clinical experience. Int. J. Cardiol. 2016, 215, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Luani, B.; Rauwolf, T.; Groscheck, T.; Tanev, I.; Herold, J.; Isermann, B.; Schmeisser, A.; Braun-Dullaeus, R.C. Serial Assessment of Natriuretic Peptides in Patients Undergoing Interventional Closure of the Left Atrial Appendage. Hear. Lung Circ. 2018, 27, 828–834. [Google Scholar] [CrossRef]
- Maybrook, R.; Pillarisetti, J.; Yarlagadda, V.; Gunda, S.; Sridhar, A.R.M.; Deibert, B.; Afzal, M.R.; Reddy, M.; Atkins, D.; Earnest, M.; et al. Electrolyte and hemodynamic changes following percutaneous left atrial appendage ligation with the LARIAT device. J. Interv. Card. Electrophysiol. 2015, 43, 245–251. [Google Scholar] [CrossRef]
- Wilber, D.J. Neurohormonal Regulation and the Left Atrial Appendage. J. Am. Coll. Cardiol. 2018, 71, 145–147. [Google Scholar] [CrossRef]
- Holmes, B.B.; Patel, N.; Lugo, R.; Richardson, T.; Metawee, M.; Rinke, L.L.; Meisch, C.; Shoemaker, M.B.; Ellis, C.R. Clinical predictors of acute hyponatremia following LARIAT ligation of the left atrial appendage. J. Cardiovasc. Electrophysiol. 2019, 30, 2501–2507. [Google Scholar] [CrossRef]
- Cruz-Gonzalez, I.; Molinero, J.P.; Valenzuela, M.; Rada, I.; Perez-Rivera, J.A.; Jimenez, A.A.; Gabella, T.; Prieto, A.B.; Polo, J.M.; Sánchez, P.L. Brain natriuretic peptide levels variation after left atrial appendage occlusion. Catheter. Cardiovasc. Interv. 2016, 87, E39–E43. [Google Scholar] [CrossRef]
- Behnes, M.; Sartorius, B.; Wenke, A.; Lang, S.; Hoffmann, U.; Fastner, C.; Borggrefe, M.; Roth, T.; Triebel, J.; Bertsch, T.; et al. Percutaneous Closure of Left Atrial Appendage affects Mid-Term Release of MR-proANP. Sci. Rep. 2017, 7, 9028. [Google Scholar] [CrossRef] [Green Version]
- Litwinowicz, R.; Burysz, M.; Mazur, P.; Kapelak, B.; Bartus, M.; Lakkireddy, D.; Lee, R.J.; Malec-Litwinowicz, M.; Bartus, K. Endocardial versus epicardial left atrial appendage exclusion for stroke prevention in patients with atrial fibrillation: Midterm follow-up. J. Cardiovasc. Electrophysiol. 2021, 32, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Bartus, K.; Morelli, R.L.; Szczepanski, W.; Kapelak, B.; Sadowski, J.; Lee, R.J. Anatomic Analysis of the Left Atrial Appendage after Closure with the LARIAT Device. Circ. Arrhythmia Electrophysiol. 2014, 7, 764–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartus, K.; Podolec, J.; Lee, R.J.; Kapelak, B.; Sadowski, J.; Bartus, M.; Oles, K.; Ceranowicz, P.; Trabka, R.; Litwinowicz, R. Atrial natriuretic peptide and brain natriuretic peptide changes after epicardial percutaneous left atrial appendage suture ligation using LARIAT device. J. Physiol. Pharmacol. 2017, 68, 117–123. [Google Scholar] [PubMed]
- Maybrook, R.; Pillarisetti, J.; Yarlagadda, V.; Sridhar, A.R.M.; Reddy, M.; Dawn, B.; Earnest, M.; Ferrell, R.; Nath, J.; Kanmanthareddy, A.; et al. Hyponatremia and hemodynamic changes following percutaneous left atrial appendage ligation with the lariat device. J. Am. Coll. Cardiol. 2014, 63, A410. [Google Scholar] [CrossRef] [Green Version]
- Unger, T.; Badoer, E.; Gareis, C.; Girchev, R.; Kotrba, M.; Qadri, F.; Rettig, R.; Rohmeiss, P. Atrial natriuretic peptide (ANP) as a neuropeptide: Interaction with angiotensin II on volume control and renal sodium handling. Br. J. Clin. Pharmacol. 1990, 30 (Suppl. S1), 83S–88S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Yin, X.; Zhang, H.; Gao, L.; Xiao, X.; Zhang, R.; Yu, X.; Li, G.; Dong, Y.; Yang, Y.; et al. Impact of Left Atrial Appendage Closure on Neurohormones Secretion at Long-term Follow-Up; Asia Pacific Heart Rhythm Society: Bangkok, Thailand, 2019. [Google Scholar]
