The Efficacy of Single-Stage Correction by Posterior Approach for Neglected Congenital Scoliosis: Comparative Analysis According to the Age of Surgical Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients Group
2.2. Surgical Intervention
2.3. Measurements of Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, H.R.; Moramarco, M. Congenital scoliosis (mini-review). Curr. Pediatr. Rev. 2016, 12, 43–47. [Google Scholar] [CrossRef]
- Hedden, D. Management themes in congenital scoliosis. J. Bone Jt. Surg. Am. 2007, 89 (Suppl. 1), 72–78. [Google Scholar] [CrossRef]
- Campbell, R.M., Jr.; Smith, M.D.; Mayes, T.C.; Mangos, J.A.; Willey-Courand, D.B.; Kose, N.; Pinero, R.F.; Alder, M.E.; Duong, H.L.; Surber, J.L. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J. Bone Jt. Surg. Am. 2003, 85, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.B.; Levin, A.; Burd, T.; Longley, M. Corrective osteotomies in spine surgery. J. Bone Jt. Surg. Am. 2008, 90, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Hedequist, D.J. Instrumentation and fusion for congenital spine deformities. Spine (Phila Pa 1976) 2009, 34, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Hedequist, D.J.; Hall, J.E.; Emans, J.B. Hemivertebra excision in children via simultaneous anterior and posterior exposures. J. Pediatr. Orthop. 2005, 25, 60–63. [Google Scholar] [CrossRef]
- Leatherman, K.D.; Dickson, R.A. Two-stage corrective surgery for congenital deformities of the spine. J. Bone Jt. Surg. Br. 1979, 61, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Riley, M.S.; Lenke, L.G.; Chapman, T.M., Jr.; Sides, B.A.; Blanke, K.M.; Kelly, M.P. Clinical and radiographic outcomes after posterior vertebral column resection for severe spinal deformity with five-year follow-up. J. Bone Jt. Surg. Am. 2018, 100, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Saifi, C.; Laratta, J.L.; Petridis, P.; Shillingford, J.N.; Lehman, R.A.; Lenke, L.G. Vertebral column resection for rigid spinal deformity. Glob. Spine J. 2017, 7, 280–290. [Google Scholar] [CrossRef]
- Sarlak, A.Y.; Atmaca, H.; Tosun, B.; Musaoğlu, R.; Buluç, L. Isolated pedicle screw instrumented correction for the treatment of thoracic congenital scoliosis. J. Spinal Disord. Tech. 2010, 23, 525–529. [Google Scholar] [CrossRef]
- McMaster, M.J.; Ohtsuka, K. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J. Bone Jt. Surg. Am. 1982, 64, 1128–1147. [Google Scholar] [CrossRef]
- Winter, R.B. Congenital scoliosis. Clin. Orthop. Relat. Res. 1973, 93, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Suh, S.W.; Cho, W.T.; Hwang, J.H.; Hong, J.Y.; Modi, H.N. Effect of posterior multilevel vertebral osteotomies on coronal and sagittal balance in fused scoliosis deformity caused by previous surgery: Preliminary results. Spine (Phila Pa 1976) 2014, 39, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.G.; Suk, S.-I.; Kim, J.-H.; Ha, K.-Y.; Na, K.-H.; Lee, J.-H. Surgical outcomes by age at the time of surgery in the treatment of congenital scoliosis in children under age 10. Spine J. 2015, 15, 1783–1795. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Kanhangad, M.P.; Saifuddin, S.; Narayana Kurup, J.K. Pattern of syringomyelia in presumed idiopathic and congenital scoliosis. Asian Spine J. 2021, 15, 791–798. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ando, K.; Nakashima, H.; Machino, M.; Morozumi, M.; Kanbara, S.; Ito, S.; Inoue, T.; Yamaguchi, H.; Mishima, K.; et al. Scoliosis caused by limb-length discrepancy in children. Asian Spine J. 2020, 14, 801–807. [Google Scholar] [CrossRef]
