Evolution of Early Postoperative Cardiac Rehabilitation in Patients with Acute Type A Aortic Dissection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Cardiac Rehabilitation Program
2.4. Study Procedures
2.4.1. Exercise Stress Test
2.4.2. Exercise Training
2.5. Statistical Analysis
3. Results
4. Discussion
Study Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrman, J.K.; Fernandez, A.B.; Myers, J.; Oh, P.; Thompson, P.D.; Keteyian, S.J. Aortic Aneurysm: Diagnosis, Management, Exercise Testing, and Training. J. Cardiopulm. Rehabil. Prev. 2020, 40, 215–223. [Google Scholar] [CrossRef]
- Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; Bartolomeo, R.D.; Eggebrecht, H.; Evangelista, A.; Falk, V.; Frank, H.; Gaemperli, O.; et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2873–2926. [Google Scholar]
- Hagan, P.G.; Nienaber, C.A.; Isselbacher, E.M.; Bruckman, D.; Karavite, D.J.; Russman, P.L.; Evangelista, A.; Fattori, R.; Suzuki, T.; Oh, J.K.; et al. The International Registry of Acute Aortic Dissection (IRAD): New insights into an old disease. JAMA 2000, 283, 897–903. [Google Scholar] [CrossRef]
- Schachner, T.; Fischler, N.; Dumfarth, J.; Bonaros, N.; Krapf, C.; Schobersberger, W.; Grimm, M. Aortic Dissection Type A in Alpine Skiers. BioMed Res. Int. 2013, 2013, 192459. [Google Scholar] [CrossRef]
- Koullias, G.; Modak, R.; Tranquilli, M.; Korkolis, D.P.; Barash, P.; Elefteriades, J.A. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J. Thorac. Cardiovasc. Surg. 2005, 130, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Green, D.J.; Hopman, M.T.E.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H.J. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef]
- Fuglsang, S.; Heiberg, J.; Hjortdal, V.E.; Laustsen, S. Exercise-based cardiac rehabilitation in surgically treated type-A aortic dissection patients. Scand. Cardiovasc. J. 2017, 51, 99–105. [Google Scholar] [CrossRef]
- Delsart, P.; Maldonado-Kauffmann, P.; Bic, M.; Boudghene-Stambouli, F.; Sobocinski, J.; Juthier, F.; Domanski, O.; Coisne, A.; Azzaoui, R.; Rousse, N.; et al. Post aortic dissection: Gap between activity recommendation and real life patients aerobic capacities. Int. J. Cardiol. 2016, 219, 271–276. [Google Scholar] [CrossRef]
- Chaddha, A.; Kline-Rogers, E.; Braverman, A.C.; Erickson, S.R.; Jackson, E.A.; Franklin, B.A.; Woznicki, E.M.; Jabara, J.T.; Montgomery, D.G.; Eagle, K.A. Survivors of Aortic Dissection: Activity, Mental Health, and Sexual Function. Clin. Cardiol. 2015, 38, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arter. Off. J. Am. Heart Assoc. Inc. 1985, 5, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-X.; Xiang, C.; Liu, B.; Zhu, Y.; Luan, Y.; Liu, S.-T.; Qin, K.-R. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Biomed. Eng. Online 2016, 15, 154. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259904/ (accessed on 8 April 2019). [CrossRef] [Green Version]
- Laufs, U.; Werner, N.; Link, A.; Endres, M.; Wassmann, S.; Jürgens, K.; Miche, E.; Böhm, M.; Nickenig, G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004, 109, 220–226. [Google Scholar] [CrossRef]