- Mayyas, F.; Niebauer, M.; Zurick, A.; Barnard, J.; Gillinov, A.M.; Chung, M.K.; Van Wagoner, D.R. Association of Left Atrial Endothelin-1 with Atrial Rhythm, Size, and Fibrosis in Patients with Structural Heart Disease. Circ. Arrhythmia Electrophysiol. 2010, 3, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Yang, Y.M.; Zhu, J.; Ren, J.M.; Wang, J.; Zhang, H. The association between plasma big endothelin-1 levels at admission and long-term outcomes in patients with atrial fibrillation. Atherosclerosis 2018, 272, 1–7. [Google Scholar] [CrossRef]
- Nair, G.M.; Nery, P.B.; Redpath, C.J.; Birnie, D.H. The Role of Renin Angiotensin System in Atrial Fibrillation. J. Atr. Fibrillation 2014, 6, 972. [Google Scholar] [CrossRef]
- Maggioni, A.P.; Latini, R.; Carson, P.E.; Singh, S.N.; Barlera, S.; Glazer, R.; Masson, S.; Cerè, E.; Tognoni, G.; Cohn, J.N.; et al. Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: Results from the Valsartan Heart Failure Trial (Val-HeFT). Am. Heart J. 2005, 149, 548–557. [Google Scholar] [CrossRef]
- Hansson, L.; Lindholm, L.H.; Ekbom, T.; Dahlöf, B.; Lanke, J.; Scherstén, B.; Wester, P.-O.; Hedner, T.; de Faire, U. Randomised trial of old and new antihypertensive drugs in elderly patients: Cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 1999, 354, 1751–1756. [Google Scholar] [CrossRef]
- Pedersen, O.D.; Bagger, H.; Køber, L.; Torp-Pedersen, C. Trandolapril Reduces the Incidence of Atrial Fibrillation after Acute Myocardial Infarction in Patients with Left Ventricular Dysfunction. Circulation 1999, 100, 376–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, J.P.; Fontes, M.L.; Tudor, I.C.; Ramsay, J.; Duke, P.; Mazer, C.D.; Barash, P.G.; Hsu, P.H.; Mangano, D.T.; For the Investigators of the Ischemia Research and Education Foundation and the Multicenter Study of Perioperative Ischemia Research Group. A Multicenter Risk Index for Atrial Fibrillation after Cardiac Surgery. JAMA J. Am. Med. Assoc. 2004, 291, 1720–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turagam, M.K.; Vuddanda, V.; Verberkmoes, N.; Ohtsuka, T.; Akca, F.; Atkins, D.; Bommana, S.; Emmert, M.Y.; Gopinathannair, R.; Dunnington, G.; et al. Epicardial Left Atrial Appendage Exclusion Reduces Blood Pressure in Patients with Atrial Fibrillation and Hypertension. J. Am. Coll. Cardiol. 2018, 72, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
Variable | n = 60 |
---|---|
Age, yrs | 67.5 ± 8.1 |
Male, n (%) | 40 (66.7) |
Body mass index, kg/m2 | 28.7 ± 2.9 |
Coronary artery disease, n (%) | 11 (18.3) |
Hypertension, n (%) | 48 (80) |
Diabetes, n (%) | 15 (25) |
Congestive heart failure, n (%) | 8 (13.3) |
CHA2DS2-VASc | 4.0 ± 1.7 |
HAS-BLED | 3.6 ± 1.2 |
Long-standing persistent AF | 60 (100) |
Variable | Baseline | 24 h | 7 Days | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months |
---|---|---|---|---|---|---|---|---|
Sodium, mmol/L | 141.1 ± 2.6 | 138.4 ± 2.2 * | 142.1 ± 3.2 | 142.1 ± 2.6 | 140 ± 4.1 | 139.5 ± 4.5 | 140.7 ± 2.6 | 140.7 ± 3.1 |
Potassium, mmol/L | 4.3 ± 0.4 | 4.1 ± 0.7 | 4.4 ± 0.5 | 4.5 ± 0.4 | 4.4 ± 0.5 | 4.3 ± 0.5 | 4.4 ± 0.3 | 4.1 ± 0.4 |
Chlorides, mmol/L | 107.6 ± 4.2 | 109.8 ± 2.9 | 107.9 ± 4.4 | 104.3 ± 3.5 | 104.2 ± 3.3 | 103.2 ± 2.9 | 103.7 ± 2.8 | 100.4 ± 4.2 |
Variable | Baseline | 24 h | 7 Days | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months |
