ADAMTS13, VWF, and Endotoxin Are Interrelated and Associated with the Severity of Liver Cirrhosis via Hypercoagulability
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Determination of Endotoxin
2.3. Determination of Levels of ADAMTS13:AC, VWF:Ag, and ADAMTS13:INH, and VWFM Pattern Analysis
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Patients
3.2. Plasma Levels of ADAMTS13:AC, VWF:Ag, and ADAMTS13:INH
3.3. Plasma Endotoxin Level and Its Relationship to ADAMTS13:AC, VWF:Ag, ADAMTS13:INH, and VWFM Patterns
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolan, J.P. The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology 2010, 52, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Sarin, S.K.; Choudhury, A. Acute-on-chronic liver failure: Terminology, mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, K.; Wang, Y.; Huang, L.; Lang, R.; Jiang, W. Disruption of the gut-liver axis in the pathogenesis of acute-on-chronic liver failure. Eur. J. Gastroenterol. Hepatol. 2018, 30, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Okura, Y.; Namisaki, T.; Sato, S.; Moriya, K.; Akahane, T.; Kitade, M.; Kawaratani, H.; Kaji, K.; Takaya, H.; Sawada, Y.; et al. Proton pump inhibitor therapy does not increase serum endotoxin activity in patients with cirrhosis. Hepatol. Res. 2019, 49, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Takaya, H.; Namisaki, T.; Sato, S.; Kaji, K.; Tsuji, Y.; Kaya, D.; Fujinaga, Y.; Sawada, Y.; Shimozato, N.; Kawaratani, H.; et al. Increased endotoxin activity is associated with the risk of developing acute-on-chronic liver failure. J. Clin. Med. 2020, 9, 1467. [Google Scholar] [CrossRef]
- Fukui, H.; Brauner, B.; Bode, J.; Bode, C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: Reevaluation with an improved chromogenic assay. J. Hepatol. 1991, 12, 162–169. [Google Scholar] [CrossRef]
- Bigatello, L.M.; Broitman, S.A.; Fattori, L.; Di Paoli, M.; Pontello, M.; Bevilacqua, G.; Nespoli, A. Endotoxemia, encephalopathy, and mortality in cirrhotic patients. Am. J. Gastroenterol. 1987, 82, 11–15. [Google Scholar]
- Enomoto, M.; Takaya, H.; Namisaki, T.; Fujinaga, Y.; Nishimura, N.; Sawada, Y.; Kaji, K.; Kawaratani, H.; Moriya, K.; Akahane, T.; et al. Ratio of von Willebrand factor antigen to ADAMTS13 activity is a useful biomarker for acute-on-chronic liver failure development and prognosis in patients with liver cirrhosis. Hepatol. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Takaya, H.; Namisaki, T.; Moriya, K.; Shimozato, N.; Kaji, K.; Ogawa, H.; Ishida, K.; Tsuji, Y.; Kaya, D.; Takagi, H.; et al. Association between ADAMTS13 activity-VWF antigen imbalance and the therapeutic effect of HAIC in patients with hepatocellular carcinoma. World J. Gastroenterol. 2020, 26, 7232–7241. [Google Scholar] [CrossRef]
- Takaya, H.; Namisaki, T.; Kitade, M.; Kaji, K.; Nakanishi, K.; Tsuji, Y.; Shimozato, N.; Moriya, K.; Seki, K.; Sawada, Y.; et al. VWF/ADAMTS13 ratio as a potential biomarker for early detection of hepatocellular carcinoma. BMC Gastroenterol. 2019, 19, 167. [Google Scholar] [CrossRef]
