Next Article in Journal
The Evolution of Reverse Total Shoulder Arthroplasty—From the First Steps to Novel Implant Designs and Surgical Techniques
Next Article in Special Issue
Carpal Tunnel Syndrome and Diabetes—A Comprehensive Review
Previous Article in Journal
Intracoronary Application of Super-Saturated Oxygen to Reduce Infarct Size Following Myocardial Infarction
Previous Article in Special Issue
Revision of Carpal Tunnel Surgery
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Weight-Related and Personal Risk Factors of Carpal Tunnel Syndrome in the Northern Finland Birth Cohort 1966

1
Department of Hand Surgery, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
2
Finnish Institute of Occupational Health, 00032 Helsinki, Finland
3
Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
4
Center for Life Course Health Research, University of Oulu, 90014 Oulu, Finland
5
Rehabilitation Services of South Karelia Social and Health Care District, 53130 Lappeenranta, Finland
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2022, 11(6), 1510; https://doi.org/10.3390/jcm11061510
Submission received: 18 January 2022 / Revised: 19 February 2022 / Accepted: 7 March 2022 / Published: 10 March 2022
(This article belongs to the Special Issue Recent Research of Carpal Tunnel Syndrome)

Abstract

:
Background: Excess body mass is a risk factor for carpal tunnel syndrome (CTS), but the mechanisms of this are unclear. This study aimed to evaluate the association between CTS and personal risk factors of body mass index (BMI), waist circumference and waist-to-hip ratio (WHR). Methods: The study sample consisted of the Northern Finland Birth Cohort 1966 (n = 9246). At the age of 31 in 1997 and at the age of 46 in 2012, the participants underwent a clinical examination. Cohort A consisted of complete cases with a follow-up from 1997 to 2012 (n = 4701), and Cohort B was followed up from 2012 to 2018 (n = 4548). The data on diagnosed CTS were provided by the Care Register for Health Care until the end of 2018. Results: After an adjustment for confounding factors, BMI was associated with CTS among women (hazard ratio (HR) 1.47, 95% Cl 0.98–2.20 for overweight women and HR 2.22, 95% Cl 1.29–3.83 for obese women) and among both sexes combined (HR 1.35 95% Cl 0.96–1.90 for overweight and HR 1.98 95% Cl 1.22–3.22 for obese participants). Neither waist circumference nor WHR was associated with CTS. Conclusions: BMI is an independent risk factor for CTS and is more relevant for estimating the increased risk of CTS due to excess body mass than waist circumference or WHR.

1. Introduction

Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy of the upper extremities and carpal tunnel release is the most common surgical procedure for the upper extremities [1,2,3]. CTS causes work disability and a great economic burden [4,5]. Based on previous studies, the incidence rate of CTS per 100,000 person-years varies between 88 and 105 among men and 193 and 232 among women, and these rates increase until middle age among both genders [6,7,8].
Well-known risk factors for CTS are age, female gender, overweight, diabetes mellitus and thyroid disease [7,9,10,11,12,13,14,15,16]. Arthritis, pregnancy and hand trauma are also potential risk factors for CTS [15,16,17]. The role of smoking as a risk factor for CTS is unclear [18].
Both overweight and obesity are also risk factors, but the mechanism of this is unclear [19]. Only a few case-control and cross-sectional studies have investigated the relationship between waist circumference and CTS [12,20,21,22] and found an association between the two. In their case-control study, Mondelli and colleagues (2014) showed that a high waist-to-hip (WHR) ratio (>0.95 for men and >0.85 for women) is an independent risk factor for CTS. They found that obese participants (BMI ≥ 30) were at an increased risk of CTS despite their WHR, whereas overweight participants (BMI 25–29.9) were only at risk if their WHR was high [20]. A previous longitudinal study found no association between waist circumference or WHR and carpal tunnel release after controlling for confounding factors [23].
This large birth cohort study aimed to evaluate the association between CTS and personal risk factors, including BMI, waist circumference and WHR.