- Chaddha, A.; Eagle, K.A.; Braverman, A.C.; Kline-Rogers, E.; Hirsch, A.T.; Brook, R.; Jackson, E.A.; Bs, E.M.W.; Housholder-Hughes, S.; Pitler, L.; et al. Exercise and Physical Activity for the Post-Aortic Dissection Patient: The Clinician’s Conundrum. Clin. Cardiol. 2015, 38, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Braverman, A.C. Exercise and the Marfan syndrome. Med. Sci. Sports Exerc. 1998, 30, S387–S395. [Google Scholar] [CrossRef]
- Mas-Stachurska, A.; Siegert, A.; Batlle, M.; del Blanco, D.G.; Meirelles, T.; Rubies, C.; Bonorino, F.; Serra-Peinado, C.; Bijnens, B.; Baudin, J.; et al. Cardiovascular Benefits of Moderate Exercise Training in Marfan Syndrome: Insights from an Animal Model. J. Am. Heart Assoc. 2017, 6, e006438. [Google Scholar] [CrossRef] [Green Version]
- Nienaber, C.A.; Clough, R.E. Management of acute aortic dissection. Lancet 2015, 385, 800–811. [Google Scholar] [CrossRef]
- Landenhed, M.; Engström, G.; Gottsäter, A.; Caulfield, M.P.; Hedblad, B.; Newton-Cheh, C.; Melander, O.; Smith, J.G. Risk Profiles for Aortic Dissection and Ruptured or Surgically Treated Aneurysms: A Prospective Cohort Study. J. Am. Heart Assoc. 2015, 4, e001513. [Google Scholar] [CrossRef] [Green Version]
- Schwaab, B.; Rauch, B.; Völler, H.; Benzer, W.; Schmid, J.-P. Beyond randomised studies: Recommendations for cardiac rehabilitation following repair of thoracic aortic aneurysm or dissection. Eur. J. Prev. Cardiol. 2020, 28, e17–e19. [Google Scholar] [CrossRef]
- Pavy, B.; Iliou, M.-C.; Vergès-Patois, B.; Brion, R.; Monpère, C.; Carré, F.; Aeberhard, P.; Argouach, C.; Borgne, A.; Consoli, S.; et al. French Society of Cardiology guidelines for cardiac rehabilitation in adults. Arch. Cardiovasc. Dis. 2012, 105, 309–328. [Google Scholar] [CrossRef]
- Kokkinos, P.; Kaminsky, L.A.; Arena, R.; Zhang, J.; Franklin, B.; Kraus, W.; Triantafyllidi, H.; Benas, D.; Whellan, D.J.; Myers, J. New Equations for Predicting Maximum Oxygen Uptake in Patients with Heart Failure. Am. J. Cardiol. 2020, 128, 7–11. [Google Scholar] [CrossRef]
- McMahon, S.R.; Ades, P.A.; Thompson, P.D. The role of cardiac rehabilitation in patients with heart disease. Trends Cardiovasc. Med. 2017, 27, 420–425. [Google Scholar] [CrossRef]
- Milewicz, D.M.; Prakash, S.K.; Ramirez, F. Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models. Annu. Rev. Med. 2017, 68, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Milleron, O.; Arnoult, F.; Delorme, G.; Detaint, D.; Pellenc, Q.; Raffoul, R.; Tchitchinadze, M.; Langeois, M.; Guien, C.; Beroud, C.; et al. Pathogenic FBN1 Genetic Variation and Aortic Dissection in Patients with Marfan Syndrome. J. Am. Coll. Cardiol. 2020, 75, 843–853. [Google Scholar] [CrossRef]
- Myers, J.; Mcelrath, M.; Jaffe, A.; Smith, K.; Fonda, H.; Vu, A.; Hill, B.; Dalman, R. A Randomized Trial of Exercise Training in Abdominal Aortic Aneurysm Disease. Med. Sci. Sports Exerc. 2014, 46, 2–9. [Google Scholar] [CrossRef]
- Nakayama, A.; Morita, H.; Nagayama, M.; Hoshina, K.; Uemura, Y.; Tomoike, H.; Komuro, I. Cardiac Rehabilitation Protects Against the Expansion of Abdominal Aortic Aneurysm. J. Am. Heart Assoc. 2018, 7, e007959. [Google Scholar] [CrossRef]
- MacDonald, J.R. Potential causes, mechanisms, and implications of post exercise hypotension. J. Hum. Hypertens. 2002, 16, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Corone, S.; Iliou, M.-C.; Pierre, B.; Feige, J.-M.; Odjinkem, D.; Farrokhi, T.; Bechraoui, F.; Hardy, S.; Meurin, P. Cardiac Rehabilitation working Group of the French Society of Cardiology French registry of cases of type I acute aortic dissection admitted to a cardiac rehabilitation center after surgery. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 91–95. [Google Scholar] [CrossRef]
