Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Base Convolutional Neural Network Architecture
2.3. Convolutional Neural Support Vector Machines
2.4. Hyperparameter Optimization
2.5. Model Evaluation
2.6. Computational Facilities
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Code Availability
References
- Brunssen, A.; Waldmann, A.; Eisemann, N.; Katalinic, A. Impact of skin cancer screening and secondary prevention campaigns on skin cancer incidence and mortality: A systematic review. J. Am. Acad. Dermatol. 2017, 76, 129–139.e10. [Google Scholar] [CrossRef] [PubMed]
- Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Madan, V.; Lear, J.T.; Szeimies, R.M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef]
- Rogers, H.W.; Weinstock, M.A.; Harris, A.R.; Hinckley, M.R.; Feldman, S.; Fleischer, A.B.; Coldiron, B.M. Incidence Estimate of Nonmelanoma Skin Cancer in the United States, 2006. Arch. Dermatol. 2010, 146, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep learning based, computer aided classifier developed with a small dataset of clinical images surpasses board certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 2019, 180, 373–381. [Google Scholar] [CrossRef]
- Diepgen, T.L.; Mahler, V. The epidemiology of skin cancer. Br. J. Dermatol. 2002, 146, 1–6. [Google Scholar] [CrossRef]
- Tillman, E.; Parekh, P.K.; Grimwood, R.E. Locally destructive metastatyic basal cell carcinoma. Cutis 2019, 103, E23–E25. [Google Scholar]
- Millan-Cayetano, J.-F.; Blazquez-Sanchez, N.; Fernandez-Canedo, I.; Repiso-Jiménez, J.B.; Funez-Liebana, R.; Bautista, M.D.; De Troya-Martin, M. Metastatic Basal Cell Carcinoma: Case Report and Review of the Literature. Indian J. Dermatol. 2020, 65, 61–64. [Google Scholar] [CrossRef]
- Hoorens, I.; Vossaert, K.; Ongenae, K.; Brochez, L. Is early detection of basal cell carcinoma worthwhile? Systematic review based on the WHO criteria for screening. Br. J. Dermatol. 2016, 174, 1258–1265. [Google Scholar] [CrossRef]
- Dai, X.; Spasic, I.; Meyer, B.; Chapman, S.; Andres, F. Machine Learning on Mobile: An On-Device Inference App for Skin Cancer Detection. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 301–305. [Google Scholar] [CrossRef]
- Zhang, N.; Cai, Y.-X.; Wang, Y.-Y.; Tian, Y.-T.; Wang, X.-L.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural network. Artif. Intell. Med. 2020, 102, 101756. [Google Scholar] [CrossRef] [PubMed]
- Leon, R.; Martinez-Vega, B.; Fabelo, H.; Ortega, S.; Melian, V.; Castaño, I.; Carretero, G.; Almeida, P.; Garcia, A.; Quevedo, E.; et al. Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support. J. Clin. Med. 2020, 9, 1662. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.H.; Møllersen, K.; Ortega, S.; Fabelo, H.; Garcia, A.; Callico, G.M.; Godtliebsen, F. Recent advances in hyperspectral imaging for melanoma detection. WIREs Comput. Stat. 2020, 12, 1465. [Google Scholar] [CrossRef]
- Kuzmina, I.; Diebele, I.; Jakovels, D.; Spigulis, J.; Valeine, L.; Kapostinsh, J.; Berzina, A. Towards noncontact skin melanoma selection by multispectral imaging analysis. J. Biomed. Opt. 2011, 16, 060502. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, L.A.; González-Aguilera, D.; Lagüela, S.; del Pozo, S.; Ruiz-Mendez, C.; Barbero-García, I.; Román-Curto, C.; Cañueto, J.; Santos-Durán, C.; Cardeñoso-Álvarez, M.E.; et al. Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis. Biomed. Opt. Express 2021, 12, 5107. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/pdf/1409.1556.pdf (accessed on 2 September 2021).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Dai, W.; Dai, C.; Qu, S.; Li, J.; Das, S. Very deep convolutional neural networks for raw waveforms. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 5–9 March 2017; pp. 421–425. [Google Scholar] [CrossRef]
- Woollam, J.; Rietbrock, A.; Bueno, A.; De Angelis, S. Convolutional Neural Network for Seismic Phase Classification, Performance Demonstration over a Local Seismic Network. Seism. Res. Lett. 2019, 90, 491–502. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Csurka, G.; Dance, C.; Fan, L.; Willamowski, J.; Bray, C. Visual categorization with bags of keypoints. Workshop Stat. Learn. Comput. Vis. 2004. Available online: https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/csurka-eccv-04.pdf (accessed on 20 April 2022).