- Takaya, H.; Namisaki, T.; Shimozato, N.; Kaji, K.; Kitade, M.; Moriya, K.; Sato, S.; Kawaratani, H.; Akahane, T.; Matsumoto, M.; et al. ADAMTS13 and von Willebrand factor are useful biomarkers for sorafenib treatment efficiency in patients with hepatocellular carcinoma. World J. Gastrointest. Oncol. 2019, 11, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Takaya, H.; Kawaratani, H.; Kubo, T.; Seki, K.; Sawada, Y.; Kaji, K.; Okura, Y.; Takeda, K.; Kitade, M.; Moriya, K.; et al. Platelet hyperaggregability is associated with decreased ADAMTS13 activity and enhanced endotoxemia in patients with acute cholangitis. Hepatol. Res. 2018, 48, E52–E60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaya, H.; Kawaratani, H.; Tsuji, Y.; Nakanishi, K.; Saikawa, S.; Sato, S.; Sawada, Y.; Kaji, K.; Okura, Y.; Shimozato, N.; et al. von Willebrand factor is a useful biomarker for liver fibrosis and prediction of hepatocellular carcinoma development in patients with hepatitis B and C. United Eur. Gastroenterol. J. 2018, 6, 1401–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaya, H.; Yoshiji, H.; Kawaratani, H.; Sakai, K.; Matsumoto, M.; Fujimura, Y.; Fukui, H. Decreased activity of plasma ADAMTS13 are related to enhanced cytokinemia and endotoxemia in patients with acute liver failure. Biomed. Rep. 2017, 7, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Takaya, H.; Uemura, M.; Fujimura, Y.; Matsumoto, M.; Matsuyama, T.; Kato, S.; Morioka, C.; Ishizashi, H.; Hori, Y.; Fujimoto, M.; et al. ADAMTS13 activity may predict the cumulative survival of patients with liver cirrhosis in comparison with the Child-Turcotte-Pugh score and the Model for End-Stage Liver Disease score. Hepatol. Res. 2012, 42, 459–472. [Google Scholar] [CrossRef]
- Skornova, I.; Simurda, T.; Stasko, J.; Zolkova, J.; Sokol, J.; Holly, P.; Dobrotova, M.; Plamenova, I.; Hudecek, J.; Brunclikova, M.; et al. Multimer analysis of von Willebrand factor in von Willebrand disease with a hydrasys semi-automatic analyzer−single-center experience. Diagnostics 2021, 11, 2153. [Google Scholar] [CrossRef]
- Simurda, T.; Dobrotova, M.; Skornova, I.; Sokol, J.; Kubisz, P.; Stasko, J. Successful use of a highly purified plasma von Willebrand factor concentrate containing little FVIII for the long-term prophylaxis of severe (type 3) von Willebrand’s disease. Semin. Thromb. Hemost. 2017, 43, 639–641. [Google Scholar]
- Uemura, M.; Tatsumi, K.; Matsumoto, M.; Fujimoto, M.; Matsuyama, T.; Ishikawa, M.; Iwamoto, T.-A.; Mori, T.; Wanaka, A.; Fukui, H.; et al. Localization of ADAMTS13 to the stellate cells of human liver. Blood 2005, 106, 922–924. [Google Scholar] [CrossRef] [Green Version]
- Okhota, S.; Melnikov, I.; Avtaeva, Y.; Kozlov, S.; Gabbasov, Z. Shear stress-induced activation of von Willebrand factor and cardiovascular pathology. Int. J. Mol. Sci. 2020, 21, 7804. [Google Scholar] [CrossRef]
- Matsumoto, M.; Ishizashi, H.; Kato, S.; Matsuyama, T.; Isonishi, A.; Ishikawa, M.; Yagita, M.; Morioka, C.; Yoshiji, H.; Tsujimoto, T.; et al. Comprehensive analysis of ADAMTS13 in patients with liver cirrhosis. Thromb. Haemost. 2008, 99, 1019–1029. [Google Scholar] [CrossRef]