- Chaddha, A.; Kline-Rogers, E.; Woznicki, E.M.; Brook, R.; Housholder-Hughes, S.; Braverman, A.C.; Pitler, L.; Hirsch, A.T.; Eagle, K.A. Activity Recommendations for Postaortic Dissection Patients. Circulation 2014, 130, e140–e142. [Google Scholar] [CrossRef] [Green Version]
- Spanos, K.; Tsilimparis, N.; Kölbel, T. Exercise after Aortic Dissection: To Run or Not to Run. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 755–756. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Hornsby, W.E.; Norton, E.L.; Fink, S.; Saberi, S.; Wu, X.; McGowan, C.L.; Brook, R.D.; Jones, L.W.; Willer, C.J.; Patel, H.J.; et al. Cardiopulmonary Exercise Testing Following Open Repair for a Proximal Thoracic Aortic Aneurysm or Dissection. J. Cardiopulm. Rehabil. Prev. 2020, 40, 108–115. [Google Scholar] [CrossRef]
- Arena, R.; Myers, J.; Guazzi, M. The Clinical Significance of Aerobic Exercise Testing and Prescription: From Apparently Healthy to Confirmed Cardiovascular Disease. Am. J. Lifestyle Med. 2008, 2, 519–536. Available online: http://journals.sagepub.com/doi/10.1177/1559827608323210 (accessed on 31 March 2022). [CrossRef]
- Goyal, P.; Gorodeski, E.Z.; Marcum, Z.A.; Forman, D.E. Cardiac Rehabilitation to Optimize Medication Regimens in Heart Failure. Clin. Geriatr. Med. 2019, 35, 549–560. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233375/ (accessed on 31 March 2022). [CrossRef]
- Mendes, M. The Role of Cardiac Rehabilitation in Achieving Optimal Treatment. Eur. Cardiol. 2011, 7, 62. Available online: https://www.ecrjournal.com/articleindex/ecr.2011.7.1.62 (accessed on 21 October 2021). [CrossRef]
- Inbar, O.; Oren, A.; Scheinowitz, M.; Rotstein, A.; Dlin, R.; Casaburi, R. Normal cardiopulmonary responses during incremental exercise in 20- to 70-yr-old men. Med. Sci. Sports Exerc. 1994, 26, 538–546. [Google Scholar] [CrossRef]
- Tchissambou, B.P.; Massamba, A.; Babela, J.R.M.; Mouanou, J.K.; Mboussa, J.; Senga, P. The effects of smoking and the degree of nicotine dependence on aerobic capacity in sportsmen. Rev. Mal. Respir. 2004, 21, 59–66. [Google Scholar]
- Hirsch, G.L.; Sue, D.Y.; Wasserman, K.; Robinson, T.E.; Hansen, J.E. Immediate effects of cigarette smoking on cardiorespiratory responses to exercise. J. Appl. Physiol. 1985, 58, 1975–1981. [Google Scholar] [CrossRef]
- Montoye, H.J.; Gayle, R.; Higgins, M. Smoking habits, alcohol consumption and maximal oxygen uptake. Med. Sci. Sports Exerc. 1980, 12, 316–321. [Google Scholar] [CrossRef]
- Tobita, Y.; Otaki, H.; Kusaka, Y.; Iki, M.; Kajita, E.; Sato, K. A cross-sectional analysis on relationships between maximum oxygen uptake and risk factors for cardiovascular diseases. Sangyo Eiseigaku Zasshi 1995, 37, 409–415. [Google Scholar] [CrossRef]
- Suminski, R.R.; Wier, L.T.; Poston, W.; Arenare, B.; Randles, A.; Jackson, A.S. The Effect of Habitual Smoking on Measured and Predicted VO2max. J. Phys. Act. Health 2009, 6, 667–673. [Google Scholar] [CrossRef]
Before CR (n = 73) | |
---|---|
Age (years) | 62.2 ± 12.7 |
Gender (Male) | 57 (78.1%) |
Height (cm) | 172.9 ± 10.1 |
Body weight (kg) | 71.7 ± 17.8 |
BMI (kg/m2) | 23.9± 4.4 |
SBP (mm Hg) | 121.6 ± 15.5 |
DBP (mm Hg) | 70.8 ± 10.5 |
