Trends of Dietary Intakes and Metabolic Diseases in Japanese Adults: Assessment of National Health Promotion Policy and National Health and Nutrition Survey 1995–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Retrieval
2.2. Statistical Analysis
3. Results
3.1. Prevalence of T2DM, Overweight/Obesity, and Hypertension
3.2. Consumption of Macronutrients
3.3. Consumption of Food Groups and Salt Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakamoto, H.; Rahman, M.; Nomura, S.; Okamoto, E.; Koike, S.; Yasunaga, H. Japan Health System Review. Publications. World Health Organization. Regional Office for South-East Asia. 2018. Available online: https://apps.who.int/iris/handle/10665/259941 (accessed on 21 December 2021).
- Miyanaga, R.; Poudyal, H. Participation of nurses and care workers in the decision-making process for people with dementia in Japan: Discussion paper. Int. J. Nurs. Stud. 2019, 96, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hyseni, L.; Elliot-Green, A.; Lloyd-Williams, F.; Kypridemos, C.; O’Flaherty, M.; McGill, R.; Orton, L.; Bromley, H.; Cappuccio, F.P.; Capewell, S. Systematic review of dietary salt reduction policies: Evidence for an effectiveness hierarchy? PLoS ONE 2017, 12, e0177535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, A.; Imai, S.; Htun, N.C.; Okada, E.; Yoshita, K.; Yoshiike, N.; Takimoto, H. The trends in total energy, macronutrients and sodium intake among Japanese: Findings from the 1995–2016 National Health and Nutrition Survey. Br. J. Nutr. 2018, 120, 424–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, M.; Akter, S.; Hu, H.; Kashino, I.; Kuwahara, K.; Okazaki, H.; Sasaki, N.; Ogasawara, T.; Eguchi, M.; Kochi, T.; et al. Five-year cumulative incidence of overweight and obesity, and longitudinal change in body mass index in Japanese workers: The Japan Epidemiology Collaboration on Occupational Health Study. J. Occup. Health 2019, 62, 12095. [Google Scholar] [CrossRef] [Green Version]
- Nishi, N. Monitoring Obesity Trends in Health Japan 21. J. Nutr. Sci. Vitaminol. 2015, 61, S17–S19. [Google Scholar] [CrossRef] [Green Version]
- Umemura, S.; Arima, H.; Arima, S.; Asayama, K.; Dohi, Y.; Hirooka, Y.; Horio, T.; Hoshide, S.; Ikeda, S.; Ishimitsu, T.; et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens. Res. 2019, 42, 1235–1481. [Google Scholar]
- Fleck, F. Japan renews primary health care to promote healthy ageing. Bull. World Health Organ. 2018, 96, 448–449. [Google Scholar]
- Ikeda, N.; Inoue, M.; Iso, H.; Ikeda, S.; Satoh, T.; Noda, M.; Mizoue, T.; Imano, H.; Saito, E.; Katanoda, K.; et al. Adult Mortality Attributable to Preventable Risk Factors for Non-Communicable Diseases and Injuries in Japan: A Comparative Risk Assessment. PLoS Med. 2012, 9, e1001160. [Google Scholar] [CrossRef]
- Saito, J.; Haseda, M.; Amemiya, A.; Takagi, D.; Kondo, K.; Kondo, N. Community-based care for healthy ageing: Lessons from Japan. Bull. World Health Organ. 2019, 97, 570–574. [Google Scholar] [CrossRef]
- Ezoe, S.; Noda, H.; Akahane, N.; Sato, O.; Hama, T.; Miyata, T.; Terahara, T.; Fujishita, M.; Sakamoto, H.; Abe, S.K.; et al. Trends in Policy on the Prevention and Control of Non-Communicable Diseases in Japan. Health Syst. Reform 2017, 3, 268–277. [Google Scholar] [CrossRef]
- National Health and Nutrition Survey | Ministry of Health, Labor and Welfare. 2021. Available online: https://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (accessed on 21 December 2021).
