Herb–Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements
Abstract
:1. Introduction
2. Methods
3. Assessment of Herbal Drugs and Their Interactions
3.1. Compilation of Plants
3.2. Potential Herb–Drug Interactions
3.2.1. Aloe Vera Gel
3.2.2. Cannabis
3.2.3. Devil’s Claw
3.2.4. Echinacea
3.2.5. Evening Primrose Oil
3.2.6. Garlic
3.2.7. Ginkgo
3.2.8. Ginseng
3.2.9. Green Tea
3.2.10. Tumeric
3.2.11. Willow Bark and Meadowsweet Herb/Flowers
4. Discussion
4.1. Reasons for Uncommon Interactions and Adverse Effects
4.2. The Patient’s Side
4.3. Limitations
5. Conclusions
- The basis is a trusting and respectful relationship between patient and health professional. Patients should not be afraid to admit interest in, or use of, alternative therapies, food supplements, or self-acquired medical products.
- Health professionals should explicitly ask about use of herbal products, sensitize patients for the importance of such information, and encourage them to seek advice for risk assessment before they try self-acquired medical products or supplements.
- Herbal medicinal products, preferably with standardized or quantified extracts, should be preferred over food supplements, as quality and declaration requirements are more extensive for medicinal products. Food supplements should not be actively recommended.
- A brief list of high- and low-risk plants can be found in Table 4.
- It is important to report suspected herb–drug interactions, in order to collect data. Information on patient, medication, the suspected product, and the course of treatment should be collected as complete as possible.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sammons, H.M.; Gubarev, M.I.; Krepkova, L.V.; Bortnikova, V.V.; Corrick, F.; Job, K.M.; Sherwin, C.M.; Enioutina, E.Y. Herbal medicines: Challenges in the modern world. Part 2. European Union and Russia. Expert Rev. Clin. Pharmacol. 2016, 9, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.; Andersen, S.; Nielsen, R.G.; Dolmer, B.S.; Høst, A.; Damkier, A. Use of complementary/alternative medicine among paediatric patients. Eur. J. Pediatr. 2003, 162, 334–341. [Google Scholar] [CrossRef]
- Bush, T.M.; Rayburn, K.S.; Holloway, S.W.; Sanchez-Yamamoto, D.S.; Allen, B.L.; Lam, T.; So, B.K.; de Tran, H.; Greyber, E.R.; Kantor, S.; et al. Adverse interactions between herbal and dietary substances and prescription medications: A clinical survey. Altern. Ther. Health Med. 2007, 13, 30–35. [Google Scholar]
- Lakatos, P.L.; Czegledi, Z.; David, G.; Kispal, Z.; Kiss, L.S.; Palatka, K.; Kristof, T.; Nagy, F.; Salamon, A.; Demeter, P.; et al. Association of adherence to therapy and complementary and alternative medicine use with demographic factors and disease phenotype in patients with inflammatory bowel disease. J. Crohn’s Colitis 2010, 4, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djuv, A.; Nilsen, O.G.; Steinsbekk, A. The co-use of conventional drugs and herbs among patients in Norwegian general practice: A cross-sectional study. BMC Complement. Altern. Med. 2013, 13, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbabiaka, T.B.; Spencer, N.H.; Khanom, S.; Goodman, C. Prevalence of drug-herb and drug-supplement interactions in older adults: A cross-sectional survey. Br. J. Gen. Pract. 2018, 68, e711–e717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Alvarez, A.; Egan, B.; de Klein, S.; Dima, L.; Maggi, F.M.; Isoniemi, M.; Ribas-Barba, L.; Raats, M.M.; Meissner, E.M.; Badea, M.; et al. Usage of plant food supplements across six European countries: Findings from the PlantLIBRA consumer survey. PLoS ONE 2014, 9, e92265. [Google Scholar] [CrossRef] [Green Version]
- Peklar, J.; Henman, M.C.; Kos, M.; Richardson, K.; Kenny, R.A. Concurrent use of drugs and supplements in a community-dwelling population aged 50 years or more: Potential benefits and risks. Drugs Aging 2014, 31, 527–540. [Google Scholar] [CrossRef]
- Jeurissen, S.M.F.; Buurma-Rethans, E.J.M.; Beukers, M.H.; Jansen-van der Vliet, M.; van Rossum, C.T.M.; Sprong, R.C. Consumption of plant food supplements in the Netherlands. Food Funct. 2018, 9, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.; Noble, A.; Salisbury, C.; Sharp, D.; Thompson, E.; Peters, T.J. Predictors of complementary therapy use among asthma patients: Results of a primary care survey. Health Soc. Care Community 2008, 16, 155–164. [Google Scholar] [CrossRef]
- Marsh, J.; Hager, C.; Havey, T.; Sprague, S.; Bhandari, M.; Bryant, D. Use of Alternative Medicines by Patients with OA that Adversely Interact with Commonly Prescribed Medications. Clin. Orthop. Relat. Res. 2009, 467, 2705–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community Code Relating to Medicinal Products for Human Use; Including Amendments; European Parliament and Council: Brussels, Belgium, 2001.
- Bilia, A.R.; Costa, M.D.C. Medicinal plants and their preparations in the European market: Why has the harmonization failed? The cases of St. John’s wort, valerian, ginkgo, ginseng, and green tea. Phytomedicine 2021, 81, 153421. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.P.; Xia, Q.; Zhao, Y.; Wang, S.; Yu, H.; Chiang, H.M. Phototoxicity of herbal plants and herbal products. J. Environ. Sci. Health C Environ. Carcinog Ecotoxicol. Rev. 2013, 31, 213–255. [Google Scholar] [CrossRef] [PubMed]
- Mello, A.; Melo, K.R.; Sousa, A.; Rolim Neto, P.J.; Silva, R. Product indiscriminate use of vitamin risks: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2067–2082. [Google Scholar] [CrossRef]
- Wallace, A.W.; Amsden, G.W. Is it really OK to take this with food? Old interactions with a new twist. J. Clin. Pharmacol. 2002, 42, 437–443. [Google Scholar] [CrossRef]
- Dahmer, S.; Schiller, R.M. Glucosamine. Am. Fam. Physician 2008, 78, 471–476. [Google Scholar]
- Knudsen, J.F.; Sokol, G.H. Potential glucosamine-warfarin interaction resulting in increased international normalized ratio: Case report and review of the literature and MedWatch database. Pharmacotherapy 2008, 28, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Langhorst, J.; Anthonisen, I.B.; Steder-Neukamm, U.; Lüdtke, R.; Spahn, G.; Michalsen, A.; Dobos, G.J. Amount of systemic steroid medication is a strong predictor for the use of complementary and alternative medicine in patients with inflammatory bowel disease: Results from a German national survey. Inflamm. Bowel Dis. 2005, 11, 287–295. [Google Scholar] [CrossRef]
- Chen, W.; Fitzgerald, J.M.; Rousseau, R.; Lynd, L.D.; Tan, W.C.; Sadatsafavi, M. Complementary and alternative asthma treatments and their association with asthma control: A population-based study. BMJ Open 2013, 3, e003360. [Google Scholar] [CrossRef] [Green Version]
- David, S.; Hamilton, J.P. Drug-induced Liver Injury. US Gastroenterol. Hepatol. Rev. 2010, 6, 73–80. [Google Scholar]
- Lucena, M.I.; Andrade, R.J.; Kaplowitz, N.; García-Cortes, M.; Fernández, M.C.; Romero-Gomez, M.; Bruguera, M.; Hallal, H.; Robles-Diaz, M.; Rodriguez-González, J.F.; et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: The influence of age and sex. Hepatology 2009, 49, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Kucharzik, T.; Dignass, A.U.; Atreya, R.; Bokemeyer, B.; Esters, P.; Herrlinger, K.; Kannengießer, K.; Kienle, P.; Langhorst, J.; Lügering, A.; et al. S3-Leitlinie Colitis ulcerosa—Living Guideline. Z. Gastroenterol. 2020, 58, 241–326. [Google Scholar]
- Matziolis, G.; Flechtenmacher, J.; Friederich, N.; Kessler, P.; Swoboda, W.; Baerwald, C.; Wassilew, G.; Hube, R.; Smolenski, U.; Baraliakos, X.; et al. S2k-Leitlinie Koxarthrose; AWMF: Berlin, Germany, 2019. [Google Scholar]
- Sturm, A.; Atreya, R.; Bettenworth, D.; Bokemeyer, B.; Dignaß, A.; Ehehalt, R.; Germer, C.; Grunert, P.C.; Helwig, U.; Herrlinger, K.; et al. S3-Leitlinie „Diagnostik und Therapie des Morbus Crohn. Z. Für Gastroenterol. 2008, 46, 1094–1146. [Google Scholar]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012; Available online: https://www.ncbi.nlm.nih.gov/books/NBK547852/ (accessed on 15 November 2021).
