Post-Resuscitation Partial Pressure of Arterial Carbon Dioxide and Outcome in Patients with Out-of-Hospital Cardiac Arrest: A Multicenter Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Outcome
2.4. Statistical Analysis
3. Results
3.1. Population
3.2. Patients’ Characteristics and In-Hospital Data
3.3. PaCO2 Immediately after ROSC and PaCO2 upon Admission to the ICU
3.4. Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kitamura, T.; Iwami, T.; Atsumi, T.; Endo, T.; Kanna, T.; Kuroda, Y.; Sakurai, A.; Tasaki, O.; Tahara, Y.; Tsuruta, R.; et al. The profile of Japanese Association for Acute Medicine-out-of-hospital cardiac arrest registry in 2014–2015. Acute Med. Surg. 2018, 5, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Lemiale, V.; Dumas, F.; Mongardon, N.; Giovanetti, O.; Charpentier, J.; Chiche, J.D.; Carli, P.; Mira, J.P.; Nolan, J.; Cariou, A. Intensive care unit mortality after cardiac arrest: The relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013, 39, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Falkenbach, P.; Kämäräinen, A.; Mäkelä, A.; Kurola, J.; Varpula, T.; Ala-Kokko, T.; Perttilä, J.; Tenhunen, J. Incidence of iatrogenic dyscarbia during mild therapeutic hypothermia after successful resuscitation from out-of-hospital cardiac arrest. Resuscitation 2009, 80, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.W.; Kilgannon, J.H.; Chansky, M.E.; Mittal, N.; Wooden, J.; Trzeciak, S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation 2013, 127, 2107–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, J.P.; Sandroni, C.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Haywood, K.; Lilja, G.; Moulaert, V.R.M.; et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: Post-resuscitation care. Intensive Care Med. 2021, 47, 369–421. [Google Scholar] [CrossRef] [PubMed]
- Callaway, C.W.; Donnino, M.W.; Fink, E.L.; Geocadin, R.G.; Golan, E.; Kern, K.B.; Leary, M.; Meurer, W.J.; Peberdy, M.A.; Thompson, T.M.; et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S465–S482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenzie, N.; Williams, T.A.; Tohira, H.; Ho, K.M.; Finn, J. A systematic review and meta-analysis of the association between arterial carbon dioxide tension and outcomes after cardiac arrest. Resuscitation 2017, 111, 116–126. [Google Scholar] [CrossRef]
- Vaahersalo, J.; Bendel, S.; Reinikainen, M.; Kurola, J.; Tiainen, M.; Raj, R.; Pettilä, V.; Varpula, T.; Skrifvars, M.B.; FINNRESUSCI Study Group. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: Associations with long-term neurologic outcome. Crit. Care Med. 2014, 42, 1463–1470. [Google Scholar] [CrossRef]
- Schneider, A.G.; Eastwood, G.M.; Bellomo, R.; Bailey, M.; Lipcsey, M.; Pilcher, D.; Young, P.; Stow, P.; Santamaria, J.; Stachowski, E.; et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation 2013, 84, 927–934. [Google Scholar] [CrossRef]
- Eastwood, G.M.; Schneider, A.G.; Suzuki, S.; Peck, L.; Young, H.; Tanaka, A.; Mårtensson, J.; Warrillow, S.; McGuinness, S.; Parke, R.; et al. Targeted therapeutic mild hypercapnia after cardiac arrest: A phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation 2016, 104, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, T.; Iwami, T.; Kawamura, T.; Nagao, K.; Tanaka, H.; Hiraide, A. Implementation Working Group for the All-Japan Utstein Registry of the Fire and Disaster Management Agency. Nationwide public-access defibrillation in Japan. N. Engl. J. Med. 2010, 362, 994–1004. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.E.; Prince, D.K.; Drennan, I.R.; Grunau, B.; Carlbom, D.J.; Johnson, N.; Hansen, M.; Elmer, J.; Christenson, J.; Kudenchuk, P.; et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation 2017, 120, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [Google Scholar] [CrossRef]