2. Materials and Methods

2.1. Study Population

The study population consisted of the Northern Finland Birth Cohort 1966 (NFBC1966), which originally consisted of 12,231 participants with an expected date of birth in 1966, born in the Oulu and Lapland provinces [24]. These cohort participants have been studied at several time points throughout their lives. We used data collected in 1997, when they were aged 31 (baseline population, cohort A) and in 2012, when they were 46 (follow-up population, Cohort B) (Figure 1) [25]. When handling the data, we replaced each participant’s personal identification number with a study identification code. The study was approved by the Northern Ostrobothnia Hospital District Ethical Committee 94/2011 (12 December 2011), and followed the principles of the Declaration of Helsinki.

2.2. Cohort A (1997–2012)

In 1997, at the age of 31, a total of 8719 participants gave their informed consent to voluntarily participate in the study, underwent a clinical examination, and answered several questionnaires. Of this study population, 16 participants were already diagnosed with CTS and were excluded from the analysis. Of the 8703 participants, 4701 with no missing data were included in the study.

2.3. Cohort B (2012–2018)

The second follow-up study was conducted in 2012 when the cohort was 46 years old. In total, 7071 participants gave their written consent to voluntarily participate in the study, underwent a clinical examination, and answered several questionnaires. Of these, 225 participants were diagnosed with CTS before the second follow-up study and were excluded. Finally, 4548 participants were complete cases and were included in the study.

2.4. Data Collection 1997 and 2012

The participants attended the clinical examination and answered several questionnaires. We measured their weight and height, their waist and hip circumference and calculated their body mass index (BMI) and WHR. BMI, waist circumference and WHR were divided into three categories according to WHO: normal (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2) and obese (>30 kg/m2); low risk (<94 cm for men and <80 cm for women), intermediate risk (94–102 cm for men and 80–88 cm for women), and high risk (>102 cm for men and >88 cm for women); low risk (≤0.95 for men and ≤0.80 for women), intermediate risk (0.96–1.0 for men and 0.81–0.85 for women), and high risk (>1.0 for men and ≥0.86 for women), respectively.
Socio-economic status was defined according to Statistics Finland’s Classification of Socio-economic Groups 1989 [26]. This classification divides people into nine categories: farmers, entrepreneurs, upper and lower clerical workers, manual workers, students, pensioners, the unemployed and the unknown. The socio-economic status variable was formed by the following groups: (1) upper clerical workers, (2) lower clerical workers, (3) entrepreneurs, (4) farmers and manual workers (combined), and (5) students, pensioners, and unemployed (combined). If the status was coded as unknown, it was handled as missing data. Information on regular smoking, diabetes, rheumatoid arthritis and thyroid diseases was collected. Cohort A included complete cases and was followed up from 1997 to 2012 (n = 4701), and Cohort B from 2012 to 2018 (n= 4548), forming a total study sample of n = 9249.

2.5. Data on Diagnosed Carpal Tunnel Syndrome

The data on diagnosed CTS were provided by the Care Register for Health Care, which is a national register covering public and private hospital data in Finland. It identifies over 95% of hospital discharges and 80–99% of common diagnoses [27]. It contains information on patients’ demographic characteristics, diagnoses, surgical procedures and admission and discharge dates. The diagnoses are coded according to the International Classification of Diagnoses (ICD). According to the eighth revision of ICD 1981–1986, CTS was coded as 357.2; in line with the ninth revision of ICD 1987–1995, as 354.0; and according to the tenth revision in 1996–2016, CTS was coded as G56.0. The diagnoses were obtained from hospital data covering inpatient and outpatient data in specialist care. In specialist care in Finland, the diagnosis of CTS is based on clinical findings and positive electroneuromyography (ENMG) findings.