- Canter, P.H.; Ernst, E. Herbal supplement use by persons aged over 50 years in Britain: Frequently used herbs, concomitant use of herbs, nutritional supplements and prescription drugs, rate of informing doctors and potential for negative interactions. Drugs Aging 2004, 21, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Knotek, K.; Verner, V.; Chaloupkova, P.; Kokoska, L. Prevalence and use of herbal products in the Czech Republic: Over-the-counter survey among adult pharmacies clients. Complement. Ther. Med. 2012, 20, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Bertomoro, P.; Renna, S.; Cottone, M.; Riegler, G.; Bossa, F.; Giglio, L.; Pastorelli, L.; Papi, C.; Castiglione, F.; Angelucci, E.; et al. Regional variations in the use of complementary and alternative medicines (CAM) for inflammatory bowel disease patients in Italy: An IG-IBD study. J. Crohn’s Colitis 2010, 4, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Skiba, M.B.; Hopkins, L.L.; Hopkins, A.L.; Billheimer, D.; Funk, J.L. Nonvitamin, Nonmineral Dietary Supplement Use in Individuals with Rheumatoid Arthritis. J. Nutr. 2020, 150, 2451–2459. [Google Scholar] [CrossRef]
- Serpico, M.R.; Boyle, B.M.; Kemper, K.J.; Kim, S.C. Complementary and Alternative Medicine Use in Children With Inflammatory Bowel Diseases: A Single-Center Survey. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 651–657. [Google Scholar] [CrossRef]
- Hall, J.J.; Dissanayake, T.D.; Lau, D.; Katz, S.J. Self-reported use of natural health products among rheumatology patients: A cross-sectional survey. Musculoskelet. Care 2017, 15, 345–349. [Google Scholar] [CrossRef]
- Heuschkel, R.; Afzal, N.; Wuerth, A.; Zurakowski, D.; Leichtner, A.; Kemper, K.; Tolia, V.; Bousvaros, A. Complementary medicine use in children and young adults with inflammatory bowel disease. Am. J. Gastroenterol. 2002, 97, 382–388. [Google Scholar] [CrossRef]
- Hilsden, R.J.; Verhoef, M.J.; Best, A.; Pocobelli, G. Complementary and alternative medicine use by Canadian patients with inflammatory bowel disease: Results from a national survey. Am. J. Gastroenterol. 2003, 98, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Joos, S.; Rosemann, T.; Szecsenyi, J.; Hahn, E.G.; Willich, S.N.; Brinkhaus, B. Use of complementary and alternative medicine in Germany—A survey of patients with inflammatory bowel disease. BMC Complement. Altern. Med. 2006, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerasimidis, K.; McGrogan, P.; Hassan, K.; Edwards, C.A. Dietary modifications, nutritional supplements and alternative medicine in paediatric patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2008, 27, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Barreiro-de Acosta, M.; Vallejo, N.; Iglesias, M.; Carmona, A.; González-Portela, C.; Lorenzo, A.; Domínguez-Muñoz, J.E. Complementary and alternative medicine in inflammatory bowel disease patients: Frequency and risk factors. Dig. Liver Dis. 2012, 44, 904–908. [Google Scholar] [CrossRef]
- Fernández-Bañares, F.; Hinojosa, J.; Sánchez-Lombraña, J.L.; Navarro, E.; Martínez-Salmerón, J.F.; García-Pugés, A.; González-Huix, F.; Riera, J.; González-Lara, V.; Domínguez-Abascal, F.; et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am. J. Gastroenterol. 1999, 94, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.; Salomon, N.; Wu, J.C.; Kopylov, U.; Lahat, A.; Har-Noy, O.; Ching, J.Y.; Cheong, P.K.; Avidan, B.; Gamus, D.; et al. Curcumin in Combination With Mesalamine Induces Remission in Patients With Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. 2015, 13, 1444–1449.e1441. [Google Scholar] [CrossRef]
- Langhorst, J.; Varnhagen, I.; Schneider, S.B.; Albrecht, U.; Rueffer, A.; Stange, R.; Michalsen, A.; Dobos, G.J. Randomised clinical trial: A herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis--a double-blind, double-dummy study. Aliment. Pharmacol. Ther. 2013, 38, 490–500. [Google Scholar] [CrossRef]
- Omer, B.; Krebs, S.; Omer, H.; Noor, T.O. Steroid-sparing effect of wormwood (Artemisia absinthium) in Crohn’s disease: A double-blind placebo-controlled study. Phytomedicine 2007, 14, 87–95. [Google Scholar] [CrossRef]
- Krebs, S.; Omer, T.N.; Omer, B. Wormwood (Artemisia absinthium) suppresses tumour necrosis factor alpha and accelerates healing in patients with Crohn’s disease—A controlled clinical trial. Phytomedicine 2010, 17, 305–309. [Google Scholar] [CrossRef]
- Lowin, T.; Schneider, M.; Pongratz, G. Joints for joints: Cannabinoids in the treatment of rheumatoid arthritis. Curr. Opin. Rheumatol. 2019, 31, 271–278. [Google Scholar] [CrossRef]
- Gusho, C.A.; Court, T. Cannabidiol: A Brief Review of Its Therapeutic and Pharmacologic Efficacy in the Management of Joint Disease. Cureus 2020, 12, e7375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufeld, T.; Pfuhlmann, K.; Stock-Schröer, B.; Kairey, L.; Bauer, N.; Häuser, W.; Langhorst, J. Cannabis use of patients with inflammatory bowel disease in Germany: A cross-sectional survey. Z. Gastroenterol. 2021, 59, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.; Katz, I.; Porat-Katz, B.S.; Shoenfeld, Y. Medical cannabis: Another piece in the mosaic of autoimmunity? Clin. Pharmacol. Ther. 2017, 101, 230–238. [Google Scholar] [CrossRef]
- Schneider, M.; Baseler, G.; Funken, O.; Heberger, S.; Kiltz, U.; Klose, P.; Krüger, K.; Langhorst, J.; Mau, W.; Oltman, R.; et al. S3-Leitlinie Interdisziplinäre Leitlinie Management der Frühen Rheumatoiden Arthritis; AWMF: Berlin, Germany, 2019. [Google Scholar]
- Stöve, J.; Bock, F.; Böhle, E.; Dau, W.; Flechtenmacher, J.; Graichen, H.; Greitemann, B.; Grifka, J.; Halder, A.; Jerosch, J.; et al. S2K-Leitlinie Gonarthrose; AWMF: Berlin, Germany, 2020. [Google Scholar]
- Fiehn, C.; Holle, J.; Iking-Konert, C.; Leipe, J.; Weseloh, C.; Marc Frerix, M.; Alten, R.; Behrens, F.; Baerwald, C.; Braun, J.; et al. 2e-Leitline: Therapie der Rheumatoiden Arthritis Mit Krankheitsmodifizierenden Medikamenten; AWMF: Berlin, Germany, 2018. [Google Scholar]
- Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef]
- Brune, K.; Renner, B.; Tiegs, G. Acetaminophen/paracetamol: A history of errors, failures and false decisions. Eur. J. Pain 2015, 19, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Abebe, W. Herbal medication: Potential for adverse interactions with analgesic drugs. J. Clin. Pharm. Ther. 2002, 27, 391–401. [Google Scholar] [CrossRef]
- Aboonabi, A.; Meyer, R.R.; Gaiz, A.; Singh, I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr. Res. 2020, 76, 82–93. [Google Scholar] [CrossRef]
- European Unionherbal Monograph on Menyanthes trifoliata L., Folium; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2021.
- Frank, A.; Unger, M. Analysis of frankincense from various Boswellia species with inhibitory activity on human drug metabolising cytochrome P450 enzymes using liquid chromatography mass spectrometry after automated on-line extraction. J. Chromatogr. A 2006, 1112, 255–262. [Google Scholar] [CrossRef]
- Krüger, P.; Kanzer, J.; Hummel, J.; Fricker, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur. J. Pharm. Sci. 2009, 36, 275–284. [Google Scholar] [CrossRef]
- Weber, C.C.; Reising, K.; Müller, W.E.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Modulation of Pgp function by boswellic acids. Planta Med. 2006, 72, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, A.; Gallo, E.; Benemei, S.; Vietri, M.; Lapi, F.; Volpi, R.; Menniti-Ippolito, F.; Gori, L.; Mugelli, A.; Firenzuoli, F.; et al. Interactions between Natural Health Products and Oral Anticoagulants: Spontaneous Reports in the Italian Surveillance System of Natural Health Products. Evid.-Based Complement. Altern. Med. 2011, 2011, 612150. [Google Scholar] [CrossRef] [PubMed]
- Sativex Spray [Prescription Information], GW Pharma (International), Amersfoort, The Netherlands; B.V. Almirall Hermal GmbH: Reinbek, Germany, 2020.
- Jusko, W.J.; Schentag, J.J.; Clark, J.H.; Gardner, M.; Yurchak, A.M. Enhanced biotransformation of theophylline in marihuana and tobacco smokers. Clin. Pharmacol. Ther. 1978, 24, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S.; Watson, C.J.W.; Perez-Paramo, Y.X.; Lazarus, P. Cannabinoid Metabolites as Inhibitors of Major Hepatic CYP450 Enzymes, with Implications for Cannabis-Drug Interactions. Drug Metab. Dispos. 2021, 49, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Leino, A.D.; Emoto, C.; Fukuda, T.; Privitera, M.; Vinks, A.A.; Alloway, R.R. Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus. Am. J. Transplant. 2019, 19, 2944–2948. [Google Scholar] [CrossRef]
- Feltrin, C.; Farias, I.V.; Sandjo, L.P.; Reginatto, F.H.; Simões, C.M.O. Effects of Standardized Medicinal Plant Extracts on Drug Metabolism Mediated by CYP3A4 and CYP2D6 Enzymes. Chem. Res. Toxicol. 2020, 33, 2408–2419. [Google Scholar] [CrossRef]
- Goldstein, L.H.; Elias, M.; Ron-Avraham, G.; Biniaurishvili, B.Z.; Madjar, M.; Kamargash, I.; Braunstein, R.; Berkovitch, M.; Golik, A. Consumption of herbal remedies and dietary supplements amongst patients hospitalized in medical wards. Br. J. Clin. Pharmacol. 2007, 64, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Nowack, R.; Nowak, B. Herbal teas interfere with cyclosporin levels in renal transplant patients. Nephrol. Dial. Transplant. 2005, 20, 2554–2556. [Google Scholar] [CrossRef] [Green Version]
- Zikria, J.; Goldman, R.; Ansell, J. Cranberry juice and warfarin: When bad publicity trumps science. Am. J. Med. 2010, 123, 384–392. [Google Scholar] [CrossRef]
- Dave, A.A.; Samuel, J. Suspected Interaction of Cranberry Juice Extracts and Tacrolimus Serum Levels: A Case Report. Cureus 2016, 8, e610. [Google Scholar] [CrossRef] [Green Version]
- European Union Herbal Monograph on Linum usitatissimum L., Semen; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2015.