- Helmerhorst, H.J.; Roos-Blom, M.J.; van Westerloo, D.J.; Abu-Hanna, A.; de Keizer, N.F.; de Jonge, E. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest. Crit. Care 2015, 19, 348. [Google Scholar] [CrossRef] [Green Version]
- Mckenzie, N.; Finn, J.; Dobb, G.; Bailey, P.; Arendts, G.; Celenza, A.; Fatovich, D.; Jenkins, I.; Ball, S.; Bray, J.; et al. Arterial carbon dioxide tension has a non-linear association with survival after out-of-hospital cardiac arrest: A multicentre observational study. Resuscitation 2021, 162, 82–90. [Google Scholar] [CrossRef]
- Zhou, D.; Li, Z.; Zhang, S.; Wu, L.; Li, Y.; Shi, G. Association between mild hypercapnia and hospital mortality in patients admitted to the intensive care unit after cardiac arrest: A retrospective study. Resuscitation 2020, 149, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Laffey, J.G.; Kavanagh, B.P. Hypocapnia. N. Engl. J. Med. 2002, 347, 43–53. [Google Scholar] [CrossRef]
- Peluso, L.; Belloni, I.; Calabró, L.; Dell’Anna, A.M.; Nobile, L.; Creteur, J.; Vincent, J.L.; Taccone, F.S. Oxygen and carbon dioxide levels in patients after cardiac arrest. Resuscitation 2020, 150, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jamme, M.; Ben Hadj Salem, O.; Guillemet, L.; Dupland, P.; Bougouin, W.; Charpentier, J.; Mira, J.P.; Pène, F.; Dumas, F.; Cariou, A.; et al. Severe metabolic acidosis after out-of-hospital cardiac arrest: Risk factors and association with outcome. Ann. Intensive Care 2018, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Ebner, F.; Harmon, M.B.A.; Aneman, A.; Cronberg, T.; Friberg, H.; Hassager, C.; Juffermans, N.; Kjærgaard, J.; Kuiper, M.; Mattsson, N.; et al. Carbon dioxide dynamics in relation to neurological outcome in resuscitated out-of-hospital cardiac arrest patients: An exploratory Target Temperature Management Trial substudy. Crit. Care 2018, 22, 196. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Huang, C.H.; Chang, W.T.; Tsai, M.S.; Lu, T.C.; Yu, P.H.; Wang, A.Y.; Chen, N.C.; Chen, W.J. Association between early arterial blood gas tensions and neurological outcome in adult patients following in-hospital cardiac arrest. Resuscitation 2015, 89, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vannucci, R.C.; Towfighi, J.; Heitjan, D.F.; Brucklacher, R.M. Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: An experimental study in the immature rat. Pediatrics 1995, 95, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Monash University. TAME Cardiac Arrest, a Randomised Controlled Trial. Available online: https://www.monash.edu/medicine/sphpm/anzicrc/research/tame-rct.html (accessed on 9 March 2022).
- Donoghue, A.J.; Nadkarni, V.; Berg, R.A.; Osmond, M.H.; Wells, G.; Nesbitt, L.; Stiell, I.G.; CanAm Pediatric Cardiac Arrest Investigators. Out-of-hospital pediatric cardiac arrest: An epidemiologic review and assessment of current knowledge. Ann. Emerg. Med. 2005, 46, 512–522. [Google Scholar] [CrossRef] [PubMed]
PaCO2 Group | p | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 607) | |||||||||||||