- Uemura, M.; Fujimura, Y.; Ko, S.; Matsumoto, M.; Nakajima, Y.; Fukui, H. Determination of ADAMTS13 and its clinical significance for ADAMTS13 supplementation therapy to improve the survival of patients with decompensated liver cirrhosis. Int. J. Hepatol. 2011, 2011, 759047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uemura, M.; Fujimura, Y.; Ko, S.; Matsumoto, M.; Nakajima, Y.; Fukui, H. Pivotal role of ADAMTS13 function in liver diseases. Int. J. Hematol. 2010, 91, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Canciani, M.T.; Forza, I.; Lussana, F.; Lattuada, A.; Rossi, E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 2001, 98, 2730–2735. [Google Scholar] [CrossRef]
- Ishikawa, M.; Uemura, M.; Matsuyama, T.; Matsumoto, M.; Ishizashi, H.; Kato, S.; Morioka, C.; Fujimoto, M.; Kojima, H.; Yoshiji, H.; et al. Potential role of enhanced cytokinemia and plasma inhibitor on the decreased activity of plasma ADAMTS13 in patients with alcoholic hepatitis: Relationship to endotoxemia. Alcohol. Clin. Exp. Res. 2010, 34, S25–S33. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Fujimura, Y.; Matsuyama, T.; Matsumoto, M.; Ishikawa, M.; Ishizashi, H.; Kato, S.; Tsujimoto, T.; Fujimoto, M.; Yoshiji, H.; et al. Potential role of ADAMTS13 in the progression of alcoholic hepatitis. Curr. Drug Abuse Rev. 2008, 1, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, T.; Uemura, M.; Ishikawa, M.; Matsumoto, M.; Ishizashi, H.; Kato, S.; Morioka, C.; Fujimoto, M.; Kojima, H.; Yoshiji, H.; et al. Increased von Willebrand factor over decreased ADAMTS13 activity may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol. Clin. Exp. Res. 2007, 31, S27–S35. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Matsuyama, T.; Ishikawa, M.; Fujimoto, M.; Kojima, H.; Sakurai, S.; Ishii, S.; Toyohara, M.; Yamazaki, M.; Yoshiji, H.; et al. Decreased activity of plasma ADAMTS13 may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol. Clin. Exp. Res. 2005, 29, 264S–271S. [Google Scholar] [CrossRef]
- Hugenholtz, G.C.G.; Adelmeijer, J.; Meijers, J.C.M.; Porte, R.J.; Stravitz, R.T.; Lisman, T. An unbalance between von Willebrand factor and ADAMTS13 in acute liver failure: Implications for hemostasis and clinical outcome. Hepatology 2013, 58, 752–761. [Google Scholar] [CrossRef]
- Budde, U.; Kentouche, K.; Sossdorf, M.; Hilberg, T.; Schneppenheim, R.; Reinhart, S.; Bauer, M.; Brunkhorst, F.M.; Lösche, W.; Claus, R.A.; et al. Variations in the ratio between von Willebrand factor and its cleaving protease during systemic inflammation and association with severity and prognosis of organ failure. Thromb. Haemost. 2009, 101, 239–247. [Google Scholar] [CrossRef]