2.6. Statistical Analyses

The Cox proportional hazards regression model was used to study the association between baseline characteristics and CTS, controlled for panel data. First, we ran sex-specific age-adjusted models or age- and sex-adjusted models for both sexes combined. An association was considered statistically significant if the 95% confidence interval (CI) of the hazard ratio (HR) did not include 1. In these cases, the variables associated with CTS were added to the full models. BMI, waist circumference and WHR were added to the models one at a time. Next, both BMI and waist circumference were added simultaneously to the models. Finally, a multiplicative interaction between BMI (continuous variable) and the other baseline factors was tested.

3. Results

The mean follow-up time was 14.69 (SD 1.66) years for Cohort A, 4.48 (SD 0.41) years for Cohort B and 9.67 (SD 5.25) years for both cohorts combined. A total of 290 participants (3.1%) were diagnosed with CTS during follow-up. The incidence of CTS was higher among women than among men, as, during the follow-up, 4.0% of women and 2.2% of men were diagnosed with CTS. We also found that 51.7% of the study population had increased BMI. In the univariable analysis of both genders combined, overweight and obesity measured by BMI, increased waist circumference, and increased WHR were also associated with CTS (Table 1). The results of the sex-specific analyses for women were similar to those for both genders combined. Among men, obesity and increased waist circumference were associated with CTS (Table 2).
In the multivariable analysis, BMI was associated with hospitalization for CTS among women and among both sexes combined (Table 3). The HR was 1.47 (95% CI 0.98–2.20) for overweight women and 2.22 (1.29–3.83) for obese women. The HR was 1.35 (0.96–1.90) for overweight and 1.98 (1.22–3.22) for obesity among both sexes combined. Waist circumference and WHR were not associated with CTS.
In the multivariable analysis, lower clerical workers, entrepreneurs, farmers and manual workers were at a higher risk of CTS than upper clerical workers among both genders combined, men, and women. After an adjustment for confounding factors, regular smoking was associated with CTS among women and both genders combined. We found no statistically significant association between diabetes, rheumatoid arthritis or thyroid diseases and CTS.
There were no interactions between BMI and gender, between BMI and smoking, between BMI and socio-economic status, between BMI and WHR, or between BMI and waist circumference in terms of risk of CTS.

4. Discussion

Our study showed that excess body mass is an independent risk factor for CTS. However, this association was statistically significant among women and both genders combined. This finding is in line with those of previously published studies. In 2015, Shiri et al. published a meta-analysis of 58 studies, which revealed that excess body mass increased the risk of CTS and that overweight and obesity were associated with CTS in a dose–response relationship [19].
The mechanisms by which excess body mass increases the risk of CTS are not fully understood. Adipose tissue in the carpal tunnel may tighten the tunnel, leading to median nerve compression [28]. Increased pressure in the carpal tunnel may also decrease blood circulation, leading to median nerve ischemia, demyelination and axonal loss [29]. Another possible mechanism is metabolic syndrome causing median nerve injury by adipose deposition, affecting extracellular protein glycation, mitochondrial dysfunction and oxidative stress [30]. Tenosynovitis in carpal tunnel, caused by inflammation through metabolic syndrome, is also a potential mechanism [31].
As mentioned earlier, a few previously published studies have found waist circumference as a marker of central obesity to increase the risk of CTS in [12,20,21,22]. In the current study, increased waist circumference and WHR were associated with an increased risk of CTS in univariable analysis. However, when we controlled for confounding factors, the associations did not remain statistically significant. As the multivariable analysis of the current study shows, BMI is more relevant than waist circumference and WHR for studying the effect of excess body mass on CTS. It is possible, and even probable, that there is multicollinearity between BMI and waist circumference or WHR. However, including all these variables in the same model (Table 3), it seems that BMI is the strongest of these three to estimate the increased risk of CTS in obesity.
As regards to risk factors for CTS other than those that are weight related, the current study showed that regular smokers, lower clerical workers, entrepreneurs, farmers and manual workers are at a higher risk of CTS than non-smokers or upper clerical workers.
Although previous studies have identified potential risk factors for the development of CTS, the majority of these studies have been cross-sectional. The longitudinal nature of the study better defines the causal relationship. In the current study, the follow-up period was long and the sample size was large. The study population was a representative sample of a single-aged cohort with various socio-economic backgrounds and covered nearly all people born in Northern Finland in 1966. The participation rates in the follow-up studies were also very high. Moreover, the specialized care data on diagnosed CTS that we utilized are reliable and comprehensive, identifying over 95% of hospital discharges and 80–99% of common diagnoses [27].
The current study has some limitations. We used the Care Register for Health Care data from only specialist care. In Finland, the healthcare system is divided into health centers (primary care) and hospitals (specialist care). CTS and suspicion of it are usually coded under the same diagnosis code in primary care. Because of this, we used only hospital data. Thus, using only specialist care data might have excluded patients with mild symptoms and those not willing to visit a hospital. Another limitation of the current study is that the baseline characteristics might have changed over the long follow-up period. Finally, residual confounding may have occurred, and the study did not measure all the risk factors of CTS.
This study showed that BMI is an independent risk factor for CTS and is more relevant than waist circumference or WHR for estimating the effect of excess body mass on the risk of CTS. Future epidemiological studies should investigate whether weight loss as a primary prevention measure decreases the burden of CTS.

