Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Subjects and Patients
2.2. Standard Echocardiographic Examination
2.3. HyperDoppler Technique Description
2.4. HyperDoppler Image Acquisition
2.5. HyperDoppler Image Analysis
2.6. Effect of Measurement Variations
2.7. Statistical Analysis
3. Results
3.1. Feasibility
3.2. Descriptive Analysis
3.3. Repeatability and Reproducibility
3.4. InterCenter Variability
3.5. Effect of Measurement Variations
3.6. Quantitative Analysis
4. Discussion
4.1. Study of Left Intraventricular Flow Dynamics
4.2. HyperDoppler vs. Other Color-Doppler Based Techniques
4.3. Reliability of the HyperDoppler Technique
4.4. Visual Evaluation of Vortex Flow in Normal Subjects
4.5. Quantitative Evaluation of Vortex Flow
4.6. How to Approach Vortex Analysis in Practice
4.7. Study Advantages
4.8. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Description of the HyperDoppler Technique
References
- Mele, D.; Smarrazzo, V.; Pedrizzetti, G.; Capasso, F.; Pepe, M.; Severino, S.; Luisi, G.A.; Maglione, M.; Ferrari, R. Intracardiac Flow Analysis: Techniques and Potential Clinical Applications. J. Am. Soc. Echocardiogr. 2019, 32, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Pedrizzetti, G.; Domenichini, F. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 2005, 95, 108101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrizzetti, G.; La Canna, G.; Alfieri, O.; Tonti, G. The vortex—An early predictor of cardiovascular outcome. Nat. Rev. Cardiol. 2014, 11, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Walker, P.G.; Pedersen, E.M.; Poulsen, J.K.; Oyre, S.; Houlind, K.; Yoganathan, A.P. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 1995, 26, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Adrian, R.J. Twenty years of particle image velocimetry. Exp. Fluids 2005, 39, 159–169. [Google Scholar] [CrossRef]
- Kheradvar, A.; Houle, H.; Pedrizzetti, G.; Tonti, G.; Belcik, T.; Ashraf, M.; Lindner, J.R.; Gharib, M.; Sahn, D. Echocardiographic particle image velocimetry: A novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 2010, 23, 86–94. [Google Scholar] [CrossRef]
- Stugaard, M.; Koriyama, H.; Katsuki, K.; Masuda, K.; Asanuma, T.; Takeda, Y.; Sakata, Y.; Itatani, K.; Nakatani, S. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: A combined experimental and clinical study. Eur. Heart J. -Cardiovasc. Imaging 2015, 16, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef]
- Cimino, S.; Pedrizzetti, G.; Tonti, G.; Canali, E.; Petronilli, V.; De Luca, L.; Iacoboni, C.; Agati, L. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. B/Fluids 2012, 35, 40–46. [Google Scholar] [CrossRef]
- Mele, D.; Smarrazzo, V.; Pedrizzetti, G.; Bertini, M.; Ferrari, R. Intracardiac flow analysis in cardiac resynchronization therapy: A new challenge? Echocardiography 2019, 36, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Uejima, T.; Koike, A.; Sawada, H.; Aizawa, T.; Ohtsuki, S.; Tanaka, M.; Furukawa, T.; Fraser, A.G. A new echocardiographic method for identifying vortex flow in the left ventricle: Numerical validation. Ultrasound Med. Biol. 2010, 36, 772–788. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; del Álamo, J.C.; Tanné, D.; Yotti, R.; Cortina, C.; Bertrand, É.; Antoranz, J.C.; Pérez-David, E.; Rieu, R.; Fernández-Avilés, F.; et al. Two-Dimensional Intraventricular Flow Mapping by Digital Processing Conventional Color-Doppler Echocardiography Images. IEEE Trans. Med. Imag 2010, 29, 1701–1713. [Google Scholar] [CrossRef] [PubMed]