- Barber, E.L.; Garg, R.; Persenaire, C.; Simon, M. Natural language processing with machine learning to predict outcomes after ovarian cancer surgery. Gynecol. Oncol. 2020, 160, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.-Y.; Kung, C.-F.; Chang, C.-Y.; Ou, J.-B. Predicting stock price trends based on financial news articles and using a novel twin support vector machine with fuzzy hyperplane. Appl. Soft Comput. 2021, 98, 106806. [Google Scholar] [CrossRef]
- Rodríguez-Martín, M.; Fueyo, J.; Gonzalez-Aguilera, D.; Madruga, F.; García-Martín, R.; Muñóz, A.; Pisonero, J. Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods. Sensors 2020, 20, 3982. [Google Scholar] [CrossRef]
- Courtenay, L.A.; Herranz-Rodrigo, D.; González-Aguilera, D.; Yravedra, J. Developments in data science solutions for carnivore tooth pit classification. Sci. Rep. 2021, 11, 10209. [Google Scholar] [CrossRef]
- Wiering, M.A.; Ree, M.H.; Embrechts, M.J.; Stollenga, M.F.; Meijster, A.; Nolte, A.; Schomaker, L.R.B. The Neural Support Vector Machine. In Proceedings of the 25th Benelux Artificial Intelligence Conference, Delft, The Netherlands, 7–8 November 2013; pp. 254–257. [Google Scholar]
- Rahimi, A.; Recht, B. Random features for large-scale kernel machines. Adv. Neural Inf. Process. Syst. 2007, 20, 1–8. [Google Scholar]
- Tancik, M.; Srinivasan, P.P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R. Fourier features let networks learn high frequency functions in low dimensional domains. arXiv 2020, arXiv:2006.10739. Available online: https://arxiv.org/pdf/2006.10739v1.pdf (accessed on 2 September 2021).
- Okwuashi, O.; Ndehedehe, C.E. Deep support vector machine for hyperspectral image classification. Pat. Recog. 2020, 103, 107298. [Google Scholar] [CrossRef]
- Courtenay, L.A. Code and Data for the HYPER-SKINCARE project and paper titled ‘Hyperspectral Imaging and Robust Statistics in Non-Melanoma Skin Cancer Analysis’. GitHub 2021. Available online: https://github.com/LACourtenay/HyperSkinCare_Statistics (accessed on 2 September 2021).
- Ramachandran, P.; Zoph, B.; Le, Q.V. Swish: A self-gated activation function. Google Brain 2017, 1–12. Available online: https://arxiv.org/pdf/1710.05941v1.pdf (accessed on 2 September 2021).
- LeCun, Y.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient Back Prop. 1998. Available online: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf (accessed on 2 September 2021).
- Klambauer, G.; Unterthiner, T.; Mayr, A. Self-normalizing neural networks. Conf. Neur. Info. Process. Syst. 2017, 31, 972–981. [Google Scholar] [CrossRef]
- Krogh, A.; Hertz, J.A. A simple weight decay can improve generalization. Adv. Neur. Info. Process. Syst. 1991, 4, 950–957. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn Represent, San Diego, CA, USA, 5–8 May 2015; Available online: https://arxiv.org/pdf/1412.6980.pdf (accessed on 2 September 2021).
- Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467. Available online: https://www.tensorflow.org/ (accessed on 1 September 2021). [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25, pp. 2951–2959. Available online: https://arxiv.org/pdf/1206.2944.pdf (accessed on 2 September 2021).
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 12–15 December 2011; Volume 24, pp. 2456–2554. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- He, H.; Ma, Y. Imbalanced Learning: Foundations, Algorithms and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Foody, G.M. Harshness in image classification accuracy assessment. Int. J. Remote Sens. 2008, 29, 3137–3158. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Neural Information Processing Systems, Montréal, QC, Canada, 8–13 December 2014; pp. 3320–3328. Available online: https://arxiv.org/pdf/1411.1792v1.pdf (accessed on 2 September 2021).
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In Proceedings of the International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 8–13 December 2014; pp. 2672–2680. Available online: https://arxiv.org/pdf/1406.2661v1.pdf (accessed on 2 September 2021).
- Lucic, M.; Kurach, K.; Michalski, M.; Bousquet, O.; Gelly, S. Are GANs created equal? A large scale study. In Proceedings of the 32nd Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Available online: https://arxiv.org/pdf/1711.10337v4.pdf (accessed on 2 September 2021).