Severe Hypocapnia Exposure | Mild Hypocapnia Exposure | Normocapnia Exposure | Mild Hypercapnia Exposure | Severe Hypercapnia Exposure | Both Exposure | ||||||||
(n = 53) | (n = 206) | (n = 96) | (n = 98) | (n = 88) | (n = 66) | ||||||||
Male | 35 | (66.0) | 144 | (69.9) | 75 | (78.1) | 84 | (85.7) | 63 | (71.6) | 52 | (78.8) | 0.029 |
Age, years | 66 | (56–73) | 65 | (54–75) | 67 | (54–75) | 66 | (54–77) | 68 | (56–79) | 62 | (48–71) | 0.216 |
Initial cardiac rhythm | 0.005 | ||||||||||||
VF/pVT | 20 | (37.7) | 79 | (38.3) | 42 | (43.8) | 42 | (42.9) | 20 | (22.7) | 22 | (33.3) | |
PEA | 11 | (20.8) | 45 | (21.8) | 20 | (20.8) | 10 | (10.2) | 24 | (27.3) | 18 | (27.3) | |
Asystole | 10 | (18.9) | 19 | (9.2) | 7 | (7.3) | 16 | (16.3) | 25 | (28.4) | 9 | (13.6) | |
Other | 4 | (7.5) | 19 | (9.2) | 7 | (7.3) | 5 | (5.1) | 5 | (5.7) | 5 | (7.6) | |
Witnessed arrest | 32 | (60.4) | 127 | (61.7) | 61 | (63.5) | 55 | (56.1) | 56 | (63.6) | 43 | (65.2) | 0.871 |
Bystander performed CPR | 17 | (32.1) | 69 | (33.5) | 38 | (39.6) | 41 | (41.8) | 33 | (37.5) | 19 | (28.8) | 0.309 |
CPR duration, min | 31 | (22–47) | 20 | (11–35) | 11 | (5–26) | 16 | (6–34) | 18 | (11–30) | 21 | (9–30) | <0.001 |
CPR > 10 min | 39 | (73.6) | 115 | (55.8) | 38 | (39.6) | 44 | (44.9) | 54 | (61.4) | 37 | (56.1) | <0.001 |
GCS at hospital arrival | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 0.061 |
Mechanical circulatory device | 21 | (39.6) | 52 | (25.2) | 17 | (17.7) | 13 | (13.3) | 2 | (2.3) | 8 | (12.1) | <0.001 |
TTM | 21 | (39.6) | 108 | (52.4) | 58 | (60.4) | 56 | (57.1) | 41 | (46.6) | 35 | (53.0) | 0.155 |
Hyperoxia exposure | 32 | (60.4) | 83 | (40.3) | 47 | (49.0) | 32 | (32.7) | 34 | (38.6) | 20 | (30.3) | 0.005 |
Cause of cardiac arrest | <0.001 | ||||||||||||
ACS | 20 | (37.7) | 66 | (32.0) | 37 | (38.5) | 36 | (36.7) | 10 | (11.4) | 20 | (30.3) | |
Cardiac cause excluding ACS (presumed cardiac cause) | 23 | (43.4) | 98 | (47.6) | 47 | (49.0) | 46 | (46.9) | 38 | (43.2) | 25 | (37.9) | |
Respiratory cause | 0 | (0) | 9 | (4.4) | 4 | (4.2) | 7 | (7.1) | 26 | (29.5) | 7 | (10.6) | |
Cerebrovascular cause | 3 | (5.7) | 11 | (5.3) | 3 | (3.1) | 3 | (3.1) | 6 | (6.8) | 8 | (12.1) | |
Malignant tumor | 1 | (1.9) | 2 | (1.0) | 0 | 0.0 | 2 | (2.0) | 1 | (1.1) | 0 | (0) | |
Others or unknown | 6 | (11.3) | 20 | (9.7) | 5 | (5.2) | 4 | (4.1) | 7 | (8.0) | 6 | (9.1) |
PaCO2 Level | p | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 607) | |||||||||||||
Missing | Severe Hypocapnia | Mild Hypocapnia | Normocapnia | Mild Hypercapnia | Severe Hypercapnia | ||||||||
(n = 70) | (n = 15) | (n = 79) | (n = 111) | (n = 76) | (n = 256) | ||||||||
Male | 51 | (72.9) | 14 | (93.3) | 64 | (81.0) | 84 | (75.7) | 54 | (71.1) | 186 | (72.7) | 0.337 |
Age, years | 65 | (50–72) | 69 | (56–81) | 67 | (56–74) | 63 | (54–72) | 63 | (49–72) | 67 | (56–79) | 0.029 |
Initial cardiac rhythm | <0.001 | ||||||||||||
VF/pVT | 29 | (41.4) | 8 | (53.3) | 42 | (53.2) | 47 | (42.3) | 37 | (48.7) | 62 | (24.2) | |
PEA | 13 | (18.6) | 3 | (20.0) | 11 | (13.9) | 12 | (10.8) | 10 | (13.2) | 79 | (30.9) | |
Asystole | 7 | (10.0) | 0 | 0.0 | 6 | (7.6) | 12 | (10.8) | 5 | (6.6) | 56 | (21.9) | |
Other | 6 | (8.6) | 2 | (13.3) | 6 | (7.6) | 11 | (9.9) | 6 | (7.9) | 14 | (5.5) | |
Witnessed arrest | 42 | (60.0) | 11 | (73.3) | 49 | (62.0) | 65 | (58.6) | 49 | (64.5) | 158 | (61.7) | 0.629 |
Bystander performed CPR | 22 | (31.4) | 7 | (46.7) | 34 | (43.0) | 40 | (36.0) | 25 | (32.9) | 89 | (34.8) | 0.577 |