---|---|---|---|---|---|---|---|---|
NT-proANP, ng/mL | 9.94 (4.09–16.87) | 15.39 (10.93–16.10) * | 6.31 (3.71–11.79) * | 5.44 (4.29–10.58) * | 4.58 (4.00–5.48) * | 8.36 (5.10–14.80) | 9.03 (4.73–13.98) | 11.01 (4.98–19.81) |
NT-proBNP, pg/mL | 167.8 (63.7–238.7) | 248.6 (101.3–331.2) | 189.9 (73.9–299.5) | 189.9 (79.8–225.4) | 154.3 (86.6–193.9) | 132.8 (72.4–189.2) | 123.2 (59.0–171.5) * | 100.9 (65.4–134.5) * |
Adrenaline, pg/mL | 97.8 (52.8–120.0) | 67.0 (58.0–103.4) | 66.7 (50.1–82.4) | 56.0 (45.2–67.9) * | 53.5 (47.9–64.4) * | 53.4 (41.9–63.2) * | 60.0 (52.7–70.2) * | 52.0 (48.9–57.9) * |
Noradrenaline, ng/mL | 584 (401–772) | 270 (94–398) * | 227 (163–548) * | 246 (188–518) * | 233 (188–282) * | 176 (150–208) * | 135 (97–253) * | 115 (89–193) * |
Aldosterone, pg/mL | 165.6 (153.2–178.0) | 173.7 (151.9–186.6) | 163.9 (131.3–181.6) | 158.6 (153.2–195.3) | 159.2 (158.1–185.5) | 146.0 (130.3–142.7) * | 126.3 (105.0–148.9) * | 123.5 (114.9–130.2) * |
Plasma renin activity, ng/mL/h | 1.63 (1.16–1.96) | 1.66 (1.25–1.99) | 1.29 (1.22–1.45) * | 1.30 (1.18–1.60) * | 1.19 (0.88–1.44) * | 1.25 (1.17–1.35) * | 1.12 (0.89–1.33) * | 1.21 (1.02–1.33) * |
Vasopressin, pg/mL | 8.29 (6.26–13.86) | 6.97 (6.23–7.56) * | 3.44 (2.38–4.39) * | 3.05 (2.29–4.57) * | 4.26 (3.89–4.63) * | 2.87 (1.60–5.26) * | 2.85 (1.47–4.63) * | 2.79 (2.03–4.18) * |
Endothelin-1, pg/mL | 1.98 (1.31–2.52) | 2.21 (1.92–2.61) * | 2.35 (1.52–2.80) * | 2.56 (1.94–3.14) * | 2.78 (1.85–3.32) * | 2.84 (2.05–3.80) * | 2.94 (2.44–3.01) * | 3.50 (2.89–4.05) * |
Factor | 24 h | 7 Days | 1 Month | 3 Months | 6 Months | 12 Months | 24 Months |
---|---|---|---|---|---|---|---|
NT-proANP | ↑ | ↓ | ↓ | ↓ | - | - | - |
NT-proBNP | - | - | - | - | - | ↓ | ↓ |
Adrenaline | - | - | ↓ | ↓ | ↓ | ↓ | ↓ |
Noradrenaline | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
Aldosterone | - | - | - | - | ↓ | ↓ | ↓ |
Plasma renin activity | - | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
Vasopressin | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
Endothelin | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartus, K.; Kanuri, S.H.; Litwinowicz, R.; Ali Elbey, M.; Natorska, J.; Zabczyk, M.; Bartus, M.; Kapelak, B.; Gopinnathannair, R.; Garg, J.; et al. Long Term Impact of Epicardial Left Atrial Appendage Ligation on Systemic Hemostasis: LAA HOMEOSTASIS-2. J. Clin. Med. 2022, 11, 1495. https://doi.org/10.3390/jcm11061495
Bartus K, Kanuri SH, Litwinowicz R, Ali Elbey M, Natorska J, Zabczyk M, Bartus M, Kapelak B, Gopinnathannair R, Garg J, et al. Long Term Impact of Epicardial Left Atrial Appendage Ligation on Systemic Hemostasis: LAA HOMEOSTASIS-2. Journal of Clinical Medicine. 2022; 11(6):1495. https://doi.org/10.3390/jcm11061495
Chicago/Turabian StyleBartus, Krzysztof, Sri Harsha Kanuri, Radoslaw Litwinowicz, Mehmet Ali Elbey, Joanna Natorska, Michal Zabczyk, Magdalena Bartus, Boguslaw Kapelak, Rakesh Gopinnathannair, Jalaj Garg, and et al. 2022. "Long Term Impact of Epicardial Left Atrial Appendage Ligation on Systemic Hemostasis: LAA HOMEOSTASIS-2" Journal of Clinical Medicine 11, no. 6: 1495. https://doi.org/10.3390/jcm11061495
APA StyleBartus, K., Kanuri, S. H., Litwinowicz, R., Ali Elbey, M., Natorska, J., Zabczyk, M., Bartus, M., Kapelak, B., Gopinnathannair, R., Garg, J., Turagam, M. K., Malecki, M. T., Lee, R. J., & Lakkireddy, D. (2022). Long Term Impact of Epicardial Left Atrial Appendage Ligation on Systemic Hemostasis: LAA HOMEOSTASIS-2. Journal of Clinical Medicine, 11(6), 1495. https://doi.org/10.3390/jcm11061495