- Fletcher, N.D.; Bruce, R.W. Early onset scoliosis: Current concepts and controversies. Curr. Rev. Musculoskelet. Med. 2012, 5, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, J.; Qiu, G.; Wang, Y.; Li, S.; Zhao, Y.; Shen, J.; Weng, X. Dual growing rods technique for congenital scoliosis: More than 2 years outcomes: Preliminary results of a single center. Spine (Phila Pa 1976) 2012, 37, E1639–E1644. [Google Scholar] [CrossRef]
- Ayvaz, M.; Olgun, Z.D.; Demirkiran, H.G.; Alanay, A.; Yazici, M. Posterior all-pedicle screw instrumentation combined with multiple chevron and concave rib osteotomies in the treatment of adolescent congenital kyphoscoliosis. Spine J. 2014, 14, 11–19. [Google Scholar] [CrossRef]
- Rajavelu, R.; Shetty, A.P.; Viswanathan, V.K.; Kanna, R.M.; Rajasekaran, S. Analysis of risk factors and treatment outcome in patients presenting with neglected congenital spinal deformity and neurological deficit. Spine Deform. 2022, 10, 401–410. [Google Scholar] [CrossRef]
- Nakamura, H.; Matsuda, H.; Konishi, S.; Yamano, Y. Single-stage excision of hemivertebrae via the posterior approach alone for congenital spine deformity: Follow-up period longer than ten years. Spine (Phila Pa 1976) 2002, 27, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Ruf, M.; Harms, J. Posterior hemivertebra resection with transpedicular instrumentation: Early correction in children aged 1 to 6 years. Spine (Phila Pa 1976) 2003, 28, 2132–2138. [Google Scholar] [CrossRef] [PubMed]
- Crostelli, M.; Mazza, O.; Mariani, M. Posterior approach lumbar and thoracolumbar hemivertebra resection in congenital scoliosis in children under 10 years of age: Results with 3 years mean follow up. Eur. Spine J. 2014, 23, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.H.; Chang, D.G.; Suh, S.W.; Kim, W.; Park, J. Clinical and radiological outcomes of hemivertebra resection for congenital scoliosis in children under age 10 years: More than 5-year follow-up. Medicine 2020, 99, e21720. [Google Scholar] [CrossRef]
- Chang, D.G.; Yang, J.H.; Lee, J.H.; Kim, J.H.; Suh, S.W.; Ha, K.Y.; Suk, S.I. Congenital scoliosis treated with posterior vertebral column resection in patients younger than 18 years: Longer than 10-year follow-up. J. Neurosurg. Spine 2016, 25, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.M.; Cheung, J.P.Y.; Cheung, K.M.C.; Lin, J.L.; Jin, H.M.; Chen, D.; Wang, X.Y.; Zhao, J.; Kwan, K.Y.H. Minimum 2-year experience with magnetically controlled growing rods for the treatment of early-onset scoliosis: A systematic review. Asian Spine J. 2019, 13, 682–693. [Google Scholar] [CrossRef]
Factors | Group A (7–11 Years) | Group B (12–18 Years) | Group C (Age > 18 Years) | p Value |
---|---|---|---|---|
Age (years) | 8.8 (7–11) | 13.8 (12–15) | 27.3 (18–15) | <0.001 |
Sex (male/female) | 6/5 | 9/8 | 6/3 | 0.834 |
Follow-up period (month) | 95.4 (53–131) | 91.3 (53–137) | 93.4 (60–146) | 0.998 |
Pre-op Cobb angle (°) | 66 (10–152) | 64 (21–130) | 75 (50–104) | 0.259 |
Congenital scoliosis type (1/2/3) | 3/6/2 | 3/12/2 | 3/3/3 | 0.433 |
Congenital vertebrae resection (hemi or block vertebral body resection) | 7 | 8 | 7 | 0.012 |
Osteotomy except congenital vertebrae resection | 1 | 7 | 9 | - |
Additional osteotomy | 4 | 9 | 7 | 0.180 |
Correction without osteotomy | 1 | 2 | 0 | - |
Thoracoplasty (yes/no) | 1/10 | 7/11 | 5/4 | 0.238 |
Factors | Group A (7–11 Years) | Group B (12–18 Years) | Group C (Age > 18 Years) | p Value |
---|---|---|---|---|
Pre-Op Cobb angle (°) | 66 (10–152) | 64 (21–130) | 75 (50–104) | - |
Post-Op Cobb angle (°) | 15 (2–63) | 27 (2–56) | 37 (15–75) | - |
∆ Cobb angle | 51 (15–100) | 38 (7–130) | 39 (26–53) | 0.970 |
Statistical significance * (Cobb angle) | 0.003 | <0.001 | 0.008 | - |