Author Contributions

Conceptualization, K.L., S.H., R.S. and J.R.; methodology, S.H. and R.S.; validation, K.L. and S.H.; writing—original draft preparation, K.L.; writing—review and editing, K.L., S.H., R.S. and J.R.; supervision, S.H., R.S., J.A., J.K. and J.R. All authors have read and agreed to the published version of the manuscript.

Funding

Open access funding provided by University of Helsinki. NFBC1966 received financial support from the University of Oulu, Grant no. 65354 and 24000692, Oulu University Hospital, Grant no. 2/97, 8/97 and 24301140, the Ministry of Health and Social Affairs, Grant no. 23/251/97, 160/97, 190/97, the National Institute for Health and Welfare, Helsinki, Grant no. 54121, the Regional Institute of Occupational Health, Oulu, Finland, Grant no. 50621, 54231, the ERDF European Regional Development Fund, Grant no. 539/2010 A31592. This research was funded by a Rehabilitation Foundation Peurunka research grant awarded to K.L., grant number 2021, and the Finnish Medical Foundation grant for S.H., grant number 5302.

Institutional Review Board Statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Northern Ostrobothnia (ETTMK 107/2017).

Informed Consent Statement

Informed consent was obtained from all those involved in the study.

Data Availability Statement

NFBC data is available from the University of Oulu, Infrastructure for Population Studies. Permission to use the data can be applied for research purposes via the electronic material request portal. In the use of data, we follow the EU general data protection regulation (679/2016) and Finnish Data Protection Act. The use of personal data is based on cohort participants’ written informed consent at his/her latest follow-up study, which may cause limitations to its use. Please, contact the NFBC project center (NFBCprojectcenter(at)oulu.fi) and visit the cohort website for more information.