- Mehregan, F.; Tournoux, F.; Muth, S.; Pibarot, P.; Rieu, R.; Cloutier, G.; Garcia, D. Doppler vortography: A color doppler approach to quantification of intraventricular blood flow vortices. Ultrasound Med. Biol. 2014, 40, 210–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbaz, M.S.M.; Calkoen, E.E.; Westenberg, J.J.M.; Lelieveldt, B.P.F.; Roest, A.A.W.; van der Geest, R.J. Vortex flow during early and late left ventricular filling in normal subjects: Quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J. Cardiovasc. Magn. Reson. 2014, 16, 78. [Google Scholar] [CrossRef] [Green Version]
- Steding-Ehrenborg, K.; Arvidsson, P.M.; Töger, J.; Rydberg, M.; Heiberg, E.; Carlsson, M.; Arheden, H. Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H113–H122. [Google Scholar] [CrossRef] [Green Version]
- Mangual, J.O.; Kraigher-Krainer, E.; De Luca, A.; Toncelli, L.; Shah, A.; Solomon, S.; Galanti, G.; Domenichini, F.; Pedrizzetti, G. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 2013, 46, 1611–1617. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, M.S.M.; van der Geest, R.J.; Calkoen, E.E.; de Roos, A.; Lelieveldt, B.P.F.; Roest, A.A.W.; Westenberg, J.J.M. Assessment of Viscous Energy Loss and the Association with Three-Dimensional Vortex Ring Formation in Left Ventricular Inflow: In Vivo Evaluation Using Four-Dimensional Flow MRI. Magn. Reson. Med. 2017, 77, 794–805. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Munoz, D.; Markl, M.; Moya Mur, J.L.; Barker, A.; Fernandez-Golfin, C.; Lancellotti, P.; Zamorano Gomez, J.L. Intracardiac flow visualization: Current status and future directions. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 1029–1038. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, P.P.; Pedrizzetti, G.; Kilner, P.J.; Kheradvar, A.; Ebbers, T.; Tonti, G.; Fraser, A.G.; Narula, J. Emerging trends in CV flow visualization. J. Am. Coll. Cardiol. Imaging 2012, 5, 305–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinz, C.; Faludi, R.; Walker, A.; Amzulescu, M.; Gao, H.; Uejima, T.; Fraser, A.G.; Voigt, J.-U. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc. Ultrasound 2012, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Vixege, F.; PYCourand Nicoud, F.; Vray, D.; Garcia, D. Intraventricular vector flow mapping by 3D doppler echo. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 107–108. [Google Scholar] [CrossRef]
- Chan, J.S.K.; Lau, D.H.H.; Fan, Y.; Lee, A.P.-W. Age-Related Changes in Left Ventricular Vortex Formation and Flow Energetics. J. Clin. Med. 2021, 10, 3619. [Google Scholar] [CrossRef]
- Adabifirouzjaei, F.; Igata, S.; Strachan, S.; DeMaria, A.N. Diastolic Left Ventricular Energy Loss: Relation to Age, Phase of Diastole, and Flow Velocity. J. Am. Soc. Echocardiogr. 2021, 34, 698–700. [Google Scholar] [CrossRef] [PubMed]
Unselected Patients | Normal Subjects | Athletes | Heart Failure Patients | ||||