Left ventricular ejection fraction (%) | 66.6 ± 8.2 |
Small pericardial effusion graded by echocardiography | 10 (13.7%) |
Hemoglobin (g/dL) | 10.6 ± 1.3 |
Serum creatinine (µmol/L) | 84.4 ± 49.1 |
C-reactive protein (mg/L) | 60.9 ± 48.5 |
Hypertension | 54.8% |
Sinus rhythm | 93.1% |
Smoking | 28.7% |
Sedentary lifestyle | 23.3% |
Surgical interventions | |
<48 h delay from first symptom to surgery | 89% |
Prosthetic Aortic tube | 98.6% |
Aortic valve replacement | 26.0% |
Baseline medications | |
Anticoagulants | 39.7% |
VKA | 35.6% |
DOAC | 4.1% |
Antiplatelet drugs without VKA | 38.3% |
ß-blocker | 90.4% |
ACEI/ARB | 63.0% |
CCB | 40.3% |
Diuretics | 23.3% |
≥3 Antihypertensive drugs | 60.3% |
Before CR | After CR | |
---|---|---|
CR organization | ||
Delay between surgery and CR (days) | 26.2 ± 17.3 | |
Length of stay for phase II CR (days) | 30.4 ± 11.6 | |
Sessions of continuous endurance training (times) | 14.5 ± 4.7 | |
Sessions of segmental strength training (times) | 11.8 ± 4.3 | |
Endurance training | ||
Maximal SBP during endurance training (mm Hg) | 143 ± 14 | |
Maximal DBP during endurance training (mm Hg) | 88 ± 14 | |
Workload during endurance training (watts) | 27.1 ± 16.1 | 46.8 ± 21.2 *** |
Gain of workload during endurance training (watts) | +19.6 ± 10.2 | |
Exercise stress test (ExT) | ||
Resting HR during ExT (bpm) | 86.1 ± 17.4 | 76.4 ± 13.3 *** |
Maximal HR during ExT (bpm) | 105.0 ± 22.8 | 110.6 ± 17.2 |
HR reserve | 20.2 ± 13.9 | 33.2 ± 16.8 *** |
Resting SBP | 115.3 ± 23.2 | 116.6 ± 24.8 |
Resting DBP | 68.5 ± 13.2 | 69.4 ± 13.5 |
Maximal SBP during ExT (mm Hg) | 142.1 ± 28.9 | 169.8 ± 39.0 * |
Maximal DBP during ExT (mm Hg) | 74.7 ± 19.1 | 95.7 ± 30.2 ** |
Maximal workload during ExT (watts) | 63.5 ± 28.6 | 93.0 ± 35.6 *** |
Functional capacity (METs) | 3.67 ± 0.96 | 4.94 ± 1.21 *** |
Gain of METs | +1.2 ± 0.6 |
Correlation (r) | Baseline Creatinine | Gain of Workload during Training | Number of Training Session | Baseline Resting DBP | Gain of HR Reserve |
---|---|---|---|---|---|
Gain of METs after CR | −0.40 * | 0.55 * | 0.24 | −0.46 * | 0.6 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Fortin, G.; Balice, M.; Kovalska, O.; Cristofini, P.; Ledru, F.; Mampuya, W.M.; Iliou, M.-C. Evolution of Early Postoperative Cardiac Rehabilitation in Patients with Acute Type A Aortic Dissection. J. Clin. Med. 2022, 11, 2107. https://doi.org/10.3390/jcm11082107
Zhou N, Fortin G, Balice M, Kovalska O, Cristofini P, Ledru F, Mampuya WM, Iliou M-C. Evolution of Early Postoperative Cardiac Rehabilitation in Patients with Acute Type A Aortic Dissection. Journal of Clinical Medicine. 2022; 11(8):2107. https://doi.org/10.3390/jcm11082107
Chicago/Turabian StyleZhou, Na, Gabriel Fortin, Maria Balice, Oksana Kovalska, Pascal Cristofini, Francois Ledru, Warner M. Mampuya, and Marie-Christine Iliou. 2022. "Evolution of Early Postoperative Cardiac Rehabilitation in Patients with Acute Type A Aortic Dissection" Journal of Clinical Medicine 11, no. 8: 2107. https://doi.org/10.3390/jcm11082107
APA StyleZhou, N., Fortin, G., Balice, M., Kovalska, O., Cristofini, P., Ledru, F., Mampuya, W. M., & Iliou, M. -C. (2022). Evolution of Early Postoperative Cardiac Rehabilitation in Patients with Acute Type A Aortic Dissection. Journal of Clinical Medicine, 11(8), 2107. https://doi.org/10.3390/jcm11082107