Acknowledgments

We thank all cohort members and researchers who participated in the 31 and 47 years studies. We also wish to acknowledge the work of the NFBC project center. We thank Rehabilitation Foundation Peurunka for K.L.’s research grant and the Finnish Medical Foundation for S.H.’s research grant.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Atroshi, I.; Gummesson, C.; Johnsson, R.; Ornstein, E.; Ranstam, J.; Rosén, I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999, 282, 153–158. [Google Scholar] [CrossRef] [PubMed]
  2. de Krom, M.C.; Knipschild, A.D.; Kester, C.T.; Thijs, P.F.; Boekkooi, P.F.; Spaans, F. Carpal tunnel syndrome: Prevalence in the general population. J. Clin. Epidemiol. 1992, 45, 373–376. [Google Scholar] [CrossRef]
  3. Jain, N.B.; Higgins, L.D.; Losina, E.; Collins, J.; Blazar, P.E.; Katz, J.N. Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States. BMC Musculoskelet Disord. 2014, 15, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Feuerstein, M.; Miller, V.L.; Burrell, L.M.; Berger, R. Occupational upper extremity disorders in the federal workforce. Prevalence, health care expenditures, and patterns of work disability. J. Occup. Environ. Med. 1998, 40, 546–555. [Google Scholar] [CrossRef] [PubMed]
  5. Foley, M.; Silverstein, B.; Polissar, N. The economic burden of carpal tunnel syndrome: Long-term earnings of CTS claimants in Washington State. Am. J. Ind. Med. 2007, 50, 155–172. [Google Scholar] [CrossRef] [PubMed]
  6. Hulkkonen, S.; Lampainen, K.; Auvinen, J.; Miettunen, J.; Karppinen, J.; Ryhänen, J. Incidence and operations of median, ulnar and radial entrapment neuropathies in Finland: A nationwide register study. J. Hand Surg. Eur. Vol. 2020, 45, 226–230. [Google Scholar] [CrossRef] [PubMed]
  7. Latinovic, R.; Gulliford, M.C.; Hughes, R.A. Incidence of common compressive neuropathies in primary care. J. Neurol. Neurosurg. Psychiatry 2006, 77, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Tadjerbashi, K.; Åkersson, A.; Atroshi, I. Incidence of referred carpal tunnel syndrome and carpal tunnel release surgery in general population: Increased over the time and reginal variations. J. Orthop. Surg. 2019, 27, 2309499019825572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  9. Roquelaure, Y.; Ha, C.; Leclerc, A.; Touranchet, A.; Sauteron, M.; Melchior, M.; Imbernon, E.; Goldberg, M. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arthritis Rheum. 2006, 55, 765–778. [Google Scholar] [CrossRef]
  10. Mondelli, M.; Giannini, F.; Giacchi, M. Carpal Tunnel Syndrome Incidence in a General Population. Neurology 2002, 58, 289–294. [Google Scholar] [CrossRef]
  11. Werner, R.A.; Albers, J.W.; Franzblau, A.; Armstrong, T.J. The relationship between body mass index and the diagnosis of carpal tunnel syndrome. Muscle Nerve 1994, 17, 632–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Shiri, R.; Heliövaara, M.; Moilanen, L.; Viikari, J.; Liira, H.; Viikari-Juntura, E. Associations of cardiovascular risk factors, carotid intima-media thickness and manifest atherosclerotic vascular disease with carpal tunnel syndrome. BMC Musculoskelet. Disord. 2011, 12, 80. [Google Scholar] [CrossRef] [PubMed]
  13. Atroshi, I.; Gummesson, C.; Ornstein, E.; Johnsson, R.; Ranstam, J. Carpal tunnel syndrome and keyboard use at work: A population-based study. Arthritis Rheum. 2007, 56, 3620–3625. [Google Scholar] [CrossRef] [PubMed]