- Fukushima, H.; Nishio, K.; Asai, H.; Watanabe, T.; Seki, T.; Matsui, H.; Sugimoto, M.; Matsumoto, M.; Fujimura, Y.; Okuchi, K. Ratio of von Willebrand factor propeptide to ADAMTS13 is associated with severity of sepsis. Shock 2013, 39, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Morioka, C.; Uemura, M.; Matsuyama, T.; Matsumoto, M.; Kato, S.; Ishikawa, M.; Ishizashi, H.; Fujimoto, M.; Sawai, M.; Yoshida, M.; et al. Plasma ADAMTS13 activity parallels the APACHE II score, reflecting an early prognostic indicator for patients with severe acute pancreatitis. Scand. J. Gastroenterol. 2008, 43, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.A.; Varadi, K.; Turecek, P.L.; Knöbl, P.; Jilma, B. Changes in ADAMTS13 (von-Willebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb. Haemost. 2005, 93, 554–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obayashi, T.; Tamura, H.; Tanaka, S.; Ohki, M.; Takahashi, S.; Aral, M.; Masuda, M.; Kawai, T. A new chromogenic endotoxin-specific assay using recombined limulus coagulation enzymes and its clinical applications. Clin. Chim. Acta 1985, 149, 55–65. [Google Scholar] [CrossRef]
- Kato, S.; Matsumoto, M.; Matsuyama, T.; Isonishi, A.; Hiura, H.; Fujimura, Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion 2006, 46, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kawaguchi, S.; Ishizashi, H.; Yagi, H.; Iida, J.; Sakaki, T.; Fujimura, Y. Platelets treated with ticlopidine are less reactive to unusually large von willebrand factor multimers than are those treated with aspirin under high shear stress. Pathophysiol. Haemost. Thromb. 2005, 34, 35–40. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kawa, K.; Uemura, M.; Kato, S.; Ishizashi, H.; Isonishi, A.; Yagi, H.; Park, Y.-D.; Takeshima, Y.; Kosaka, Y.; et al. Prophylactic fresh frozen plasma may prevent development of hepatic VOD after stem cell transplantation via ADAMTS13-mediated restoration of von Willebrand factor plasma levels. Bone Marrow Transpl. 2007, 40, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Jäckel, S.; Kiouptsi, K.; Lillich, M.; Hendrikx, T.; Khandagale, A.; Kollar, B.; Hörmann, N.; Reiss, C.; Subramaniam, S.; Wilms, E.; et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via toll-like receptor-2. Blood 2017, 130, 542–553. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-E.; Park, J.W.; Kim, H.S.; Jang, M.-K.; Suk, K.T.; Kim, D.J. The role of gut dysbiosis in acute-on-chronic liver failure. Int. J. Mol. Sci. 2021, 22, 11680. [Google Scholar] [CrossRef]
- Goulis, J.; Patch, D.; Burroughs, A.K. Bacterial infection in the pathogenesis of variceal bleeding. Lancet 1999, 353, 139–142. [Google Scholar] [CrossRef]
- Mangini, C.; Montagnese, S. New therapies of liver diseases: Hepatic encephalopathy. J. Clin. Med. 2021, 10, 4050. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, D.; Lupu, D. The kidney in cirrhosis with portal hypertension. J. Med. Life 2010, 3, 175–177. [Google Scholar] [PubMed]
- Zaccherini, G.; Tufoni, M.; Iannone, G.; Caraceni, P. Management of ascites in patients with cirrhosis: An update. J. Clin. Med. 2021, 10, 5226. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Sakaki, A.; Matsuyama, Y.; Mushino, T.; Matsumoto, M.; Sonoki, T.; Tamura, S. Acquired thrombotic thrombocytopenic purpura following BNT162b2 mRNA coronavirus disease vaccination in a Japanese patient. Intern. Med. 2022, 61, 407–412. [Google Scholar] [CrossRef]