---|---|---|---|---|---|---|---|
Center 1 | Center 2 | p Value | Centers 1 and 2 | Center 2 | Center 2 | p Value | |
Individuals (n) | 100 | 100 | - | 50 | 30 | 50 | - |
Age (years) | 65 ± 16 | 62 ± 16 | 0.24 | 37 ± 13 | 24 ± 5 | 69 ± 11 | <0.001 |
Sex (M/F) | 67/33 | 56/44 | 0.11 | 23/27 | 30/0 | 29/21 | <0.001 |
BSA (m2) | 1.83 ± 0.21 | 1.84 ± 0.20 | 0.72 | 1.7 ± 0.2 | 1.96 ± 0.12 | 1.83 ± 0.23 | <0.001 |
Heart rate (bpm) | 74 ± 14 | 73 ± 9 | 0.40 | 62 ± 6 | 56 ± 7 | 76 ± 8 | <0.001 |
SBP (mmHg) | 128 ± 13 | 131 ± 12 | 0.82 | 126 ± 11 | 114 ± 5 | 116 ± 15 | <0.001 |
DBP (mmHg) | 77 ± 8 | 80 ± 9 | 0.43 | 78 ± 5 | 73 ± 5 | 70 ± 10 | <0.001 |
IHD (n) | 21 | 17 | 0.108 | 0 | 0 | 10 | - |
HHD (n) | 31 | 26 | 0 | 0 | 5 | - | |
VHD (n) | 12 | 14 | 0 | 0 | 3 | - | |
DCM (n) | 11 | 9 | 0 | 0 | 24 | - | |
Other etiologies (n) | 25 | 34 | 0 | 0 | 8 | - | |
Atrial fibrillation (n) | 13 | 11 | 0.663 | 0 | 0 | 3 | - |
LV-EDD (cm) | 4.8 ± 0.8 | 4.7 ± 0.7 | 0.81 | 4.5 ± 0.4 | 5.2 ± 0.3 | 6.7 ± 0.7 | <0.001 |
IVS-EDT (cm) | 1 ± 0.2 | 1 ± 0.2 | 0.12 | 0.8 ± 0.1 | 0.9 ± 0.2 | 1 ± 0.2 | <0.001 |
PW-EDT (cm) | 1 ± 0.2 | 1 ± 0.1 | 0.20 | 0.7 ± 0.1 | 0.9 ± 0.1 | 1 ± 0.2 | <0.001 |
LV-EDVi (mL/m2) | 57 ± 26 | 52 ± 20 | 0.12 | 51 ± 8 | 63 ± 9 | 84 ± 25 | <0.001 |
LV-ESVi (mL/m2) | 27 ± 22 | 25 ± 15 | 0.42 | 21 ± 4 | 27 ± 5 | 60 ± 23 | <0.001 |
LV-EF (%) | 57 ± 13 | 56 ± 10 | 0.66 | 60 ± 4 | 61 ± 3 | 37 ± 8 | <0.001 |
Peak E-wave (cm/s) | 76 ± 25 | 72 ± 19 | 0.22 | 75 ± 15 | 87 ± 12 | 70 ± 19 | <0.001 |
Peak A-wave (cm/s) | 70 ± 28 | 73 ± 23 | 0.51 | 57 ± 17 | 54 ± 14 | 74 ± 32 | <0.001 |
E/A ratio | 1.4 ± 1.2 | 1.6 ± 0.5 | 0.63 | 1.4 ± 0.5 | 1.6 ± 0.5 | 1.1 ± 0.7 | <0.001 |
Peak e’ (cm/s) | 9 ± 3 | 10 ± 7 | 0.85 | 13 ± 3 | 16 ± 3 | 5 ± 2 | <0.001 |
E/e’ ratio | 10 ± 7 | 8 ± 3 | 0.13 | 6 ± 1.7 | 5 ± 1.2 | 15 ± 7 | <0.001 |
LAVi (mL/m2) | 33 ± 18 | 32 ± 16 | 0.76 | 19 ± 4 | 32 ± 6 | 31 ± 13 | <0.001 |
TAPSE (cm) | 2.4 ± 0.5 | 2.5 ± 0.4 | 0.15 | 2.7 ± 2.8 | 2.6 ± 0.4 | 2.0 ± 0.4 | <0.001 |
MR (A/Mi/Mo/S) | 26/58/15/1 | 27/52/19/2 | 0.284 | 50/0/0/0 | 30/0/0/0 | 3/29/12/6 | <0.001 |
AR (A/Mi/Mo/S) | 55/31/13/1 | 60/27/10/3 | 0.17 | 50/0/0/0 | 30/0/0/0 | 42/5/2/1 | 0.03 |
Pericardial effusion | 1 | 0 | 0.316 | 0 | 0 | 1 | 0.204 |
Early Filling | Diastasis | Late Filling | Isometric Contraction | ||||
---|---|---|---|---|---|---|---|
A-Vortex | P-Vortex | A-Vortex | P-Vortex | A-Vortex | P-Vortex | A-Vortex | |
N | 48 | 44 | 39 | 15 | 46 | 37 | 45 |
% | 96 | 88 | 78 | 30 | 92 | 74 | 90 |
Repeatability | |||
---|---|---|---|
Center 1 (N = 95) | Center 2 (N = 94) | Center 2 vs. Center 1 | |
Vortex area | ICC = 0.86 (0.79–0.90) | ICC = 0.88 (0.83–0.92) | ICC = 0.02 (2.2%) |
LOA = 0.07, −0.06 | LOA = 0.06, −0.05 | ||
Vortex length | ICC = 0.85 (0.78–0.90) | ICC = 0.82 (0.74–0.88) | ICC = 0.03 (3.5%) |
LOA = 0.12, −0.11 | LOA = 0.11, −0.0 | ||
Vortex depth | ICC = 0.88 (0.83–0.92) | ICC = 0.91 (0.87–0.94) | ICC = 0.03 (3.4%) |
LOA = 0.08, −0.09 | LOA = 0.07, −0.08 | ||
Vortex intensity | ICC = 0.92 (0.89–0.95) | ICC = 0.90 (0.85–0.93) | ICC = 0.02 (2.2%) |
LOA = 0.06, −0.07 | LOA = 0.06, −0.07 | ||
KED | ICC = 0.98 (0.96–0.98) | ICC = 0.98 (0.97–0.99) | ICC = 0 |
LOA = 0.14, −0.11 | LOA = 0.14, −0.12 |