- Courtenay, L.A.; González-Aguilera, D. Geometric morphometric data augmentation using generative computational learning algorithms. Appl. Sci. 2020, 10, 9133. [Google Scholar] [CrossRef]
- Brouwer de Koning, S.G.; Weijtmans, P.; Karakullukcu, M.B.; Shan, C.; Baltussen, E.J.M.; Smit, L.A.; van Veen, R.L.P.; Hendriks, B.H.W.; Sterenborg, H.J.C.M.; Ruers, T.J.M. Toward assessment of resection margins using hyperspectral diffuse reflection imaging (400–1700 nm) during tongue cancer surgery. Lasers Surg. Med. 2020, 52, 496–502. [Google Scholar] [CrossRef]
arXiv | Science Direct | |||
---|---|---|---|---|
ML | DL | ML | DL | |
Skin Cancer | 47 | 56 | 43 | 71 |
Non-Melanoma Skin Cancer (NMSC) | 2 | 3 | 5 | 5 |
Melanoma | 13 | 15 | 75 | 78 |
Cutaneous Squamous Cell Carcinoma (SCC/cSCC) | 3 | 3 | 5 | 2 |
Basal Cell Carcinoma (BCC) | 6 | 3 | 5 | 9 |
Convolutional Neural Support Vector Machine | |
---|---|
Input: 1 × 94 Vector Hyperspectral Signature | |
1D Inception Module | |
Concatenation | |
1D Inception Module | |
Concatenation | |
Flattening | |
Dropout | p = 0.54 |
Dense | nº = 200 |
Dropout | p = 0.33 |
Dense | nº = 150 |
Dropout | p = 0.10 |
Dense | nº = 100 |
Dropout | p = 0.46 |
Dense | nº = 50 |
Radial Kernel Support Vector Machine Activation | |
Binary Output label: Healthy (0) or BCC (1) |
Swish and Adam | ReLU and Adam | Swish and SGD | ReLU and SGD | |
---|---|---|---|---|
Accuracy | 0.90 | 0.82 | 0.90 | 0.91 |
Sensitivity | 0.85 | 0.71 | 0.89 | 0.89 |
Specificity | 0.94 | 0.93 | 0.92 | 0.92 |
AUC | 0.90 | 0.82 | 0.90 | 0.91 |
Kappa | 0.79 | 0.64 | 0.81 | 0.81 |
MSE | 0.034 | 0.078 | 0.029 | 0.035 |
Computer | No. CPUs | No. GPUs | Seconds/Epoch |
---|---|---|---|
Personal Laptop | 4 | 0 | 5.94 |
Desktop Computer | 4 | 0 | 4.75 |
SCAYLE | 4 | 0 | 5.36 |
SCAYLE | 10 | 0 | 2.68 |
SCAYLE | 18 | 0 | 1.86 |
SCAYLE | 4 | 1 | 0.25 |
SCAYLE | 18 | 1 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courtenay, L.A.; González-Aguilera, D.; Lagüela, S.; Pozo, S.D.; Ruiz, C.; Barbero-García, I.; Román-Curto, C.; Cañueto, J.; Santos-Durán, C.; Cardeñoso-Álvarez, M.E.; et al. Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures. J. Clin. Med. 2022, 11, 2315. https://doi.org/10.3390/jcm11092315
Courtenay LA, González-Aguilera D, Lagüela S, Pozo SD, Ruiz C, Barbero-García I, Román-Curto C, Cañueto J, Santos-Durán C, Cardeñoso-Álvarez ME, et al. Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures. Journal of Clinical Medicine. 2022; 11(9):2315. https://doi.org/10.3390/jcm11092315
Chicago/Turabian StyleCourtenay, Lloyd A., Diego González-Aguilera, Susana Lagüela, Susana Del Pozo, Camilo Ruiz, Innes Barbero-García, Concepción Román-Curto, Javier Cañueto, Carlos Santos-Durán, María Esther Cardeñoso-Álvarez, and et al. 2022. "Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures" Journal of Clinical Medicine 11, no. 9: 2315. https://doi.org/10.3390/jcm11092315
APA StyleCourtenay, L. A., González-Aguilera, D., Lagüela, S., Pozo, S. D., Ruiz, C., Barbero-García, I., Román-Curto, C., Cañueto, J., Santos-Durán, C., Cardeñoso-Álvarez, M. E., Roncero-Riesco, M., Hernández-López, D., Guerrero-Sevilla, D., & Rodríguez-Gonzalvez, P. (2022). Deep Convolutional Neural Support Vector Machines for the Classification of Basal Cell Carcinoma Hyperspectral Signatures. Journal of Clinical Medicine, 11(9), 2315. https://doi.org/10.3390/jcm11092315