Correction rate $ (%) | 77 (55–98) | 57 (16–100) | 53 (28–71) | 0.006 |
Pre-Op Coronal balance (mm) | 1 (−25–44) | −1 (−65–59) | 6 (−17–50) | - |
Post-Op Coronal balance (mm) | 6 (−15–37) | −4 (−38–36) | 9 (−32–41) | - |
∆ Coronal balance (mm) | 5 (−3–17) | 9 (−31–65) | 1 (−19–11) | 0.348 |
Statistical significance * (Coronal balance) | 0.575 | 0.438 | 0.678 | |
Pre-Op T1 tilt angle (°) | 0 (−15–23) | −5 (−30–33) | −2 (−26–33) | |
Post-Op T1 tilt angle (°) | 0 (−15–9) | −1 (−14–22) | 1 (−14–16) | |
∆ T1 tilt angle (°) | 2 (−11–14) | 7 (−17–28) | 4 (−5–17) | 0.472 |
Statistical significance * (T1 tilt angle) | 1.00 | 0.271 | 0.173 | |
Pre-Op T1 clavicle angle (°) | 0 (−9–7) | −1 (−14–9) | −2 (−6–0) | |
Post-Op T1 clavicle angle (°) | 0 (−12–9) | 0 (−9–8) | −1 (−5–2) | |
∆ T1 clavicle angle (°) | 0 (−8–4) | 1 (−7–6) | 1 (−4–4) | 0.595 |
Statistical significance * (T1 clavicle angle) | 0.477 | 0.232 | 0.161 |
Factors | Group A (7–11 Years) | Group B (12–18 Years) | Group C (Age > 18 Years) | p Value |
---|---|---|---|---|
Pre-Op SVA (mm) | 7 (−46–105) | 5 (−60–124) | 27 (−27–117) | |
Post-Op SVA (mm) | 26 (−2–70) | 15 (−66–104) | 37 (−30–182) | |
∆ SVA (mm) | 3 (−30–39) | 9 (−68–104) | 3 (−65–78) | 0.910 |
Statistical significance * (SVA) | 0.169 | 0.196 | 0.678 | |
Pre-Op TK (°) | 55 (15–119) | 28 (3–70) | 43 (2–89) | 0.094 |
Post-Op TK $ (°) | 41 (15–105) | 20 (3–49) | 35 (6–62) | 0.020 |
Statistical significance * (TK) | 0.168 | 0.017 | 0.477 | |
Pre-Op LL (°) | 49 (2–75) | 47 (−26–100) | 34 (14–73) | 0.5 |
Post-Op LL (°) | 46 (28–75) | 42 (0–72) | 29 (11–67) | 0.303 |
Statistical significance * (LL) | 0.790 | 0.218 | 0.859 |
Factors | Group A (7–11 Years) | Group B (12–18 Years) | Group C (Age > 18 Years) | p Value |
---|---|---|---|---|
Operation time (min) | 229 (100–386) | 326 (152–710) | 316 (198–463) | 0.111 |
Fusion extent | 7.8 (1–13) | 9.0 (1–16) | 8.8 (2–15) | 0.482 |
Bleeding loss $ (mL) | 1564 (300–4000) | 3271 (700–6000) | 3644 (800–8000) | 0.015 |
Hospital stay (day) | 20 (11–47) | 20 (12–61) | 34 (13–141) | 0.337 |
ICU stay (yes/no) | 1/10 | 3/14 | 1/8 | 1.00 |
Complications | 2 | 3 | 8 | <0.005 |
Hemothorax | 0 | 1 | 1 | 0.211 |
Pneumothorax | 0 | 2 | 5 | 0.003 |
Infection | 1 | 0 | 0 | 1.00 |
Neurologic deficit | 1 | 0 | 2 | 0.083 |
CSF leakage | 0 | 0 | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.H.; Kim, H.J.; Chang, D.-G.; Suh, S.W.; Nam, Y.; Hong, J.-Y. The Efficacy of Single-Stage Correction by Posterior Approach for Neglected Congenital Scoliosis: Comparative Analysis According to the Age of Surgical Intervention. J. Clin. Med. 2022, 11, 2278. https://doi.org/10.3390/jcm11092278
Yang JH, Kim HJ, Chang D-G, Suh SW, Nam Y, Hong J-Y. The Efficacy of Single-Stage Correction by Posterior Approach for Neglected Congenital Scoliosis: Comparative Analysis According to the Age of Surgical Intervention. Journal of Clinical Medicine. 2022; 11(9):2278. https://doi.org/10.3390/jcm11092278
Chicago/Turabian StyleYang, Jae Hyuk, Hong Jin Kim, Dong-Gune Chang, Seung Woo Suh, Yunjin Nam, and Jae-Young Hong. 2022. "The Efficacy of Single-Stage Correction by Posterior Approach for Neglected Congenital Scoliosis: Comparative Analysis According to the Age of Surgical Intervention" Journal of Clinical Medicine 11, no. 9: 2278. https://doi.org/10.3390/jcm11092278
APA StyleYang, J. H., Kim, H. J., Chang, D.-G., Suh, S. W., Nam, Y., & Hong, J.-Y. (2022). The Efficacy of Single-Stage Correction by Posterior Approach for Neglected Congenital Scoliosis: Comparative Analysis According to the Age of Surgical Intervention. Journal of Clinical Medicine, 11(9), 2278. https://doi.org/10.3390/jcm11092278