  14. Musolin, K.; Ramsey, J.G.; Wassell, J.T.; Hard, D.L. Prevalence of carpal tunnel syndrome among employees at a poultry processing plant. Appl. Ergon. 2014, 45, 1377–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Geoghegan, J.M.; Clark, D.I.; Bainbridge, L.C.; Smith, C.; Hubbard, R. Risk factors in carpal tunnel syndrome. J. Hand Surg. Br. 2004, 29, 315–320. [Google Scholar] [CrossRef] [PubMed]
  16. Harris-Adamson, C.; Eisen, E.A.; Dale, A.M.; Evanoff, B.; Hegmann, K.T.; Thiese, M.S.; Kapellusch, J.M.; Garg, A.; Burt, S.; Bao, S.; et al. Personal and workplace psychosocial risk factors for carpal tunnel syndrome: A pooled study cohort. Occup. Environ. Med. 2013, 70, 529–537. [Google Scholar] [CrossRef] [PubMed]
  17. Shiri, R. Arthritis as a risk factor for carpal tunnel syndrome: A meta-analysis. Scand. J. Rheumatol. 2016, 45, 339–346. [Google Scholar] [CrossRef] [PubMed]
  18. Pourmemari, M.H.; Viikari-Juntura, E.; Shiri, R. Smoking and carpal tunnel syndrome: A meta-analysis. Muscle Nerve 2014, 49, 345–350. [Google Scholar] [CrossRef] [PubMed]
  19. Shiri, R.; Pourmemari, M.H.; Falah-Hassani, K.; Viikari-Juntura, E. The effect of excess body mass on the risk of carpal tunnel syndrome: A meta-analysis of 58 studies. Obes. Rev. 2015, 16, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
  20. Mondelli, M.; Aretini, A.; Ginanneschi, F.; Greco, G.; Mattioli, S. Waist circumference and waist-to-hip ratio in carpal tunnel syndrome: A case-control study. J. Neurol. Sci. 2014, 338, 207–213. [Google Scholar] [CrossRef] [PubMed]
  21. Plastino, M.; Fava, A.; Carmela, C.; De Bartolo, M.; Ermio, C.; Cristiano, D.; Ettore, M.; Abenavoli, L.; Bosco, D. Insulin resistance increases risk of carpal tunnel syndrome: A case-control study. J. Peripher. Nerv. Syst. 2011, 16, 186–190. [Google Scholar] [CrossRef] [PubMed]
  22. Uzar, E.; Ilhan, A.; Ersoy, A. Association between carpal tunnel syndrome and abdominal obesity. Turk. J. Neurol. 2010, 16, 187–192. [Google Scholar]
  23. Pourmemari, M.H.; Heliövaara, M.; Viikari-Juntura, E.; Shiri, R. Carpal tunnel release: Lifetime prevalence, annual incidence, and risk factors. Muscle Nerve 2018, 58, 497–502. [Google Scholar] [CrossRef] [PubMed]
  24. University of Oulu: Northern Finland Birth Cohort 1966. University of Oulu. Available online: http://urn.fi/urn:nbn:fi:att:bc1e5408-980e-4a62-b899-43bec3755243 (accessed on 1 November 2021).
  25. Nordström, T.; Miettunen, J.; Auvinen, J.; Ala-Mursula, L.; Keinänen-Kiukaanniemi, S.; Veijola, J.; Järvelin, M.-R.; Sebert, S.; Männikkö, M. Cohort Profile: 46 years of follow-up of the Northern Finland Birth Cohort 1966 (NFBC1966). Int. J. Epidemiol. 2022, 50, 1786–1787. [Google Scholar] [CrossRef] [PubMed]
  26. Statistics Finland. Classification of Socio-economic Groups 1989. Available online: https://www.stat.fi/en/luokitukset/sosioekon_asema/ (accessed on 1 November 2021).
  27. Sund, R. Quality of the Finnish Hospital Discharge Register: A systematic review. Scand. J. Public Health 2012, 40, 505–515. [Google Scholar] [CrossRef] [PubMed]
  28. Bland, J.D. Carpal tunnel syndrome. Curr. Opin. Neurol. 2005, 18, 581–585. [Google Scholar] [CrossRef] [PubMed]
  29. Bland, J.D. Carpal tunnel syndrome. BMJ 2007, 335, 343–346. [Google Scholar] [CrossRef] [PubMed]