CPR duration, min | 28 | (13–50) | 13 | (7–51) | 11 | (5–26) | 14 | (6–34) | 13 | (6–26) | 23 | (13–32) | <0.001 |
CPR > 10min | 43 | (61.4) | 7 | (46.7) | 31 | (39.2) | 46 | (41.4) | 33 | (43.4) | 167 | (65.2) | <0.001 |
GCS score at hospital arrival | 3 | (3–3) | 3 | (3–3) | 3 | (3–3) | 3 | (3–4) | 3 | (3–3) | 3 | (3–3) | <0.001 |
1-month poor neurologic status a | 45 | (64.3) | 8 | (53.3) | 34 | (43.0) | 53 | (47.7) | 41 | (53.9) | 215 | (84.0) | <0.001 |
1-month mortality | 28 | (40.0) | 5 | (33.3) | 22 | (27.8) | 21 | (18.9) | 26 | (34.2) | 125 | (48.8) | <0.001 |
(A) Association with 1-Month Poor Neurologic Status and Exposure to PaCO2 of 24 h Post-Return of Spontaneous Circulation. | |||||||
---|---|---|---|---|---|---|---|
Total | 1-month poor neurologic status a (%) | Crude OR | (95% CI) | Adjusted b OR | (95% CI) | ||
Severe hypocapnia exposure | 53 | 44 | (83.0) | 5.53 | (2.44–12.5) | 6.68 | (2.16–20.67) |
Mild hypocapnia exposure | 206 | 140 | (68.0) | 2.40 | (1.46–3.93) | 2.56 | (1.30–5.04) |
Normocapnia exposure | 96 | 49 | (51.0) | 1.20 | (0.68–2.12) | 1.77 | (0.81–3.86) |
Mild hypercapnia exposure | 98 | 46 | (46.9) | Reference | Reference | ||
Severe hypercapnia exposure | 88 | 66 | (75.0) | 3.39 | (1.82–6.33) | 2.62 | (1.06–6.47) |
Both exposure | 66 | 51 | (77.3) | 3.84 | (1.91–7.73) | 5.63 | (2.21–14.34) |
(B) Association with 1-Month Mortality and Exposure to PaCO2 of 24 h Post-Return of Spontaneous Circulation. | |||||||
Total | 1-month mortality (%) | Crude OR | (95% CI) | Adjusted b OR | (95% CI) | ||
Severe hypocapnia exposure | 53 | 25 | (47.2) | 2.01 | (1.08–3.72) | 1.29 | (0.52–3.21) |
Mild hypocapnia exposure | 206 | 82 | (39.8) | 1.83 | (1.08–3.11) | 1.65 | (0.84–3.25) |
Normocapnia exposure | 96 | 23 | (24.0) | 0.88 | (0.46–1.70) | 1.15 | (0.51–2.62) |
Mild hypercapnia exposure | 98 | 26 | (26.5) | Reference | Reference | ||
Severe hypercapnia exposure | 88 | 37 | (42.0) | 2.47 | (1.23–4.98) | 1.30 | (0.57–2.94) |
Both exposure | 66 | 34 | (51.5) | 2.94 | (1.52–5.69) | 3.06 | (1.34–6.99) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, N.; Matsuyama, T.; Okada, Y.; Okada, A.; Kandori, K.; Nakajima, S.; Kitamura, T.; Ohta, B. Post-Resuscitation Partial Pressure of Arterial Carbon Dioxide and Outcome in Patients with Out-of-Hospital Cardiac Arrest: A Multicenter Retrospective Cohort Study. J. Clin. Med. 2022, 11, 1523. https://doi.org/10.3390/jcm11061523
Okada N, Matsuyama T, Okada Y, Okada A, Kandori K, Nakajima S, Kitamura T, Ohta B. Post-Resuscitation Partial Pressure of Arterial Carbon Dioxide and Outcome in Patients with Out-of-Hospital Cardiac Arrest: A Multicenter Retrospective Cohort Study. Journal of Clinical Medicine. 2022; 11(6):1523. https://doi.org/10.3390/jcm11061523
Chicago/Turabian StyleOkada, Nobunaga, Tasuku Matsuyama, Yohei Okada, Asami Okada, Kenji Kandori, Satoshi Nakajima, Tetsuhisa Kitamura, and Bon Ohta. 2022. "Post-Resuscitation Partial Pressure of Arterial Carbon Dioxide and Outcome in Patients with Out-of-Hospital Cardiac Arrest: A Multicenter Retrospective Cohort Study" Journal of Clinical Medicine 11, no. 6: 1523. https://doi.org/10.3390/jcm11061523
APA StyleOkada, N., Matsuyama, T., Okada, Y., Okada, A., Kandori, K., Nakajima, S., Kitamura, T., & Ohta, B. (2022). Post-Resuscitation Partial Pressure of Arterial Carbon Dioxide and Outcome in Patients with Out-of-Hospital Cardiac Arrest: A Multicenter Retrospective Cohort Study. Journal of Clinical Medicine, 11(6), 1523. https://doi.org/10.3390/jcm11061523