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y. Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 2005, 22, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, J.S.; Devane, C.L.; Chavin, K.D.; Taylor, R.M.; Ruan, Y.; Donovan, J.L. Effects of garlic (Allium sativum L.) supplementation on cytochrome P450 2D6 and 3A4 activity in healthy volunteers. Clin. Pharmacol. Ther. 2003, 74, 170–177. [Google Scholar] [CrossRef]
- Hajda, J.; Rentsch, K.M.; Gubler, C.; Steinert, H.; Stieger, B.; Fattinger, K. Garlic extract induces intestinal P-glycoprotein, but exhibits no effect on intestinal and hepatic CYP3A4 in humans. Eur. J. Pharm. Sci. 2010, 41, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Beckert, B.W.; Concannon, M.J.; Henry, S.L.; Smith, D.S.; Puckett, C.L. The effect of herbal medicines on platelet function: An in vivo experiment and review of the literature. Plast. Reconstr. Surg. 2007, 120, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Abdul, M.I.; Jiang, X.; Williams, K.M.; Day, R.O.; Roufogalis, B.D.; Liauw, W.S.; Xu, H.; McLachlan, A.J. Pharmacodynamic interaction of warfarin with cranberry but not with garlic in healthy subjects. Br. J. Pharmacol. 2008, 154, 1691–1700. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.S.; Kim, S.Y.; Yoo, H.H. Effects of an aqueous-ethanolic extract of ginger on cytochrome P450 enzyme-mediated drug metabolism. Pharmazie 2012, 67, 1007–1009. [Google Scholar] [PubMed]
- Kimura, Y.; Ito, H.; Hatano, T. Effects of mace and nutmeg on human cytochrome P450 3A4 and 2C9 activity. Biol. Pharm. Bull. 2010, 33, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Loretz, C.; Ho, M.D.; Alam, N.; Mitchell, W.; Li, A.P. Application of Cryopreserved Human Intestinal Mucosa and Cryopreserved Human Enterocytes in the Evaluation of Herb-Drug Interactions: Evaluation of CYP3A Inhibitory Potential of Grapefruit Juice and Commercial Formulations of Twenty-Nine Herbal Supplements. Drug Metab. Dispos. 2020, 48, 1084–1091. [Google Scholar] [CrossRef]
- Maadarani, O.; Bitar, Z.; Mohsen, M. Adding Herbal Products to Direct-Acting Oral Anticoagulants Can Be Fatal. Eur. J. Case Rep. Intern. Med. 2019, 6, 001190. [Google Scholar] [CrossRef] [Green Version]
- Krüth, P.; Brosi, E.; Fux, R.; Mörike, K.; Gleiter, C.H. Ginger-associated overanticoagulation by phenprocoumon. Ann. Pharmacother. 2004, 38, 257–260. [Google Scholar] [CrossRef]
- Revol, B.; Gautier-Veyret, E.; Arrivé, C.; Fouilhé Sam-Laï, N.; McLeer-Florin, A.; Pluchart, H.; Pinsolle, J.; Toffart, A.C. Pharmacokinetic herb-drug interaction between ginger and crizotinib. Br. J. Clin. Pharmacol. 2020, 86, 1892–1893. [Google Scholar] [CrossRef]
- Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of ginkgo and ginger on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 2005, 59, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Sasaki, H.; Higuchi, S.; Ieiri, I. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats. Drug Metab. Pharmacokinet. 2012, 27, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.R.; Leu, Y.L.; Chan, Y.Y.; Kuo, P.C.; Wu, T.S. Anti-platelet aggregation and vasorelaxing effects of the constituents of the rhizomes of Zingiber officinale. Molecules 2012, 17, 8928–8937. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, M.; Ariyoshi, N.; Kotani, A.; Ishii, I.; Nakamura, H.; Nakasa, H.; Ida, M.; Nakamura, H.; Kimura, N.; Kimura, M.; et al. Effects of continuous ingestion of green tea or grape seed extracts on the pharmacokinetics of midazolam. Drug Metab. Pharmacokinet. 2004, 19, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Goey, A.K.; Meijerman, I.; Beijnen, J.H.; Schellens, J.H. The effect of grape seed extract on the pharmacokinetics of dextromethorphan in healthy volunteers. Eur. J. Clin. Pharmacol. 2013, 69, 1883–1890. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Frye, R.F. Inhibitory effects of commonly used herbal extracts on UDP-glucuronosyltransferase 1A4, 1A6, and 1A9 enzyme activities. Drug Metab. Dispos. 2011, 39, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Gurley, B.; Hubbard, M.A.; Williams, D.K.; Thaden, J.; Tong, Y.; Gentry, W.B.; Breen, P.; Carrier, D.J.; Cheboyina, S. Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: Comparison of a milk thistle and black cohosh product to rifampin and clarithromycin. J. Clin. Pharmacol. 2006, 46, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Carrier, J.; Khan, I.A.; Edwards, D.J.; Shah, A. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin. Pharmacol. Ther. 2004, 76, 428–440. [Google Scholar] [CrossRef]
- Van Erp, N.P.; Baker, S.D.; Zhao, M.; Rudek, M.A.; Guchelaar, H.J.; Nortier, J.W.; Sparreboom, A.; Gelderblom, H. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan. Clin. Cancer Res. 2005, 11, 7800–7806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuhr, U.; Beckmann-Knopp, S.; Jetter, A.; Lück, H.; Mengs, U. The effect of silymarin on oral nifedipine pharmacokinetics. Planta Med. 2007, 73, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi-Suzuki, M.; Frye, R.F.; Zhu, H.J.; Brinda, B.J.; Chavin, K.D.; Bernstein, H.J.; Markowitz, J.S. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab. Dispos. 2014, 42, 1611–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lash, D.B.; Ward, S. CYP2C9-mediated warfarin and milk thistle interaction. J. Clin. Pharm. Ther. 2020, 45, 368–369. [Google Scholar] [CrossRef]
- MYRRHINIL-INTEST [Prescription Information], Langenhagen, Repha GmbH. June 2018. Available online: www.fachinfo.de (accessed on 2 November 2021).
- Brobst, D.E.; Ding, X.; Creech, K.L.; Goodwin, B.; Kelley, B.; Staudinger, J.L. Guggulsterone activates multiple nuclear receptors and induces CYP3A gene expression through the pregnane X receptor. J. Pharmacol. Exp. Ther. 2004, 310, 528–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Sugaya, K.; Onose, J.I.; Abe, N. Peppermint (Mentha piperita L.) extract effectively inhibits cytochrome P450 3A4 (CYP3A4) mRNA induction in rifampicin-treated HepG2 cells. Biosci. Biotechnol. Biochem. 2019, 83, 1181–1192. [Google Scholar] [CrossRef]
- Unger, M.; Frank, A. Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography/mass spectrometry and automated online extraction. Rapid Commun. Mass Spectrom. 2004, 18, 2273–2281. [Google Scholar] [CrossRef]
- Sato, Y.; Sasaki, T.; Takahashi, S.; Kumagai, T.; Nagata, K. Development of a highly reproducible system to evaluate inhibition of cytochrome P450 3A4 activity by natural medicines. J. Pharm. Pharm. Sci. 2015, 18, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Wacher, V.J.; Wong, S.; Wong, H.T. Peppermint oil enhances cyclosporine oral bioavailability in rats: Comparison with D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS) and ketoconazole. J. Pharm. Sci. 2002, 91, 77–90. [Google Scholar] [CrossRef]
- Community Herbal Monograph on Plantago afra L. et Plantago indica L., Semen; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2013.
- Ahi, S.; Esmaeilzadeh, M.; Kayvanpour, E.; Sedaghat-Hamedani, F.; Samadanifard, S.H. A bulking agent may lead to adrenal insufficiency crisis: A case report. Acta Med. Iran. 2011, 49, 688–689. [Google Scholar]
- Cheema, P.; El-Mefty, O.; Jazieh, A.R. Intraoperative haemorrhage associated with the use of extract of Saw Palmetto herb: A case report and review of literature. J. Intern. Med. 2001, 250, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Agbabiaka, T.B.; Pittler, M.H.; Wider, B.; Ernst, E. Serenoa repens (saw palmetto): A systematic review of adverse events. Drug Saf. 2009, 32, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, J.S.; Donovan, J.L.; Devane, C.L.; Taylor, R.M.; Ruan, Y.; Wang, J.S.; Chavin, K.D. Multiple doses of saw palmetto (Serenoa repens) did not alter cytochrome P450 2D6 and 3A4 activity in normal volunteers. Clin. Pharmacol. Ther. 2003, 74, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A.; Ernst, E. Interactions between herbal medicines and prescribed drugs: An updated systematic review. Drugs 2009, 69, 1777–1798. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, B.; Zhu, W.; Du, Z. In silico and in vivo evaluation of flavonoid extracts on CYP2D6-mediated herb-drug interaction. J. Mol. Model. 2012, 18, 4657–4663. [Google Scholar] [CrossRef]
- Community Herbal Monograph on Hypericum perforatum L., Herba (Well-Established Medicinal USE); Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2009.