  30. Callaghan, B.; Feldman, E. The metabolic syndrome and neuropathy: Therapeutic challenges and opportunities. Ann. Neurol. 2013, 74, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  31. Rechardt, M.; Viikari-Juntura, E.; Shiri, R. Adipokines as predictors of recovery from upper extremity soft tissue disorders. Rheumatology 2014, 53, 2238–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. Flowchart of NFBC1966 study population.
Figure 1. Flowchart of NFBC1966 study population.
Jcm 11 01510 g001
Table 1. Age-adjusted hazard ratios (HR) with 95% confidence intervals (Cl) of diagnosed carpal tunnel syndrome among men, women and both genders combined (n = 9249). NA = not applicable.
Table 1. Age-adjusted hazard ratios (HR) with 95% confidence intervals (Cl) of diagnosed carpal tunnel syndrome among men, women and both genders combined (n = 9249). NA = not applicable.
CharacteristicWomen Men Both Genders
nCasesHR95% CInCasesHR95% CInCasesHR95% CI
Sex
Men 440896 440896
Women4841194 48411941.951.47–2.57
Occupational class
Upper clerical workers866161 91831 1784191
Lower clerical workers 1729661.771.00–3.12780124.491.27–15.92509782.231.32–3.76
Entrepreneurs265102.741.20–6.2239787.221.92–27.2662183.501.80–6.79
Farmers, manual workers1743923.542.02–6.2021397110.093.16–32.238821634.532.76–7.43
students, pensioners, unemployed238102801.25–6.2717423.820.64–22.86412123.031.45–6.32
Body mass index
Normal2672841 1798301 44701141
Overweight1388611.711.00–3.121965451.530.93–2.5233531061.641.24–2.18
Obese781492.751.86–4.06645212.521.32–4.811426702.691.92–3.75
Waist circumference according to WHO
Low risk2213731 2532461 47451191
Intermediate risk1052431.571.06–2.31 1010261.731.05–2.842062691.631.20–2.21
High risk1576782.221.55–3.17 866242.161.20–3.8724421022.211.63–3.00
Waist-hip ratio according to WHO
Low risk1417531 1155231 2572761
Intermediate risk1210511.561.06–2.292286521.450.89–2.3634961031.511.11–2.04
High risk2214901.871.28–2.75967211.880.96–3.6631811111.861.34–2.60
Regular smoking
No2508731 1896301 44041031
Yes23331211.901.40–2.592512661.731.07–2.8148451871.851.42–2.40
Diabetes
No47311871 4326931 90572801
Yes11071.89 0.89–4.008232.280.70–7.36192102.011.06–3.78
Thyroid disease
No45841861 4346951 89302811
Yes25780.930.46–1.886210.860.12–6.2231990.920.47–1.77
Rheumatoid arthritis
No47671911 4379951 91462861
Yes7431.050.34–3.272911.720.24–12.310341.160.43–3.12
Table 2. Sex-specific and combined sexes’ full model hazard ratios (HR) with 95% confidence intervals (CI) of diagnosed carpal tunnel syndrome for body mass index (BMI), waist circumference and waist-hip ratio (WHR).
Table 2. Sex-specific and combined sexes’ full model hazard ratios (HR) with 95% confidence intervals (CI) of diagnosed carpal tunnel syndrome for body mass index (BMI), waist circumference and waist-hip ratio (WHR).
CharacteristicWomen Men Both Genders
HR95% ClHR95% ClHR95% Cl
Model 1.
Waist-hip ratio according to WHO
Low risk1 1 1
Intermediate risk1.481.00–2.171.300.80–2.131.391.03–1.88
High risk1.681.15–2.471.580.81–3.091.601.14–2.24
Occupational class
Upper clerical workers 1 1 1
Lower clerical workers1.570.89–2.804.311.21–15.302.021.19–3.42
Entrepreneurs 2.361.04–5.346.761.79–25.523.121.61–6.06
Farmers, manual workers2.941.66–5.209.092.85–28.963.842.33–6.34
Students, pensioners, unemployed2.381.05–5.383.460.59–20.402.601.24–5.46
Regular smoking
No1 1 1