Reproducibility | |||
---|---|---|---|
Center 1 (N = 95) | Center 2 (N = 94) | Center 2 vs. Center 1 | |
Vortex area | ICC = 0.86 (0.80–0.91) | ICC = 0.86 (0.80–0.91) | ICC = 0.01 (1.2%) |
LOA = 0.08, −0.05 | LOA = 0.07, −0.06 | ||
Vortex length | ICC = 0.78 (0.70–0.85) | ICC = 0.78 (0.69–0.85) | ICC = 0.01 (1.2%) |
LOA = 0.12, −0.11 | LOA = 0.12, −0.12 | ||
Vortex depth | ICC = 0.91 (0.86–0.94) | ICC = 0.84 (0.78–0.89) | ICC = 0.05 (5.6%) |
LOA = 0.9, −0.06 | LOA = 0.10, −0.09 | ||
Vortex intensity | ICC = 0.94 (0.91–0.96) | ICC = 0.87 (0.81–0.91) | ICC = 0.07 (7.6%) |
LOA = 0.06, −0.07 | LOA = 0.08, −0.07 | ||
KED | ICC = 0.97 (0.96–0.98) | ICC = 0.97 (0.96–0.98) | ICC = 0 |
LOA = 0.15, −0.14 | LOA = 0.17, −0.16 |
LVOT Measurement | p Value | Repeated LV Border Tracing | p Value | |||
---|---|---|---|---|---|---|
Below the Aortic Valve Plane | At the Aortic Valve Plane | Observer 1 | Observer 2 | |||
Area | 0.22 ± 0.07 | 0.22 ± 0.07 | 0.92 | 0.22 ± 0.07 | 0.22 ± 0.07 | 0.98 |
Depth | 0.32 ± 0.08 | 0.31 ± 0.08 | 0.61 | 0.32 ± 0.08 | 0.32 ± 0.08 | 0.74 |
Length | 0.53 ± 0.11 | 0.52 ± 0.11 | 0.91 | 0.53 ± 0.11 | 0.53 ± 0.11 | 0.98 |
Intensity | −0.27 ± 0.1 | −0.27 ± 0.1 | 0.59 | −0.27 ± 0.1 | −0.27 ± 0.1 | 0.97 |
KED | 0.90 ± 0.43 | 0.94 ± 0.43 | 0.04 | 0.82 ± 0.33 | 0.85 ± 0.45 | 0.99 |
Normal Subjects (N = 50) | Athletes (N = 30) | Heart Failure Patients (N = 47) | p Value | |
---|---|---|---|---|
Vortex area | 0.26 ± 0.05 | 0.31 ± 0.04 | 0.31 ± 0.04 | p < 0.001 overall, NS vs. ATH and NS vs. HF |
Vortex length | 0.62 ± 0.11 | 0.67 ± 0.09 | 0.73 ± 0.08 | p < 0.001 overall and NS vs. HF, p = 0.003 ATH vs. HF |
Vortex depth | 0.33 ± 0.08 | 0.32 ± 0.05 | 0.39 ± 0.06 | p < 0.001 overall, NS vs. HF and ATH vs. HF |
Vortex intensity | −0.35 ± 0.09 | −0.41 ± 0.04 | −0.42 ± 0.04 | p < 0.001 overall, NS vs. ATH and NS vs. HF |
KED | 0.67 ± 0.35 | 1.23 ± 0.24 | 0.19 ± 0.09 | p < 0.001 overall, NS vs. ATH, NS vs. HF and ATH vs. HF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorencis, A.; Pepe, M.; Smarrazzo, V.; Martini, M.; Severino, S.; Pergola, V.; Evangelista, M.; Incarnato, P.; Previtero, M.; Maglione, M.; et al. Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure. J. Clin. Med. 2022, 11, 2216. https://doi.org/10.3390/jcm11082216
Fiorencis A, Pepe M, Smarrazzo V, Martini M, Severino S, Pergola V, Evangelista M, Incarnato P, Previtero M, Maglione M, et al. Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure. Journal of Clinical Medicine. 2022; 11(8):2216. https://doi.org/10.3390/jcm11082216
Chicago/Turabian StyleFiorencis, Andrea, Marco Pepe, Vittorio Smarrazzo, Marika Martini, Salvatore Severino, Valeria Pergola, Marco Evangelista, Pierluigi Incarnato, Marco Previtero, Marco Maglione, and et al. 2022. "Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure" Journal of Clinical Medicine 11, no. 8: 2216. https://doi.org/10.3390/jcm11082216
APA StyleFiorencis, A., Pepe, M., Smarrazzo, V., Martini, M., Severino, S., Pergola, V., Evangelista, M., Incarnato, P., Previtero, M., Maglione, M., Iliceto, S., Pedrizzetti, G., & Mele, D. (2022). Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure. Journal of Clinical Medicine, 11(8), 2216. https://doi.org/10.3390/jcm11082216