- Pépin, M.; Kleinjan, A.; Hajage, D.; Buller, H.R.; Di Nisio, M.; Kamphuisen, P.; Salomon, L.J.; Veyradier, A.; Stepanian, A.A.; Mahé, I. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J. Thrombos. Haemost. 2016, 14, 306–315. [Google Scholar] [CrossRef] [Green Version]
- McConnell, M.; Iwakiri, Y. Biology of portal hypertension. Hepatol. Int. 2018, 12, 11–23. [Google Scholar] [CrossRef]
- Francoz, C.; Glotz, D.; Moreau, R.; Durand, F. The evaluation of renal function and disease in patients with cirrhosis. J. Hepatol. 2010, 52, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Samuelson Bannow, B.T.; Konkle, B.A. Laboratory biomarkers for venous thromboembolism risk in patients with hematologic malignancies: A review. Thromb. Res. 2018, 163, 138–145. [Google Scholar] [CrossRef]
- Nien, H.-C.; Hsu, S.-J.; Su, T.-H.; Yang, P.-J.; Sheu, J.-C.; Wang, J.-T.; Chow, L.-P.; Chen, C.-L.; Kao, J.-H.; Yang, W.-S. High serum lipopolysaccharide-binding protein level in chronic hepatitis C viral infection is reduced by anti-viral treatments. PLoS ONE 2017, 12, e0170028. [Google Scholar] [CrossRef] [Green Version]
- Mandorfer, M.; Kozbial, K.; Schwabl, P.; Chromy, D.; Semmler, G.; Stättermayer, A.F.; Pinter, M.; Hernández-Gea, V.; Fritzer-Szekeres, M.; Steindl-Munda, P.; et al. Changes in hepatic venous pressure gradient predict hepatic decompensation in patients who achieved sustained virologic response to interferon-free therapy. Hepatology 2020, 71, 1023–1036. [Google Scholar] [CrossRef] [Green Version]
- Sise, M.E.; Bloom, A.K.; Wisocky, J.; Lin, M.V.; Gustafson, J.L.; Lundquist, A.L.; Steele, D.; Thiim, M.; Williams, W.W.; Hashemi, N.; et al. Treatment of hepatitis C virus-associated mixed cryoglobulinemia with direct-acting antiviral agents. Hepatology 2016, 63, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Tahata, Y.; Hikita, H.; Mochida, S.; Kawada, N.; Enomoto, N.; Ido, A.; Yoshiji, H.; Miki, D.; Hiasa, Y.; Takikawa, Y.; et al. Sofosbuvir plus velpatasvir treatment for hepatitis C virus in patients with decompensated cirrhosis: A Japanese real-world multicenter study. J. Gastroenterol. 2021, 56, 67–77. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 99) | Chronic Hepatitis (n = 15) | Liver Cirrhosis | ||
---|---|---|---|---|---|
Child–Pugh Class A (n = 25) | Child–Pugh Class B (n = 23) | Child–Pugh Class C (n = 36) | |||
Age (year) | 67 (60–74) | 60 (51–67) | 72 (68–76) * | 64 (58–68) | 69 (61–74) * |
Sex (male/female) | 63/36 | 9/6 | 19/6 | 14/9 | 21/15 |
Etiology (HBV/HCV/Alcohol/NASH/PBC/unknown) | 12/67/10/6/3/1 | 0/15/0/0/0/0 | 1/18/4/2/0/0 | 6/15/1/1/0/0 | 5/19/5/3/3/1 |
Albumin (g/dL) | 3.2 (2.8–3.8) | 4.2 (3.9–4.5) | 3.4 (3.1–4.1) * | 3.2 (2.9–3.4) ** | 2.7 (2.5–3.0) *** |
Aspartate aminotransferase (IU/L) | 52 (38–76) | 39 (31–48) | 52 (38–64) | 56 (41–89) | 63 (38–85) |
Alanine aminotransferase (IU/L) | 42 (26–58) | 50 (35–61) | 38 (27–55) | 45 (30–60) | 32 (23–53) |
Prothrombin time (%) | 75 (53–89) | 98 (94–105) | 83 (80–92) * | 71 (64–84) ** | 50 (38–57) *** |
Blood urea nitrogen (mg/dL) | 17 (12–26) | 13 (10–15) | 16 (10–20) | 16 (14–22) * | 26 (16–45) *** |