Yes1.651.21–2.261.360.84–2.221.561.19–2.03
Diabetes
NoNA NA 1
Yes 1.750.92–3.32
Model 2.
Waist circumference according to
WHO
Low risk1 1 1
Intermediate risk1.521.03–2.241.661.01–2.731.571.15–2.13
High risk2.041.42–2.921.971.10–3.531.981.46–2.70
Occupational class
Upper clerical workers1 1 1
Lower clerical workers1.550.87–2.764.401.24–15.612.001.18–3.39
Entrepreneurs2.331.03–5.286.771.79–25.563.101.60–6.02
Farmers, manual workers2.911.65–5.139.092.85–29.063.812.32–6.28
Students, pensioners, unemployed2.321.03–5.243.390.58–19.962.551.22–5.34
Regular smoking
No1 1 1
Yes1.651.21–2.261.370.84–2.211.561.20–2.03
Diabetes
NoNA NA 1
Yes 1.570.82–3.01
Model 3.
Body mass index
Normal1 1 1
Overweight1.651.17–2.331.480.90–2.451.571.18–2.09
Obese2.481.68–3.672.211.16–4.212.351.67–3.29
Occupational class
Upper clerical workers1 1 1
Lower clerical workers1.550.87–2.734.221.19–14.991.991.17–3.36
Entrepreneurs2.441.08–5.526.611.75–25.013.161.63–6.12
Farmers, manual workers2.851.62–5.028.902.78–28.503.752.73–6.17
Students, pensioners, unemployed2.291.01–5.173.400.57–20.192.531.21–5.31
Regular smoking
No1 1 1
Yes1.661.21–2.261.380.85–2.241.571.20–2.04
Diabetes
NoNA NA 1
Yes 1.460.76–2.80
Table 3. Sex-specific hazard ratios (HR) with 95% confidence intervals (CI) of diagnosed carpal tunnel syndrome. Full model models for men, women and both genders.
Table 3. Sex-specific hazard ratios (HR) with 95% confidence intervals (CI) of diagnosed carpal tunnel syndrome. Full model models for men, women and both genders.
CharacteristicWomen Men Both Genders
HR95% ClHR95% ClHR95% Cl
Occupational class
Upper clerical workers 1 1 1
Lower clerical workers1.530.86–2.734.311.21–15.351.981.17–3.37
Entrepreneurs 2.441.08–5.526.691.77–25.293.161.63–6.13
Farmers, manual workers2.821.59–4.989.012.81–28.843.742.26–6.17
Students, pensioners, unemployed2.271.00–5.143.420.58–20.322.531.20–5.32
Regular smoking
No1 1 1
Yes1.661.21–2.271.380.85–2.241.571.20–2.04
Body mass index
Normal1 1 1
Overweight1.470.98–2.201.260.67–2.391.350.96–1.90
Obese2.221.29–3.831.700.63–4.551.98 1.22–3.22
Waist circumference according to
WHO
Low risk1 1 1
Intermediate risk1.220.73–2.031.510.78–2.921.350.91–1.99
High risk1.220.62–2.411.590.59–4.331.370.78–2.40
Waist-hip ratio according to WHO
Low risk1 1 1
Intermediate risk1.170.76–1.810.920.54–1.561.050.75–1.48
High risk0.970.53–1.770.740.34–1.590.870.54–1.40
Diabetes
No 1
Yes 1.500.78–2.88
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lampainen, K.; Shiri, R.; Auvinen, J.; Karppinen, J.; Ryhänen, J.; Hulkkonen, S. Weight-Related and Personal Risk Factors of Carpal Tunnel Syndrome in the Northern Finland Birth Cohort 1966. J. Clin. Med. 2022, 11, 1510. https://doi.org/10.3390/jcm11061510

AMA Style

Lampainen K, Shiri R, Auvinen J, Karppinen J, Ryhänen J, Hulkkonen S. Weight-Related and Personal Risk Factors of Carpal Tunnel Syndrome in the Northern Finland Birth Cohort 1966. Journal of Clinical Medicine. 2022; 11(6):1510. https://doi.org/10.3390/jcm11061510

Chicago/Turabian Style

Lampainen, Kaisa, Rahman Shiri, Juha Auvinen, Jaro Karppinen, Jorma Ryhänen, and Sina Hulkkonen. 2022. "Weight-Related and Personal Risk Factors of Carpal Tunnel Syndrome in the Northern Finland Birth Cohort 1966" Journal of Clinical Medicine 11, no. 6: 1510. https://doi.org/10.3390/jcm11061510

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop