Muscle vs. Fasciocutaneous Microvascular Free Flaps for Lower Limb Reconstruction: A Meta-Analysis of Comparative Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Methodology
2.2. Selection Process
2.3. Data Extraction
2.4. Outcome Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, W.W. Microvascular free flaps. The first decade. Clin Plast Surg. 1983, 10, 3–20. [Google Scholar] [CrossRef]
- Chan, J.K.; Harry, L.; Williams, G.; Nanchahal, J. Soft-tissue reconstruction of open fractures of the lower limb: Muscle versus fasciocutaneous flaps. Plast Reconstr. Surg. 2012, 130, 284e–295e. [Google Scholar] [CrossRef] [PubMed]
- Gosain, A.; Chang, N.; Mathes, S.; Hunt, T.K.; Vasconez, L. A study of the relationship between blood flow and bacterial inoculation in musculocutaneous and fasciocutaneous flaps. Plast. Reconstr. Surg. 1990, 86, 1152. [Google Scholar] [CrossRef] [PubMed]
- Paro, J.; Chiou, G.; Sen, S.K. Comparing muscle and fasciocutaneous free flaps in lower extremity reconstruction- does it matter? Ann. Plast Surg. 2016, 76 (Suppl. 3), S213–S215. [Google Scholar] [CrossRef] [PubMed]
- Yazar, S.; Lin, C.-H.; Lin, Y.-T.; Ulusal, A.E.; Wei, F.-C. Outcome Comparison between Free Muscle and Free Fasciocutaneous Flaps for Reconstruction of Distal Third and Ankle Traumatic Open Tibial Fractures. Plast. Reconstr. Surg. 2006, 117, 2468–2475. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.D.; Bluebond-Langner, R.; Copeland, C.; Grim, T.N.; Singh, N.K.; Scalea, T. Functional Outcomes of Posttraumatic Lower Limb Salvage: A Pilot Study of Anterolateral Thigh Perforator Flaps Versus Muscle Flaps. J. Trauma: Inj. Infect. Crit. Care 2009, 66, 1311–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantel, N.; Haenszel, W. Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease. JNCI J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane, 2021. Available online: www.training.cochrane.org/handbook (accessed on 15 August 2021).
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 August 2021).
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid.-Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyidova, N.; Anderson, K.; Abood, A. Comparison of patients satisfaction with aesthetic outcomes following lower extremity reconstruction: Muscle vs. fasciocutaneous free flaps. J. Plat. Reconstr. Aesthet. Surg. 2021, 74, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Sofiadellis, F.; Liu, D.S.; Webb, A.; MacGill, K.; Rozen, W.M.; Ashton, M.W. Fasciocutaneous Free Flaps Are More Reliable Than Muscle Free Flaps in Lower Limb Trauma Reconstruction: Experience in a Single Trauma Center. J. Reconstr. Microsurg. 2012, 28, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.H.; Shammas, R.L.; Carney, M.J.; Weissler, J.M.; Bauder, A.R.; Glener, A.D.; Kovach, S.J.; Hollenbeck, S.T.; Levin, L.S. Muscle versus Fasciocutaneous Free Flaps in Lower Extremity Traumatic Reconstruction: A Multicenter Outcomes Analysis. Plast Reconstr. Surg. 2018, 141, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Abdou, S.A.; Daar, D.A.; Anzai, L.; Stranix, J.T.; Thanik, V.; Levine, J.P.; Saadeh, P.B. Comparing Outcomes for Fas-ciocutaneous versus Muscle Flaps in Foot and Ankle Free Flap Reconstruction. J. Reconstr. Microsurg. 2019, 35, 646–651. [Google Scholar] [PubMed]
- Black, C.K.; Zolper, E.G.; Ormiston, L.D.; Schwitzer, J.A.; Luvisa, K.; Attinger, C.E.; Fan, K.L.; Evans, K.K. Free Anterolateral Thigh Versus Vastus Lateralis Muscle Flaps for Coverage of Lower Extremity Defects in Chronic Wounds. Ann. Plast. Surg. 2020, 85, S54–S59. [Google Scholar] [CrossRef] [PubMed]
- Moullot, P.; Gay, A.M.; Bertrand, B.; Legré, R.; Kerfant, N.; Casanova, D.; Philandrianos, C. Soft Tissue Coverage in Distal Lower Extremity Open Fractures: Comparison of Free Anterolateral Thigh and Free Latissimus Dorsi Flaps. J. Reconstr. Microsurg. 2017, 34, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Abdou, S.; Stranix, J.; Levine, J.P.; McLaurin, T.; Tejwani, N.; Thanik, V.; Leucht, P. Comparing Radiographic Progression of Bone Healing in Gustilo IIIB Open Tibia Fractures Treated with Muscle Versus Fasciocutaneous Flaps. J. Orthop. Trauma 2018, 32, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Heller, L.; Levin, L.S. Lower extremity microvascular reconstruction. Plast Reconstr. Surg. 2001, 15, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Pu, L.L.Q.; Stevenson, T.R. Principles of Reconstruction for Complex Lower Extremity Wounds. Tech. Orthop. 2009, 24, 78–87. [Google Scholar] [CrossRef]
- Lee, Z.; Stranis, J.T.; Levine, J.P. The optimal timing of traumatic lower extremity reconstruction: Current consensus. Clin. Plast. Surg. 2021, 48, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Q.P. Free flaps in lower extremity reconstruction. Clin. Plast. Surg. 2021, 48, 201–214. [Google Scholar] [CrossRef]
- Godina, M. Early Microsurgical Reconstruction of Complex Trauma of the Extremities. Plast. Reconstr. Surg. 1986, 78, 285–292. [Google Scholar] [CrossRef]
- Roy, M.; Patel, A.; Haykal, S. Meta-analysis of Timing for Microsurgical Free-Flap Reconstruction for Lower Limb Injury: Evaluation of the Godina Principles. J. Reconstr. Microsurg. 2018, 34, 277–292. [Google Scholar] [CrossRef]
- Kozusko, S.; Liu, X.; Riccio, C.; Chang, J.; Boyd, L.; Kokkalis, Z.; Konofaos, P. Selecting a free flap for soft tissue coverage in lower extremity reconstruction. Injury 2019, 50, S32–S39. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.C.; Jain, V.; Celik, N.; Chen, H.C.; Chuang, D.C.; Lin, C.H. Have we found an ideal soft-tissue flap? An experience with 672 anterolateral thigh flaps. Plast Reconstr. Surg. 2002, 109, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Bunkis, J.; Walton, R.L.; Mathes, S.J. The Rectus Abdominis Free Flap for Lower Extremity Reconstruction. Ann. Plast. Surg. 1983, 11, 373–380. [Google Scholar] [CrossRef]
- Guzman-Stein, G.; Fix, R.J.; Vasconez, L.O. Muscle Flap Coverage for the Lower Extremity. Clin. Plast. Surg. 1991, 18, 545–552. [Google Scholar] [CrossRef]
- Atia, A.; Vernon, R.; Pyfer, B.J.; Shammas, R.L.; Hollenbeck , S.T. The essential local muscle flaps for lower extremity reconstruction. J. Reconstr. Microsurg. 2021, 37, 89–96. [Google Scholar] [CrossRef]
- Khouri, R.K.; Shaw, W.W. Reconstruction of the lower extremity with microvascular free flaps: A 10-year experience with 304 consecutive cases. J Trauma. 1989, 29, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, J., III; Nahai, F.; Wallace, J.G.; Vasconez, L.O. Sixty Latissimus Dorsi Flaps. Plast. Reconstr. Surg. 1979, 63, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Mathes, S.J.; Alpert, B.S.; Chang, N. Use of the muscle flap in chronic osteomyelitis: Experimental and clinical correlation. Plast Reconstr Surg. 1982, 69, 815–829. [Google Scholar] [CrossRef]
- Eshima, I.; Mathes, S.J.; Paty, P. Comparison of the Intracellular Bacterial Killing Activity of Leukocytes in Musculocutaneous and Random-Pattern Flaps. Plast. Reconstr. Surg. 1990, 86, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.A.; Fischer, J.P.; Haddock, N.T.; Mackay, D.; Wink, J.D.; Newman, A.S.; Levin, L.S.; Kovach, S.J. Striving for nor- malcy after lower extremity reconstruction with free tissue: The role of secondary esthetic refinements. J. Reconstr. Microsurg. 2016, 32, 101–108. [Google Scholar] [PubMed]
- Kotsougiani, D.; Platte, J.; Bigdeli, A.K.; Hoener, B.; Kremer, T.; Kneser, U.; Harhaus, L. Evaluation of 389 patients following free-flap lower extremity reconstruction with respect to secondary refinement procedures. Microsurgery 2018, 38, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Schindeler, A.; Little, D.G. The potential role of muscle in bone repair. J. Musculoskelet. Neuronal Interact. 2010, 10, 71–76. [Google Scholar] [PubMed]
- Schindeler, A.; Liu, R.; Little, D.G. The contribution of different cell lineages to bone repair: Exploring a role for muscle stem cells. Differentiation 2009, 77, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Harry, L.E.; Sandison, A.; Pearse, M.F.; Paleolog, E.M.; Nanchahal, J. Comparison of the Vascularity of Fasciocutaneous Tissue and Muscle for Coverage of Open Tibial Fractures. Plast. Reconstr. Surg. 2009, 124, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.B.; Gill, P.S.; Trahan, C.G.; Ruiz, B.; Lund, K.M.; Delaune, C.L.; Thibodeaux, B.A.; Metzinger, S.E. Comparison of Bacterial Inoculation and Transcutaneous Oxygen Tension in the Rabbit S1Perforator and Latissimus Dorsi Musculocutaneous Flaps. J. Reconstr. Microsurg. 2005, 21, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.J.; Mardini, S.; Jamali, A.A.; Ortiz, J.; Gonzales, R.; Chen, H.-C. Muscle versus Nonmuscle Flaps in the Reconstruction of Chronic Osteomyelitis Defects. Plast. Reconstr. Surg. 2006, 118, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.P.; Shin, H.W.; Kim, J.J.; Wei, F.C.; Chung, Y.K. The use of the anterolateral thigh perforator flap in chronic osteo-myelitis of the lower extremity. Plast Reconstr Surg. 2005, 115, 142–147. [Google Scholar] [PubMed]
- Li, X.; Cui, J.; Maharjan, S.; Lu, L.; Gong, X. Reconstruction of the Foot and Ankle Using Pedicled or Free Flaps: Perioperative Flap Survival Analysis. PLoS ONE 2016, 11, e0167827. [Google Scholar] [CrossRef]
- Khouri, R.K. Avoiding free flap failure. Clin. Plast. Surg. 1992, 19, 773–780. [Google Scholar] [CrossRef]
- Hallock, G.G. Relative Donor-Site Morbidity of Muscle and Fascial Flaps. Plast. Reconstr. Surg. 1993, 92, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sabino, J.; Polfer, E.; Tintle, S.; Jessie, E.; Fleming, M.; Martin, B.; Shashikant, M.; Valerio, I.L. A decade of conflict: Flap coverage options and outcomes in traumatic war-related extremity reconstruction. Plast Reconstr. Surg. 2015, 135, 895–902. [Google Scholar] [CrossRef] [PubMed]
Author | Patients | Flaps | M Flaps | FC Flaps | Mean Age M (Years) | Mean Age FC (Years) | Follow-Up (Months) |
---|---|---|---|---|---|---|---|
Yazar 2005 | 174 | 177 | 98 | 79 | 34.6 | 36.3 | 24 |
Rodriguez 2009 | 42 | 42 | 22 | 20 | 43 | 40 | 32.5 |
Sofiadellis 2012 | 103 | 105 | 48 | 57 | 42.5 | 41.3 | 12 |
Paro 2016 | 121 | 121 | 86 | 35 | 46.9 | 49.9 | - |
Cho 2017 | 518 | 518 | 307 | 211 | - | - | 48 |
Mehta 2018 | 39 | 40 | 28 | 12 | 37 | 33.5 | 12 |
Philandrianos 2018 | 47 | 47 | 27 | 20 | 36.1 | 40.1 | 34.2 |
Lee 2019 | 165 | 165 | 110 | 55 | 35 | 35 | - |
Black 2020 | 84 | 84 | 34 | 50 | 52.8 | 58.5 | 11 |
Seyidova 2020 | 47 | 47 | 22 | 25 | 48 | 50 | - |
Pooled RR | Pooled RD | ||||||
---|---|---|---|---|---|---|---|
Outcome | Removed Study | Estimate (95% CI) | p | I2 (%) | Estimate (95% CI) | p | I2 (%) |
Postop infection | Yazar 2005 | 1.35 (0.92 to 1.96) | 0.1227 | 49 | 0.072 (−0.017 to 0.160) | 0.1116 | 50 |
Rodriguez 2009 | 1.36 (0.92 to 2.02) | 0.1268 | 41 | 0.054 (−0.014 to 0.121) | 0.1175 | 56 | |
Sofiadellis 2012 | 0.93 (0.63 to 1.38) | 0.7176 | 0 | −0.014 (−0.086 to 0.059) | 0.7148 | 0 | |
Paro 2016 | 1.22 (0.85 to 1.76) | 0.2875 | 51 | 0.041 (−0.034 to 0.117) | 0.2821 | 58 | |
Mehta 2018 | 1.30 (0.90 to 1.89) | 0.1654 | 48 | 0.049 (−0.018 to 0.116) | 0.1542 | 57 | |
Seyidova 2020 | 1.26 (0.89 to 1.79) | 0.1871 | 51 | 0.049 (−0.022 to 0.120) | 0.1778 | 56 | |
Donor site morbidity | Yazar 2005 | 4.13 (1.73 to 9.85) | 0.0014 | 45 | 0.184 (0.088 to 0.279) | 0.0002 | 51 |
Sofiadellis 2012 | 2.12 (1.29 to 3.47) | 0.0029 | 1 | 0.162 (0.067 to 0.258) | 0.0009 | 45 | |
Philandrianos 2018 | 2.31 (1.44 to 3.71) | 0.0005 | 44 | 0.162 (0.078 to 0.247) | 0.0002 | 30 | |
Seyidova 2020 | 2.76 (1.69 to 4.50) | <0.0001 | 49 | 0.200 (0.115 to 0.285) | <0.0001 | 0 | |
Total flap loss | Yazar 2005 | 1.77 (1.03 to 3.05) | 0.0392 | 0 | 0.033 (0.003 to 0.062) | 0.0302 | 16 |
Sofiadellis 2012 | 1.61 (0.94 to 2.76) | 0.0854 | 0 | 0.025 (−0.002 to 0.053) | 0.0703 | 9 | |
Paro 2016 | 1.86 (1.08 to 3.22) | 0.0254 | 0 | 0.033 (0.006 to 0.061) | 0.0176 | 1 | |
Cho 2017 | 1.37 (0.56 to 3.34) | 0.4918 | 0 | 0.009 (−0.018 to 0.037) | 0.5055 | 0 | |
Mehta 2018 | 1.86 (1.08 to 3.21) | 0.0258 | 0 | 0.033 (0.005 to 0.057) | 0.0181 | 23 | |
Philandrianos 2018 | 1.78 (1.03 to 3.07) | 0.0380 | 0 | 0.025 (0.003 to 0.055) | 0.0291 | 28 | |
Lee 2019 | 1.88 (1.07 to 3.29) | 0.0282 | 0 | 0.033 (0.005 to 0.061) | 0.0203 | 24 | |
Partial flap loss | Yazar 2005 | 3.27 (1.27 to 8.40) | 0.0139 | 0 | 0.071 (0.021 to 0.122) | 0.0059 | 0 |
Sofiadellis 2012 | 1.33 (0.57 to 3.10) | 0.5098 | 0 | 0.015 (−0.027 to 0.057) | 0.4868 | 0 | |
Philandrianos 2018 | 1.77 (0.89 to 3.51) | 0.1037 | 29 | 0.039 (−0.006 to 0.084) | 0.0901 | 43 | |
Lee 2019 | 1.72 (0.80 to 3.69) | 0.1641 | 27 | 0.036 (−0.015 to 0.087) | 0.1617 | 42 | |
Seyidova 2020 | 1.75 (0.88 to 3.48) | 0.1116 | 26 | 0.038 (−0.007 to 0.083) | 0.0956 | 43 | |
Recipient site complic. | Cho 2017 | 1.10 (0.53 to 2.26) | 0.7997 | 56 | 0.013 (−0.134 to 0.160) | 0.8639 | 61 |
Philandrianos 2018 | 1.45 (0.91 to 2.31) | 0.1162 | 32 | 0.056 (−0.026 to 0.139) | 0.1827 | 47 | |
Lee 2019 | 1.10 (0.66 to 1.83) | 0.7205 | 44 | 0.002 (−0.111 to 0.115) | 0.9710 | 46 | |
Black 2020 | 1.12 (0.56 to 2.25) | 0.7432 | 58 | 0.022 (−0.077 to 0.121) | 0.6661 | 59 | |
Seyidova 2020 | 1.40 (0.91 to 2.15) | 0.1260 | 32 | 0.067 (0.006 to 0.129) | 0.0328 | 19 | |
Revision surgery | Sofiadellis 2012 | 0.59 (0.21 to 1.67) | 0.3211 | 63 | −0.055 (−0.231 to 0.121) | 0.5423 | 76 |
Paro 2016 | 1.57 (0.43 to 5.75) | 0.4919 | 80 | 0.104 (−0.121 to 0.329) | 0.3642 | 85 | |
Philandrianos 2018 | 0.77 (0.20 to 3.05) | 0.7140 | 89 | −0.005 (−0.263 to 0.253) | 0.9688 | 89 | |
Lee 2019 | 1.31 (0.22 to 7.61) | 0.7673 | 88 | 0.069 (−0.219 to 0.357) | 0.6391 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mégevand, V.; Suva, D.; Mohamad, M.; Hannouche, D.; Kalbermatten, D.F.; Oranges, C.M. Muscle vs. Fasciocutaneous Microvascular Free Flaps for Lower Limb Reconstruction: A Meta-Analysis of Comparative Studies. J. Clin. Med. 2022, 11, 1557. https://doi.org/10.3390/jcm11061557
Mégevand V, Suva D, Mohamad M, Hannouche D, Kalbermatten DF, Oranges CM. Muscle vs. Fasciocutaneous Microvascular Free Flaps for Lower Limb Reconstruction: A Meta-Analysis of Comparative Studies. Journal of Clinical Medicine. 2022; 11(6):1557. https://doi.org/10.3390/jcm11061557
Chicago/Turabian StyleMégevand, Vladimir, Domizio Suva, Morad Mohamad, Didier Hannouche, Daniel F. Kalbermatten, and Carlo M. Oranges. 2022. "Muscle vs. Fasciocutaneous Microvascular Free Flaps for Lower Limb Reconstruction: A Meta-Analysis of Comparative Studies" Journal of Clinical Medicine 11, no. 6: 1557. https://doi.org/10.3390/jcm11061557
APA StyleMégevand, V., Suva, D., Mohamad, M., Hannouche, D., Kalbermatten, D. F., & Oranges, C. M. (2022). Muscle vs. Fasciocutaneous Microvascular Free Flaps for Lower Limb Reconstruction: A Meta-Analysis of Comparative Studies. Journal of Clinical Medicine, 11(6), 1557. https://doi.org/10.3390/jcm11061557