Creatinine (mg/dL) | 0.8 (0.7–1.1) | 0.8 (0.6–0.8) | 0.8 (0.7–0.9) | 0.7 (0.6–1.0) | 1.0 (0.7–1.5) *, ** |
Total bilirubin (mg/dL) | 1.6 (0.8–2.6) | 0.6 (0.5–1.4) | 1.0 (0.7–1.3) * | 1.6 (0.9–1.9) ** | 3.4 (2.3–5.3) *** |
White blood cell count (/mm3) | 4400 (2975–6200) | 5200 (3700–6150) | 4400 (2900–5500) | 3750 (2575–5100) | 5250 (3300–8175) |
Hemoglobin (g/dL) | 11.4 (9.6–12.8) | 14.0 (12.1–15.5) | 12.0 (11.1–12.8) * | 12.2 (10.9–13.0) | 9.0 (7.7–10.9) *** |
Platelet count (×104/mm3) | 7.7 (5.9–11.0) | 14.2 (9.7–17.2) | 9.2 (7.6–12.7) * | 6.4 (5.2–8.3) ** | 6.4 (4.8–7.7) ** |
Ascites (none/mild to moderate/severe) | 62/12/25 | 15/0/0 | 25/0/0 | 14/7/2 ** | 8/5/23 *** |
Hepatorenal syndrome (with/without) | 9/90 | 0/15 | 0/25 | 1/22 | 8/28 *** |
Encephalopathy (with/without) | 37/62 | 0/15 | 0/25 | 7/16 ** | 30/6 *** |
Esophageal varices (with/without) | 65/34 | 0/15 | 16/9 * | 19/4 * | 30/6 * |
Hepatocellular carcinoma (with/without) | 46/53 | 1/14 | 17/8 * | 12/11 * | 16/20 * |
Variable | Total (n = 99) | Chronic Hepatitis (n = 15) | Liver Cirrhosis | ||
---|---|---|---|---|---|
Child–Pugh Class A (n = 25) | Child–Pugh Class B (n = 23) | Child–Pugh Class C (n = 36) | |||
ADAMTS13:AC (%) | 58 (35–89) | 80 (59–93) | 80 (60–102) | 60 (36–92) ** | 27 (13–45) *** |
VWF:Ag | 341 (259–500) | 290 (152–329) | 315 (221–408) * | 400 (310–626) ** | 415 (303–594) |
VWF:Ag /ADAMTS13:AC | 6.5 (3.5–16.6) | 3.3 (2.5–4.6) | 4.2 (3.1–5.5) * | 7.2 (3.5–13.9) ** | 18.2 (10.3–33.2) *** |
ADAMTS13:INH (with/without) | 18/81 | 0/15 | 1/24 | 4/19 | 13/23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takaya, H.; Namisaki, T.; Asada, S.; Iwai, S.; Kubo, T.; Suzuki, J.; Enomoto, M.; Tsuji, Y.; Fujinaga, Y.; Nishimura, N.; et al. ADAMTS13, VWF, and Endotoxin Are Interrelated and Associated with the Severity of Liver Cirrhosis via Hypercoagulability. J. Clin. Med. 2022, 11, 1835. https://doi.org/10.3390/jcm11071835
Takaya H, Namisaki T, Asada S, Iwai S, Kubo T, Suzuki J, Enomoto M, Tsuji Y, Fujinaga Y, Nishimura N, et al. ADAMTS13, VWF, and Endotoxin Are Interrelated and Associated with the Severity of Liver Cirrhosis via Hypercoagulability. Journal of Clinical Medicine. 2022; 11(7):1835. https://doi.org/10.3390/jcm11071835
Chicago/Turabian StyleTakaya, Hiroaki, Tadashi Namisaki, Shohei Asada, Satoshi Iwai, Takahiro Kubo, Junya Suzuki, Masahide Enomoto, Yuki Tsuji, Yukihisa Fujinaga, Norihisa Nishimura, and et al. 2022. "ADAMTS13, VWF, and Endotoxin Are Interrelated and Associated with the Severity of Liver Cirrhosis via Hypercoagulability" Journal of Clinical Medicine 11, no. 7: 1835. https://doi.org/10.3390/jcm11071835
APA StyleTakaya, H., Namisaki, T., Asada, S., Iwai, S., Kubo, T., Suzuki, J., Enomoto, M., Tsuji, Y., Fujinaga, Y., Nishimura, N., Sawada, Y., Kaji, K., Kawaratani, H., Moriya, K., Akahane, T., Matsumoto, M., & Yoshiji, H. (2022). ADAMTS13, VWF, and Endotoxin Are Interrelated and Associated with the Severity of Liver Cirrhosis via Hypercoagulability. Journal of Clinical Medicine, 11(7), 1835. https://doi.org/10.3390/jcm11071835