- Borrelli, F.; Izzo, A.A. Herb-drug interactions with St John’s wort (Hypericum perforatum): An update on clinical observations. AAPS J. 2009, 11, 710–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, J.L.; DeVane, C.L.; Chavin, K.D.; Wang, J.S.; Gibson, B.B.; Gefroh, H.A.; Markowitz, J.S. Multiple night-time doses of valerian (Valeriana officinalis) had minimal effects on CYP3A4 activity and no effect on CYP2D6 activity in healthy volunteers. Drug Metab. Dispos. 2004, 32, 1333–1336. [Google Scholar] [CrossRef] [Green Version]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Khan, I.A.; Shah, A. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes. Clin. Pharmacol. Ther. 2005, 77, 415–426. [Google Scholar] [CrossRef]
- Kelber, O.; Nieber, K.; Kraft, K. Valerian: No evidence for clinically relevant interactions. Evid.-Based Complement. Altern. Med. 2014, 2014, 879396. [Google Scholar] [CrossRef]
- Lin, H.; Honglang, L.; Weifeng, L.; Junmin, C.; Jiantao, Y.; Junjing, G. The mechanism of alopolysaccharide protecting ulceralive colitis. Biomed. Pharmacother. 2017, 88, 145–150. [Google Scholar] [CrossRef]
- Van Gorkom, B.A.; de Vries, E.G.; Karrenbeld, A.; Kleibeuker, J.H. Review article: Anthranoid laxatives and their potential carcinogenic effects. Aliment. Pharmacol. Ther. 1999, 13, 443–452. [Google Scholar] [CrossRef]
- Shia, C.S.; Juang, S.H.; Tsai, S.Y.; Lee Chao, P.D.; Hou, Y.C. Interaction of rhubarb and methotrexate in rats: In vivo and ex vivo approaches. Am. J. Chin. Med. 2013, 41, 1427–1438. [Google Scholar] [CrossRef]
- Lee, J.; Lee, M.S.; Nam, K.W. Acute toxic hepatitis caused by an aloe vera preparation in a young patient: A case report with a literature review. Korean J. Gastroenterol. 2014, 64, 54–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.N.; Kim, D.J.; Kim, Y.M.; Kim, B.H.; Sohn, K.M.; Choi, M.J.; Choi, Y.H. Aloe-induced toxic hepatitis. J. Korean Med. Sci. 2010, 25, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Parlati, L.; Voican, C.S.; Perlemuter, K.; Perlemuter, G. Aloe vera-induced acute liver injury: A case report and literature review. Clin. Res. Hepatol. Gastroenterol. 2017, 41, e39–e42. [Google Scholar] [CrossRef] [PubMed]
- Bottenberg, M.M.; Wall, G.C.; Harvey, R.L.; Habib, S. Oral aloe vera-induced hepatitis. Ann. Pharmacother. 2007, 41, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Ballotin, V.R.; Bigarella, L.G.; Brandão, A.B.M.; Balbinot, R.A.; Balbinot, S.S.; Soldera, J. Herb-induced liver injury: Systematic review and meta-analysis. World J. Clin. Cases 2021, 9, 5490–5513. [Google Scholar] [CrossRef] [PubMed]
- Haasbroek, A.; Willers, C.; Glyn, M.; du Plessis, L.; Hamman, J. Intestinal Drug Absorption Enhancement by Aloe vera Gel and Whole Leaf Extract: In Vitro Investigations into the Mechanisms of Action. Pharmaceutics 2019, 11, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, E.; Guy, G.W. A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med. Hypotheses 2006, 66, 234–246. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Lowin, T.; Tingting, R.; Zurmahr, J.; Classen, T.; Schneider, M.; Pongratz, G. Cannabidiol (CBD): A killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis. 2020, 11, 714. [Google Scholar] [CrossRef]
- Grill, M.; Hasenoehrl, C.; Storr, M.; Schicho, R. Medical Cannabis and Cannabinoids: An Option for the Treatment of Inflammatory Bowel Disease and Cancer of the Colon? Med. Cannabis Cannabinoids 2018, 1, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Doohan, P.T.; Oldfield, L.D.; Arnold, J.C.; Anderson, L.L. Cannabinoid Interactions with Cytochrome P450 Drug Metabolism: A Full-Spectrum Characterization. AAPS J. 2021, 23, 91. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S.; Watson, C.J.W.; Bardhi, K.; Fort, G.; Chen, G.; Lazarus, P. Inhibition of UDP-Glucuronosyltransferase Enzymes by Major Cannabinoids and Their Metabolites. Drug Metab. Dispos. 2021, 49, 1081–1089. [Google Scholar] [CrossRef]
- European Union Herbal Monograph on Harpagophytum Procumbens DC. And/or Harpagophytum zeyheri Decne, Radix; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2016.
- Menghini, L.; Recinella, L.; Leone, S.; Chiavaroli, A.; Cicala, C.; Brunetti, L.; Vladimir-Knežević, S.; Orlando, G.; Ferrante, C. Devil’s claw (Harpagophytum procumbens) and chronic inflammatory diseases: A concise overview on preclinical and clinical data. Phytother. Res. 2019, 33, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Anauate, M.C.; Torres, L.M.; de Mello, S.B. Effect of isolated fractions of Harpagophytum procumbens D.C. (devil’s claw) on COX-1, COX-2 activity and nitric oxide production on whole-blood assay. Phytother. Res. 2010, 24, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, J.; Roufogalis, B.D.; Chrubasik, S. Systematic review on the safety of Harpagophytum preparations for osteoarthritic and low back pain. Phytother. Res. 2008, 22, 149–152. [Google Scholar] [CrossRef]
- Romiti, N.; Tramonti, G.; Corti, A.; Chieli, E. Effects of Devil’s Claw (Harpagophytum procumbens) on the multidrug transporter ABCB1/P-glycoprotein. Phytomedicine 2009, 16, 1095–1100. [Google Scholar] [CrossRef]
- Rahman, H.; Kim, M.; Leung, G.; Green, J.A.; Katz, S. Drug-Herb Interactions in the Elderly Patient with IBD: A Growing Concern. Curr. Treat. Options Gastroenterol. 2017, 15, 618–636. [Google Scholar] [CrossRef]
- Modarai, M.; Suter, A.; Kortenkamp, A.; Heinrich, M. The interaction potential of herbal medicinal products: A luminescence-based screening platform assessing effects on cytochrome P450 and its use with devil’s claw (Harpagophyti radix) preparations. J. Pharm. Pharmacol. 2011, 63, 429–438. [Google Scholar] [CrossRef]
- Hinz, B.; Renner, B.; Brune, K. Drug insight: Cyclo-oxygenase-2 inhibitors--a critical appraisal. Nat. Clin. Pract. Rheumatol. 2007, 3, 552–560, quiz 551 p following 589. [Google Scholar] [CrossRef]
- Toselli, F.; Matthias, A.; Gillam, E.M. Echinacea metabolism and drug interactions: The case for standardization of a complementary medicine. Life Sci. 2009, 85, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Ardjomand-Woelkart, K.; Bauer, R. Review and Assessment of Medicinal Safety Data of Orally Used Echinacea Preparations. Planta Med. 2016, 82, 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.S.; Nilsen, O.G. In vitro CYP3A4 metabolism: Inhibition by Echinacea purpurea and choice of substrate for the evaluation of herbal inhibition. Basic Clin. Pharmacol. Toxicol. 2008, 103, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Bossaer, J.B.; Odle, B.L. Probable etoposide interaction with Echinacea. J. Diet. Suppl. 2012, 9, 90–95. [Google Scholar] [CrossRef]
- Awortwe, C.; Manda, V.K.; Avonto, C.; Khan, S.I.; Khan, I.A.; Walker, L.A.; Bouic, P.J.; Rosenkranz, B. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway. Xenobiotica 2015, 45, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Gorski, J.C.; Huang, S.M.; Pinto, A.; Hamman, M.A.; Hilligoss, J.K.; Zaheer, N.A.; Desai, M.; Miller, M.; Hall, S.D. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin. Pharmacol. Ther. 2004, 75, 89–100. [Google Scholar] [CrossRef]
- Hellum, B.H.; Hu, Z.; Nilsen, O.G. The induction of CYP1A2, CYP2D6 and CYP3A4 by six trade herbal products in cultured primary human hepatocytes. Basic Clin. Pharmacol. Toxicol. 2007, 100, 23–30. [Google Scholar] [CrossRef]
- Modarai, M.; Silva, E.; Suter, A.; Heinrich, M.; Kortenkamp, A. Safety of Herbal Medicinal Products: Echinacea and Selected Alkylamides Do Not Induce CYP3A4 mRNA Expression. Evid.-Based Complement. Alternat. Med. 2011, 2011, 213021. [Google Scholar] [CrossRef] [Green Version]
- Moltó, J.; Valle, M.; Miranda, C.; Cedeño, S.; Negredo, E.; Clotet, B. Herb-drug interaction between Echinacea purpurea and etravirine in HIV-infected patients. Antimicrob. Agents Chemother. 2012, 56, 5328–5331. [Google Scholar] [CrossRef] [Green Version]
- Moltó, J.; Valle, M.; Miranda, C.; Cedeño, S.; Negredo, E.; Barbanoj, M.J.; Clotet, B. Herb-drug interaction between Echinacea purpurea and darunavir-ritonavir in HIV-infected patients. Antimicrob. Agents Chemother. 2011, 55, 326–330. [Google Scholar] [CrossRef] [Green Version]
- European Union Herbal Monograph on Echinacea purpurea (L.) Moench, Radix; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2017.
- Bayles, B.; Usatine, R. Evening primrose oil. Am. Fam. Physician 2009, 80, 1405–1408. [Google Scholar]
- Bamford, J.T.; Ray, S.; Musekiwa, A.; van Gool, C.; Humphreys, R.; Ernst, E. Oral evening primrose oil and borage oil for eczema. Cochrane Database Syst. Rev. 2013, 2013, Cd004416. [Google Scholar] [CrossRef]
- Holman, C.P.; Bell, A.F. A trial of evening primrose oil in the treatment of chronic schizophrenia. J. Orthomol. Psychiatry 1983, 12, 302–304. [Google Scholar]
- Abo-Gresha, N.M.; Abel-Aziz, E.Z.; Greish, S.M. Evening primrose oil ameliorates platelet aggregation and improves cardiac recovery in myocardial-infarct hypercholesterolemic rats. Int. J. Physiol. Pathophysiol. Pharmacol. 2014, 6, 23–36. [Google Scholar] [PubMed]
- Riaz, A.; Khan, R.A.; Ahmed, S.P. Assessment of anticoagulant effect of evening primrose oil. Pak. J. Pharm. Sci. 2009, 22, 355–359. [Google Scholar] [PubMed]
- Tomic-Smiljanic, M.; Vasiljevic, D.; Lucic-Tomic, A.; Andjelkovic, N.; Jakovljevic, V.; Bolovich, S.; Veselinovic, M. Influence of different supplementation on platelet aggregation in patients with rheumatoid arthritis. Clin. Rheumatol. 2019, 38, 2443–2450. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, A.; Batra, V. Severe Thrombocytopenia Associated With Black Seed Oil and Evening Primrose Oil. Cureus 2020, 12, e8390. [Google Scholar] [CrossRef]
- Varshney, R.; Budoff, M.J. Garlic and Heart Disease. J. Nutr. 2016, 146, 416s–421s. [Google Scholar] [CrossRef]
- European Union Herbal Monograph on Allium sativum L., Bulbus; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2017.
- European Pharmacopoeia, 10th ed.; German edition published by Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn & Deutscher Apothekerverlag: Stuttgart, Germany, 2020.
- Harris, J.C.; Cottrell, S.L.; Plummer, S.; Lloyd, D. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 2001, 57, 282–286. [Google Scholar] [CrossRef]
- Block, E. The chemistry of garlic and onions. Sci. Am. 1985, 252, 114–119. [Google Scholar] [CrossRef]
- Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, L.D.; Gardner, C.D. Composition, stability, and bioavailability of garlic products used in a clinical trial. J. Agric. Food Chem. 2005, 53, 6254–6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr. 2006, 136, 716s–725s. [Google Scholar] [CrossRef] [Green Version]
- Rose, K.D.; Croissant, P.D.; Parliament, C.F.; Levin, M.B. Spontaneous spinal epidural hematoma with associated platelet dysfunction from excessive garlic ingestion: A case report. Neurosurgery 1990, 26, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Burnham, B.E. Garlic as a possible risk for postoperative bleeding. Plast. Reconstr. Surg. 1995, 95, 213. [Google Scholar] [CrossRef] [PubMed]
- Macan, H.; Uykimpang, R.; Alconcel, M.; Takasu, J.; Razon, R.; Amagase, H.; Niihara, Y. Aged garlic extract may be safe for patients on warfarin therapy. J. Nutr. 2006, 136, 793s–795s. [Google Scholar] [CrossRef] [Green Version]
- Tebonin Spezial 80 mg [Prescription Information]; Dr. Willmar Schwabe GmbH & Co. KG: Karlsruhe, Germany, 2019.
- Liu, Z.H.; Zeng, S. Cytotoxicity of ginkgolic acid in HepG2 cells and primary rat hepatocytes. Toxicol. Lett. 2009, 187, 131–136. [Google Scholar] [CrossRef]
- Robertson, S.M.; Davey, R.T.; Voell, J.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 2008, 24, 591–599. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin. Pharmacol. Ther. 2002, 72, 276–287. [Google Scholar] [CrossRef]
- Zadoyan, G.; Rokitta, D.; Klement, S.; Dienel, A.; Hoerr, R.; Gramatté, T.; Fuhr, U. Effect of Ginkgo biloba special extract EGb 761® on human cytochrome P450 activity: A cocktail interaction study in healthy volunteers. Eur. J. Clin. Pharmacol. 2012, 68, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Awortwe, C.; Bruckmueller, H.; Cascorbi, I. Interaction of herbal products with prescribed medications: A systematic review and meta-analysis. Pharmacol. Res. 2019, 141, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Bent, S.; Goldberg, H.; Padula, A.; Avins, A.L. Spontaneous bleeding associated with ginkgo biloba: A case report and systematic review of the literature: A case report and systematic review of the literature. J. Gen. Intern. Med. 2005, 20, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Yagmur, E.; Piatkowski, A.; Gröger, A.; Pallua, N.; Gressner, A.M.; Kiefer, P. Bleeding complication under Gingko biloba medication. Am. J. Hematol. 2005, 79, 343–344. [Google Scholar] [CrossRef]
- Koch, E. Inhibition of platelet activating factor (PAF)-induced aggregation of human thrombocytes by ginkgolides: Considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts. Phytomedicine 2005, 12, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.R.; Wei, L.H.; Guan, X.Q.; Huang, C.; Liu, Z.Y.; Wang, F.J.; Hou, J.; Jin, Q.; Liu, Y.F.; Wen, P.H.; et al. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg. Chem. 2019, 92, 103199. [Google Scholar] [CrossRef]
- Bal Dit Sollier, C.; Caplain, H.; Drouet, L. No alteration in platelet function or coagulation induced by EGb761 in a controlled study. Clin. Lab. Haematol. 2003, 25, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Savović, J.; Wider, B.; Ernst, E. Effects of Ginkgo biloba on Blood Coagulation Parameters. Evid.-Based Integr. Med. 2005, 2, 167–176. [Google Scholar] [CrossRef]
- Gardner, C.D.; Zehnder, J.L.; Rigby, A.J.; Nicholus, J.R.; Farquhar, J.W. Effect of Ginkgo biloba (EGb 761) and aspirin on platelet aggregation and platelet function analysis among older adults at risk of cardiovascular disease: A randomized clinical trial. Blood Coagul. Fibrinolysis 2007, 18, 787–793. [Google Scholar] [CrossRef]
- Stoddard, G.J.; Archer, M.; Shane-McWhorter, L.; Bray, B.E.; Redd, D.F.; Proulx, J.; Zeng-Treitler, Q. Ginkgo and Warfarin Interaction in a Large Veterans Administration Population. AMIA Annu. Symp. Proc. 2015, 2015, 1174–1183. [Google Scholar]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant Adaptogens-History and Future Perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef]
- Malati, C.Y.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Alfaro, R.M.; Kovacs, J.A.; Penzak, S.R. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants. J. Clin. Pharmacol. 2012, 52, 932–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.G.; Kim, Y.; Jeon, J.Y.; Kim, D.S. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol. 2016, 82, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Bilgi, N.; Bell, K.; Ananthakrishnan, A.N.; Atallah, E. Imatinib and Panax ginseng: A potential interaction resulting in liver toxicity. Ann. Pharmacother. 2010, 44, 926–928. [Google Scholar] [CrossRef]
- Seong, S.J.; Kang, W.Y.; Heo, J.K.; Jo, J.; Choi, W.G.; Liu, K.H.; Lee, S.; Choi, M.K.; Han, Y.H.; Lee, H.S.; et al. A Comprehensive In Vivo and In Vitro Assessment of the Drug Interaction Potential of Red Ginseng. Clin. Ther. 2018, 40, 1322–1337. [Google Scholar] [CrossRef]
- Hao, M.; Ba, Q.; Yin, J.; Li, J.; Zhao, Y.; Wang, H. Deglycosylated ginsenosides are more potent inducers of CYP1A1, CYP1A2 and CYP3A4 expression in HepG2 cells than glycosylated ginsenosides. Drug Metab. Pharmacokinet. 2011, 26, 201–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laube, R.; Liu, K. An unwanted complement: Rare case of potential liver injury induced by an interaction between ginseng and atorvastatin. Br. J. Clin. Pharmacol. 2019, 85, 1612–1613. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, B.K.; Choi, Y.J.; Yoon, I.K.; Chang, B.C.; Gwak, H.S. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int. J. Cardiol. 2010, 145, 275–276. [Google Scholar] [CrossRef]
- Wang, W.; Yang, L.; Song, L.; Guo, M.; Li, C.; Yang, B.; Wang, M.; Kou, N.; Gao, J.; Qu, H.; et al. Combination of Panax notoginseng saponins and aspirin potentiates platelet inhibition with alleviated gastric injury via modulating arachidonic acid metabolism. Biomed. Pharmacother. 2021, 134, 111165. [Google Scholar] [CrossRef]
- Lau, A.J.; Toh, D.F.; Chua, T.K.; Pang, Y.K.; Woo, S.O.; Koh, H.L. Antiplatelet and anticoagulant effects of Panax notoginseng: Comparison of raw and steamed Panax notoginseng with Panax ginseng and Panax quinquefolium. J. Ethnopharmacol. 2009, 125, 380–386. [Google Scholar] [CrossRef]
- Kwon, H.W. Inhibitory Effect of 20(S)-Ginsenoside Rg3 on Human Platelet Aggregation and Intracellular Ca(2+) Levels via Cyclic Adenosine Monophosphate Dependent Manner. Prev. Nutr. Food Sci. 2018, 23, 317–325. [Google Scholar] [CrossRef]
- Tian, Z.; Pang, H.; Du, S.; Lu, Y.; Zhang, L.; Wu, H.; Guo, S.; Wang, M.; Zhang, Q. Effect of Panax notoginseng saponins on the pharmacokinetics of aspirin in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1040, 136–143. [Google Scholar] [CrossRef]
- Tian, Z.; Pang, H.; Zhang, Q.; Du, S.; Lu, Y.; Zhang, L.; Bai, J.; Li, P.; Li, D.; Zhao, M.; et al. Effect of aspirin on the pharmacokinetics and absorption of panax notoginseng saponins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1074-1075, 25–33. [Google Scholar] [CrossRef]
- Fung, F.Y.; Wong, W.H.; Ang, S.K.; Koh, H.L.; Kun, M.C.; Lee, L.H.; Li, X.; Ng, H.J.; Tan, C.W.; Zhao, Y.; et al. A randomized, double-blind, placebo- controlled study on the anti-haemostatic effects of Curcuma longa, Angelica sinensis and Panax ginseng. Phytomedicine 2017, 32, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.S.; Wei, G.; Dey, L.; Karrison, T.; Nahlik, L.; Maleckar, S.; Kasza, K.; Ang-Lee, M.; Moss, J. Brief communication: American ginseng reduces warfarin’s effect in healthy patients: A randomized, controlled Trial. Ann. Intern. Med. 2004, 141, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Balan, P.; Popovich, D.G. Review of Ginseng Anti-Diabetic Studies. Molecules 2019, 24, 4501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.K.; Song, I.S. Interactions of ginseng with therapeutic drugs. Arch. Pharm. Res. 2019, 42, 862–878. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, M.; Cutolo, M.; Nikiphorou, E. Beverages in Rheumatoid Arthritis: What to Prefer or to Avoid. Nutrients 2020, 12, 3155. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific opinion on the safety of green tea catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [CrossRef] [Green Version]
- Dostal, A.M.; Samavat, H.; Bedell, S.; Torkelson, C.; Wang, R.; Swenson, K.; Le, C.; Wu, A.H.; Ursin, G.; Yuan, J.M.; et al. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: Results of the Minnesota Green Tea Trial. Food Chem. Toxicol. 2015, 83, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Samavat, H.; Dostal, A.M.; Wang, R.; Torkelson, C.J.; Yang, C.S.; Butler, L.M.; Kensler, T.W.; Wu, A.H.; Kurzer, M.S.; et al. Effect of Green Tea Supplements on Liver Enzyme Elevation: Results from a Randomized Intervention Study in the United States. Cancer Prev. Res. (Phila) 2017, 10, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, W.F.; Yang, X.; Shi, Q.; Greenhaw, J.; Davis, K.; Ali, A.A. Green tea extract can potentiate acetaminophen-induced hepatotoxicity in mice. Food Chem. Toxicol. 2012, 50, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sun, J.; Petrova, K.; Yang, X.; Greenhaw, J.; Salminen, W.F.; Beger, R.D.; Schnackenberg, L.K. Metabolomics evaluation of the effects of green tea extract on acetaminophen-induced hepatotoxicity in mice. Food Chem. Toxicol. 2013, 62, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Wilt, V.M. Probable antagonism of warfarin by green tea. Ann. Pharmacother. 1999, 33, 426–428. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; von Moltke, L.L.; Perloff, E.S.; Luo, Y.; Harmatz, J.S.; Zinny, M.A. Interaction of flurbiprofen with cranberry juice, grape juice, tea, and fluconazole: In vitro and clinical studies. Clin. Pharmacol. Ther. 2006, 79, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Misaka, S.; Kawabe, K.; Onoue, S.; Werba, J.P.; Giroli, M.; Tamaki, S.; Kan, T.; Kimura, J.; Watanabe, H.; Yamada, S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab. Pharmacokinet. 2013, 28, 244–249. [Google Scholar] [CrossRef]
- Yao, H.T.; Hsu, Y.R.; Li, M.L. Beverage-Drug Interaction: Effects of Green Tea Beverage Consumption on Atorvastatin Metabolism and Membrane Transporters in the Small Intestine and Liver of Rats. Membranes 2020, 10, 233. [Google Scholar] [CrossRef]
- Donovan, J.L.; Chavin, K.D.; Devane, C.L.; Taylor, R.M.; Wang, J.S.; Ruan, Y.; Markowitz, J.S. Green tea (Camellia sinensis) extract does not alter cytochrome p450 3A4 or 2D6 activity in healthy volunteers. Drug Metab. Dispos. 2004, 32, 906–908. [Google Scholar] [CrossRef] [Green Version]
- Chow, H.H.; Hakim, I.A.; Vining, D.R.; Crowell, J.A.; Cordova, C.A.; Chew, W.M.; Xu, M.J.; Hsu, C.H.; Ranger-Moore, J.; Alberts, D.S. Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2473–2476. [Google Scholar] [CrossRef] [Green Version]
- Vischini, G.; Niscola, P.; Stefoni, A.; Farneti, F. Increased plasma levels of tacrolimus after ingestion of green tea. Am. J. Kidney Dis. 2011, 58, 329. [Google Scholar] [CrossRef]
- Jodoin, J.; Demeule, M.; Beliveau, R. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols. Biochim. Biophys. Acta 2002, 1542, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Knop, J.; Misaka, S.; Singer, K.; Hoier, E.; Müller, F.; Glaeser, H.; König, J.; Fromm, M.F. Inhibitory Effects of Green Tea and (-)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein. PLoS ONE 2015, 10, e0139370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.E.; Shin, K.H.; Park, J.E.; Kim, M.G.; Yun, Y.M.; Choi, D.H.; Kwon, K.J.; Lee, J. Effect of green tea catechins on the pharmacokinetics of digoxin in humans. Drug Des. Devel. Ther. 2018, 12, 2139–2147. [Google Scholar] [CrossRef] [Green Version]
- Alemdaroglu, N.C.; Wolffram, S.; Boissel, J.P.; Closs, E.; Spahn-Langguth, H.; Langguth, P. Inhibition of folic acid uptake by catechins and tea extracts in Caco-2 cells. Planta Med. 2007, 73, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Lemos, C.; Peters, G.J.; Jansen, G.; Martel, F.; Calhau, C. Modulation of folate uptake in cultured human colon adenocarcinoma Caco-2 cells by dietary compounds. Eur. J. Nutr. 2007, 46, 329–336. [Google Scholar] [CrossRef]
- Kissei, M.; Itoh, T.; Narawa, T. Effect of epigallocatechin gallate on drug transport mediated by the proton-coupled folate transporter. Drug Metab. Pharmacokinet. 2014, 29, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Perán, E.; Cabezas-Herrera, J.; García-Cánovas, F.; Durrant, M.C.; Thorneley, R.N.; Rodríguez-López, J.N. The antifolate activity of tea catechins. Cancer Res. 2005, 65, 2059–2064. [Google Scholar] [CrossRef] [Green Version]
- Alemdaroglu, N.C.; Dietz, U.; Wolffram, S.; Spahn-Langguth, H.; Langguth, P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: Potential risk of diminished folic acid bioavailability. Biopharm. Drug Dispos. 2008, 29, 335–348. [Google Scholar] [CrossRef]
- Augustin, K.; Frank, J.; Augustin, S.; Langguth, P.; Ohrvik, V.; Witthoft, C.M.; Rimbach, G.; Wolffram, S. Greeen tea extracts lower serum folates in rats at very high dietary concentrations only and do not affect plasma folates in a human pilot study. J. Physiol. Pharmacol. 2009, 60, 103–108. [Google Scholar]
- Abe, O.; Ono, T.; Sato, H.; Müller, F.; Ogata, H.; Miura, I.; Shikama, Y.; Yabe, H.; Onoue, S.; Fromm, M.F.; et al. Role of (-)-epigallocatechin gallate in the pharmacokinetic interaction between nadolol and green tea in healthy volunteers. Eur. J. Clin. Pharmacol. 2018, 74, 775–783. [Google Scholar] [CrossRef]
- Misaka, S.; Yatabe, J.; Müller, F.; Takano, K.; Kawabe, K.; Glaeser, H.; Yatabe, M.S.; Onoue, S.; Werba, J.P.; Watanabe, H.; et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin. Pharmacol. Ther. 2014, 95, 432–438. [Google Scholar] [CrossRef]
- Misaka, S.; Abe, O.; Ono, T.; Ono, Y.; Ogata, H.; Miura, I.; Shikama, Y.; Fromm, M.F.; Yabe, H.; Shimomura, K. Effects of single green tea ingestion on pharmacokinetics of nadolol in healthy volunteers. Br. J. Clin. Pharmacol. 2020, 86, 2314–2318. [Google Scholar] [CrossRef]
- Roth, M.; Timmermann, B.N.; Hagenbuch, B. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab. Dispos. 2011, 39, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 2009, 158, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Malaviya, A.N. Methotrexate intolerance in the treatment of rheumatoid arthritis (RA): Effect of adding caffeine to the management regimen. Clin. Rheumatol. 2017, 36, 279–285. [Google Scholar] [CrossRef]
- Chin, K.Y. The spice for joint inflammation: Anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des. Devel. Ther. 2016, 10, 3029–3042. [Google Scholar] [CrossRef] [Green Version]
- Mazieiro, R.; Frizon, R.R.; Barbalho, S.M.; Goulart, R.A. Is Curcumin a Possibility to Treat Inflammatory Bowel Diseases? J. Med. Food 2018, 21, 1077–1085. [Google Scholar] [CrossRef]
- Coelho, M.R.; Romi, M.D.; Ferreira, D.; Zaltman, C.; Soares-Mota, M. The Use of Curcumin as a Complementary Therapy in Ulcerative Colitis: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2020, 12, 2296. [Google Scholar] [CrossRef]
- Daily, J.W.; Yang, M.; Park, S. Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Med. Food 2016, 19, 717–729. [Google Scholar] [CrossRef] [Green Version]
- Ipar, V.S.; Dsouza, A.; Devarajan, P.V. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 459–480. [Google Scholar] [CrossRef]
- Dei Cas, M.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef] [Green Version]
- Lopresti, A.L. The Problem of Curcumin and Its Bioavailability: Could Its Gastrointestinal Influence Contribute to Its Overall Health-Enhancing Effects? Adv. Nutr. 2018, 9, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Volak, L.P.; Ghirmai, S.; Cashman, J.R.; Court, M.H. Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab. Dispos. 2008, 36, 1594–1605. [Google Scholar] [CrossRef] [Green Version]
- Al-Jenoobi, F.I.; Al-Thukair, A.A.; Alam, M.A.; Abbas, F.A.; Al-Mohizea, A.M.; Alkharfy, K.M.; Al-Suwayeh, S.A. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 61–66. [Google Scholar] [CrossRef]
- Rusdiana, T.; Mardhiani, Y.D.; Putriana, N.A.; Gozali, D.; Nagano, D.; Araki, T.; Yamamoto, K. The influence of Javanese turmeric (Curcuma xanthorrhiza) on the pharmacokinetics of warfarin in rats with single and multiple-dose studies. Pharm Biol 2021, 59, 639–646. [Google Scholar] [CrossRef]
- Salleh, N.A.; Ismail, S.; Ab Halim, M.R. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity. Pharmacogn. Res. 2016, 8, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Krivoy, N.; Pavlotzky, E.; Chrubasik, S.; Eisenberg, E.; Brook, G. Effect of salicis cortex extract on human platelet aggregation. Planta Med. 2001, 67, 209–212. [Google Scholar] [CrossRef]
- Catella-Lawson, F.; Reilly, M.P.; Kapoor, S.C.; Cucchiara, A.J.; DeMarco, S.; Tournier, B.; Vyas, S.N.; FitzGerald, G.A. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med. 2001, 345, 1809–1817. [Google Scholar] [CrossRef]
- Vlachojannis, J.; Magora, F.; Chrubasik, S. Willow species and aspirin: Different mechanism of actions. Phytother. Res. 2011, 25, 1102–1104. [Google Scholar] [CrossRef]
- Gagnier, J.J.; Oltean, H.; van Tulder, M.W.; Berman, B.M.; Bombardier, C.; Robbins, C.B. Herbal Medicine for Low Back Pain: A Cochrane Review. Spine 2016, 41, 116–133. [Google Scholar] [CrossRef]
- Biegert, C.; Wagner, I.; Lüdtke, R.; Kötter, I.; Lohmüller, C.; Günaydin, I.; Taxis, K.; Heide, L. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: Results of 2 randomized double-blind controlled trials. J. Rheumatol. 2004, 31, 2121–2130. [Google Scholar]
- Stewart, C.F.; Fleming, R.A.; Germain, B.F.; Seleznick, M.J.; Evans, W.E. Aspirin alters methotrexate disposition in rheumatoid arthritis patients. Arthritis Rheum 1991, 34, 1514–1520. [Google Scholar] [CrossRef]
- Tracy, T.S.; Krohn, K.; Jones, D.R.; Bradley, J.D.; Hall, S.D.; Brater, D.C. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur. J. Clin. Pharmacol. 1992, 42, 121–125. [Google Scholar] [CrossRef]
- Gilbert, B.; Alves, L.F. Synergy in plant medicines. Curr. Med. Chem. 2003, 10, 13–20. [Google Scholar] [CrossRef]
- Gertsch, J. Botanical drugs, synergy, and network pharmacology: Forth and back to intelligent mixtures. Planta Med. 2011, 77, 1086–1098. [Google Scholar] [CrossRef] [Green Version]
- D’Ascola, A.; Irrera, N.; Ettari, R.; Bitto, A.; Pallio, G.; Mannino, F.; Atteritano, M.; Campo, G.M.; Minutoli, L.; Arcoraci, V.; et al. Exploiting Curcumin Synergy With Natural Products Using Quantitative Analysis of Dose-Effect Relationships in an Experimental In Vitro Model of Osteoarthritis. Front. Pharmacol. 2019, 10, 1347. [Google Scholar] [CrossRef] [Green Version]
- Guideline on Declaration of Herbal Substances and Herbal Preparations in Herbal Medicinal Products/Traditional Herbal Medicinal Products; Committee on Herbal Medicinal Products (HMPC), European Medicines Agency: Amstersam, The Netherlands, 2010.
- Ushijima, K.; Tsuruoka, S.; Tsuda, H.; Hasegawa, G.; Obi, Y.; Kaneda, T.; Takahashi, M.; Maekawa, T.; Sasaki, T.; Koshimizu, T.A.; et al. Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects. Br. J. Clin. Pharmacol. 2009, 68, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, J.S.; Zhu, H.J. Limitations of in vitro assessments of the drug interaction potential of botanical supplements. Planta Med. 2012, 78, 1421–1427. [Google Scholar] [CrossRef] [Green Version]
- Rocha, T.; Amaral, J.S.; Oliveira, M. Adulteration of Dietary Supplements by the Illegal Addition of Synthetic Drugs: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 43–62. [Google Scholar] [CrossRef]
- Tokem, Y.; Aytemur, Z.A.; Yildirim, Y.; Fadiloglu, C. Investigation into the use of complementary and alternative medicine and affecting factors in Turkish asthmatic patients. J. Clin. Nurs. 2012, 21, 698–707. [Google Scholar] [CrossRef]
- Young, L.A.; Faurot, K.R.; Gaylord, S.A. Use of and communication about dietary supplements among hospitalized patients. J. Gen. Intern. Med. 2009, 24, 366–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hensrud, D.D.; Engle, D.D.; Scheitel, S.M. Underreporting the use of dietary supplements and nonprescription medications among patients undergoing a periodic health examination. Mayo Clin. Proc. 1999, 74, 443–447. [Google Scholar] [CrossRef]
- Jong, M.C.; van de Vijver, L.; Busch, M.; Fritsma, J.; Seldenrijk, R. Integration of complementary and alternative medicine in primary care: What do patients want? Patient Educ. Couns. 2012, 89, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Agbabiaka, T.B.; Wider, B.; Watson, L.K.; Goodman, C. Concurrent Use of Prescription Drugs and Herbal Medicinal Products in Older Adults: A Systematic Review. Drugs Aging 2017, 34, 891–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plant | General Surveys | RA | IBD | HPMC * | |
---|---|---|---|---|---|
Common | Mentioned | ||||
Ginkgo (Ginkgo biloba) | [7,9,27] | ||||
Evening primrose oil (Oenothera biennis) | [7,8,27] | [9] | [36] | ||
Artichoke (Cynara scolymus) | [7] | ||||
Ginseng (Panax ginseng) ** | [7,8,9,27] | ||||
Aloe vera gel (Aloe barbadensis) | [5,7,27] | [9] | [36,37] | ||
Fennel (Foeniculum vulgare) | [7] | [9] | |||
Valerian (Valeriana officinalis) | [7,9] | ||||
Soybean (Glycine max) | [7] | [9] | |||
Lemon balm (Melissa officinalis) | [7,28] | [9] | |||
Echinacea (Echinacea purpurea, E. angustifolia) | [5,7,9,27] | [36] | |||
Garlic (Allium sativum) | [5,8,9,27] | [7] | [36] | ||
St. John’s wort (Hypericum perforatum) | [27] | [7,9,28] | |||
Devil’s claw (Harpagophytum procumbens, H. zeyheri) | [27] | [7,9] | + | ||
Cranberry (Vaccinium macrocarpon) | [5,9,27] | ||||
Saw palmetto (Serenoa repens) | [27] | [7,9] | |||
Bilberry (Vaccinium myrtillus) | [5] | [7,9] | |||
Green tea (Camellia sinensis) | [5] | [7,9] | |||
Ginger (Zingiber officinale) | [5] | [7,9] | [30] | ||
Grape seeds (Vitis vinifera) | [9] | [7] | |||
Rose hip (Rosa canina) | [9] | [7,28] | |||
Peppermint (Mentha x piperita) | [28] | [7,9] | |||
English plantain (Plantago lanceolata) | [28] | [7,9] | |||
Lime flowers/linden flowers (Tilia cordata) | [28] | [7] | |||
Chamomile (Matricaria recutita; M. chamomilla) | [28] | [7,9] | |||
Turmeric (Curcuma longa) | [7,9] | [30,32] | [39] | ||
Flaxseed (Linum ussitatissimum) | [7,9] | [30] | |||
Indian frankincense Boswellia serrata | [7] | [30] | |||
Milk thistle (Silybum marianum) | [7,9] | [30] | |||
Meadowsweet (Filipendula ulmaria) | [7] | + | |||
Ash leaf (Fraxinus excelsior) | [7] | + | |||
Bogbean leaf (Menyanthes trifoliate) | + | ||||
Blackcurrant leaf (Ribes nigrum) | [7,9] | + | |||
Willow bark (Salix purpurea, S. daphnoides, S. fragilis) | [7] | + | |||
Nettle herb (Urtica dioica, U. urens) | [7,9,28] | + | |||
Psyllium (Plantago ovata) | [7,9] | [38] | |||
Myrrh, chamomile, coffee charcoal | [40] | ||||
Wormwood (Artemisia absithium) | [7] | [41] | |||
Cannabis sativa | [30,43] | [45] |
Drug/Group | Application | Possible Interactions and Risks |
---|---|---|
Methotrexate (MTX) | RA, IBD | Hepatotoxic; mainly renal elimination (OATP1A2); OATP1B 1/3 substrate |
Leflunomide | RA | Hepatotoxic; moderately induces CYP1A2, 2C8, inhibits OATP1B1 |
5-aminosalicylates | RA, IBD | nephrotoxic |
Chloroquine, Hydroxychloroquine | RA | QT-prolongation, hypoglycemia when combined with blood glucose lowering drugs |
Azathioprine | RA, IBD | hepatotoxic |
Calcineurin inhibitors | RA, IBD | Cyclosporine: CYP3A4, OATP1B1/1B3, and pGP substrate |
IBD | Tacrolimus: CYP3A4 and pGP substrate | |
JAK-inhibitors | RA | Baricitinib: OAT1/3 substrate |
RA, IBD | Tofacitinib: CYP3A4 substrate | |
Glucocorticoids | RA, IBD | CYP3A4 substrates: budesonide, dexamethasone, betamethasone, prednisolone, prednisone, methylprednisolone, hydrocortisone, deflazacort; pGP-substrates: budesonide, dexamethasone, hydrocortisone, prednisolone, methylprednisolone elevated risk of GI bleedings with NSAIDs |
NSAIDs | OA, RA | Platelet inhibition (esp. acetyl salicylic acid (ASA), excl. COX-2 selective subst.), reduced renal perfusion, GI toxicity, cardiovascular risk (esp. COX-2 selective subst.) CYP2C9 substrates (diclofenac, ibuprofen) CYP3A4 substrate: etoricoxib |
(Acetaminophen) | RA, OA | hepatotoxic |
PPI | (OA, RA) | Omeprazol: substrate of CYP2C19, 3A4 |
(Opioids) | RA, OA, IBD | Many CYP2D6 and pGP substrates, CNS depression |
SSNRI | OA | Duloxetine: CYP1A2 substrate |
Plant | Drug Interactions/Risks | Drugs Affected |
---|---|---|
Aloe vera gel | Depends on product quality; see 3.2.1. | |
Artichoke | - | - |
Ash leaf | - | - |
Bilberry | Anthocyanins have been discussed as platelet aggregation inhibitors [53]; decreased platelet activation in metabolic syndrome patients [54] | (NSAIDs) |
Blackcurrant leaf | - | - |
Bogbean leaf | No interactions known (contraindication: gastric or duodenal ulcer) [55] | - |
Boswellia | Unspecific CYP450 inhibition [56] and transport protein modulation (OATP1B3, MRP2, pGP) in vitro [57,58]; two case reports of elevated INR in warfarin patients [59] (possibly by CYP interaction) | Caution with cyclosporine and tacrolimus |
Cannabis sativa | Increases central nervous system (CNS) depression [60] | Opioids, SSNRI (e.g., duloxetine) |
Inhibition of UGT1A9 and UGT2B7 [60]; CYP3A4 and 2C9 substrate, possible influence on CYP1A2 [61] (induction by THC, induction or inhibition by CBD) | Duloxetine (several drugs in other fields; propofol, anticoagulants!) | |
in vitro: inhibition of several CYP enzymes by cannabinoids and main metabolites, including CYP 2B6, 2C9, 2D6; minor inhibition: 1A2, 2C19, 3A4 [60,62] | Several drugs, including opioids, NSAIDs and possibly cyclosporine and tacrolimus (CBD) [63] | |
anticholinergic agents (risk of tachycardia) | (several drugs in other fields) | |
Chamomile | Minor CYP3A4 inhibition in vitro [64]; case reports of elevated cyclosporine serum level [65,66] | Cyclosporine |
Cranberry | Case reports of potentiated warfarin effect; clinical studies: no difference [67] | |
One case report of lowered tacrolimus serum concentration [68] | Tacrolimus | |
Devil’s claw | Possible CYP3A4 inhibition (in vitro data only) | Cyclosporine |
Echinacea | May diminish therapeutic effect of immunosuppressants | Methotrexate, leflunomide, azathioprine, biologicals, JAK- inhibitors, cyclosporine, tacrolimus, systemic glucocorticoids |
Possible influence on CYP3A4 | cyclosporine | |
English plantain | - | - |
Evening primrose oil | Possible inhibition of platelet aggregation | NSAIDs |
Fennel | - | - |
Flaxseed | Can delay or reduce drug absorption; 1 h time-lag between application [69] | Minerals, vitamins, drugs |
obstruction risk with drugs that inhibit peristaltic movements | Opioids | |
Garlic | Inhibition of CYP2E1 [70], but not 2D6 and 3A4 [70,71]; induces pGP [72] | Cyclosporine, tacrolimus |
Elevated bleeding risk due to platelet inhibition suspected [53,73]; contradicting clinical data [73,74] | Monitor patients on anticoagulants when starting/ending garlic preparations; caution with antiplatelet drugs (NSAIDs, especially ASA) | |
Ginger | Contradicting data regarding CYP2C9, 3A4, and pGP inhibition in vitro [75,76,77]; cases of interactions with dabigatran (pGP) [78], phenprocoumon (CYP2C9) [79], and crizotinib (CYP3A4, 2C9; pGP) [80]; no effect in a clinical study with warfarin (CYP2C9) [81]; elevated tacrolimus AUC in rats [82] | CYP2C9, 3A4 and pGP substrates with narrow therapeutic window, such as cyclosporine, tacrolimus |
Inhibits platelet aggregation in vitro [83] | Caution with anticoagulant and platelet-aggregation inhibiting drugs (NSAIDs) | |
Ginkgo | Possible inhibition of platelet aggregation | NSAIDs, especially ASA |
Ginseng | Possible inhibition of platelet aggregation (conflicting data) | (NSAIDs, especially ASA) |
Possible CYP3A4 inhibition | cyclosporine, tacrolimus | |
Possible blood glucose lowering effect | chloroquine, hydroxychloroquine | |
Grape seeds | [84,85] | - |
Green tea | Inhibition of OATP1A2, 1B3, 2B1, pGB; risk of liver injury; possible CYP3A4 inhibition | Methotrexate, leflunomide, azathioprine, cyclosporine, tacrolimus |
Lemon balm | - | - |
Lime/linden flowers | - | - |
Meadowsweet | Contains salicylates (possibly elevated bleeding risk and GI injury with NSAIDs; may reduce renal elimination) | NSAIDs, glucocorticoids; 5- aminosalicylates; may reduce clearance of methotrexate |
Milk thistle | Inhibits UDP1A6 in vitro [86]; CYP3A4 and 2C9 inhibition suspected, but no relevant influence in small clinical studies [87,88,89,90,91]; case report of warfarin interaction, probably due to CYP2C9 inhibition [92] | Caution with CYP3A4 and 2C9 substrates with small therapeutic windows (such as cyclosporine) |
Myrrh, chamomile, coffee charcoal | Can impair absorption of simultaneously applied drugs [93] | Caution with cyclosporine |
minor CYP3A4 inhibition in vitro [64]; case reports of elevates cyclosporine serum level [65,66] (chamomile) Myrrh: CYP3A4 induction in vitro [94] | ||
Nettle herb | - | - |
Peppermint | Peppermint tea inhibits CYP3A4 induction by rifampicin in vitro [95]; oil: contradicting results on CYP inhibition in vitro [96,97]; enhanced cyclosporine bioavailability in rats [98] | Cyclosporine, tacrolimus? |
Psyllium | Can delay or reduce drug absorption; 1 h time-lag between application [99] | Vitamins, minerals, drugs prednisolone/ fludrocortisone [100] |
Rose hip | - | - |
Saw palmetto | Case report bleeding [101]; most literature argues against interaction [102,103,104] | (Warfarin?) |
Soybean | in vitro: no relevant effect on CYP2D6 and 3A4 [64,77,105] | - |
St. John’s wort | Induces CYP2C9, 2C19, 3A4; pGP [106] Serotonin syndrome [107] | Cyclosporine, tacrolimus, tofacitinib, glucocorticoids, omeprazole, opioids (and many more in other fields), SSNRI |
Turmeric | Possible inhibition of CYP2D6, 2C9, 3A4 Elevated AUC of tacrolimus in rats [82] | Caution with cyclosporine, tacrolimus, coumarins |
Inhibition of sulfotransferase and glutathione transferase | Acetaminophen | |
Valerian | Increases CNS depression | Opioids, SSNRI (e.g., duloxetine) |
No CYP1A2, 2D6, 2E1, 3A4 interactions found [108,109,110] | ||
Willow bark | Contains salicylates (possibly elevated bleeding risk and GI injury with NSAIDs; may reduce renal elimination) | NSAIDs, glucocorticoids; 5- aminosalicylats; may reduce clearance of methotrexate; (warfarin) |
Wormwood | - | - |
Interaction Potential | Plants |
---|---|
High interaction potential, may affect several drugs | St John’s wort, cannabis (3.2.2.), green tea (3.2.9.), echinacea (3.2.4.) |
Moderate interaction potential; few drugs or lower level of evidence | Flax seed, ginger, meadowsweet, psyllium, valerian, willow bark (3.2.11.) |
Generally low interaction potential, but possible interaction with cyclosporine/tacrolimus via CYP or pGP (case reports or in vitro data; Table 3) | Boswellia, chamomile, cranberry, devil’s claw (3.2.3.), garlic (3.2.6.), ginseng (3.2.7.), milk thistle, peppermint, turmeric (3.2.10.) |
No interactions reported/very low-risk | Artichoke, ash leaf, blackcurrant leaf, English plantain, fennel, lemon balm, lime/linden flowers, nettle herb, rose hip, saw palmetto, soybean, wormwood |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lippert, A.; Renner, B. Herb–Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J. Clin. Med. 2022, 11, 1567. https://doi.org/10.3390/jcm11061567
Lippert A, Renner B. Herb–Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. Journal of Clinical Medicine. 2022; 11(6):1567. https://doi.org/10.3390/jcm11061567
Chicago/Turabian StyleLippert, Annemarie, and Bertold Renner. 2022. "Herb–Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements" Journal of Clinical Medicine 11, no. 6: 1567. https://doi.org/10.3390/jcm11061567
APA StyleLippert, A., & Renner, B. (2022). Herb–Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. Journal of Clinical Medicine, 11(6), 1567. https://doi.org/10.3390/jcm11061567