- Report on National Health Promotion Campaign for the 21st Century (Health Japan 21): Health Japan 21 Planning Group / Health Japan 21 Project Development Group. 2021. Available online: https://www.mhlw.go.jp/www1/topics/kenko21_11/pdf/all.pdf (accessed on 22 December 2021).
- Tsuji, I. Current status and issues concerning Health Japan 21 (second term). Nutr. Rev. 2020, 78, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Imai, S.; Nakade, M.; Imai, E.; Takimoto, H. The physical examination content of the Japanese National Health and Nutrition Survey: Temporal changes. Asia Pac. J. Clin. Nutr. 2016, 25, 898–910. [Google Scholar] [PubMed]
- Kashiwagi, A.; Kasuga, M.; Araki, E.; Oka, Y.; Hanafusa, T.; Ito, H.; Tominaga, M.; Oikawa, S.; Noda, M.; Kawamura, T.; et al. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J. Diabetes Investig. 2012, 3, 39–40. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Thirteen-Year Trends in Dietary Patterns among Japanese Adults in the National Health and Nutrition Survey 2003–2015: Continuous Westernization of the Japanese Diet. Nutrients 2018, 10, 994. [Google Scholar] [CrossRef] [Green Version]
- Wilunda, C.; Sawada, N.; Goto, A.; Yamaji, T.; Takachi, R.; Ishihara, J.; Mori, N.; Kotemori, A.; Iwasaki, M.; Tsugane, S. Associations between changes in fruit and vegetable consumption and weight change in Japanese adults. Z. Ernährungswissenschaft 2021, 60, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.L.; Fineberg, S.E.; Fineberg, N.S.; Gibson, R.G.; Hackward, L.L. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: Effects on renal, glycemic, and lipid parameters. Diabetes Care 2002, 25, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Pivovarova-Ramich, O.; Markova, M.; Weber, D.; Sucher, S.; Hornemann, S.; Rudovich, N.; Raila, J.; Sunaga-Franze, D.; Sauer, S.; Rohn, S.; et al. Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: A randomized clinical trial. Redox Biol. 2020, 29, 101397. [Google Scholar] [CrossRef]
- Markova, M.; Pivovarova, O.R.; Hornemann, S.; Sucher, S.; Frahnow, T.; Wegner, K.; Machann, J.; Petzke, K.J.; Hierholzer, J.; Lichtinghagen, R.; et al. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology 2017, 152, 571–585.e8. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Barbaresko, J.; Pischke, C.R.; Iser, N.; Beckhaus, J.; Schwingshackl, L.; Schlesinger, S. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med. 2020, 17, e1003347. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Horikawa, C.; Hatta, M.; Takeda, Y.; Nedachi, R.; Ikeda, I.; Morikawa, S.; Kato, N.; Yokoyama, H.; Aida, R.; et al. Secular Trends in Dietary Intake over a 20-Year Period in People with Type 2 Diabetes in Japan: A Comparative Study of Two Nationwide Registries; Japan Diabetes Complications Study (JDCS) and Japan Diabetes Clinical Data Management Study (JDDM). Nutrients 2021, 13, 3428. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations, F. FAOSTAT. 2016. Available online: http://www.fao.org/faostat/en/#home (accessed on 6 July 2021).
- Nkondjock, A.; Receveur, O. Fish-seafood consumption, obesity, and risk of type 2 diabetes: An ecological study. Diabetes Metab. 2003, 29, 635–642. [Google Scholar] [CrossRef]
- Prisco, D.; Paniccia, R.; Bandinelli, B.; Filippini, M.; Francalanci, I.; Giusti, B.; Giurlani, L.; Gensini, G.F.; Abbate, R.; Serneri, G.G.N. Effect of Medium-term Supplementation with a Moderate Dose of n-3 Polyunsaturated Fatty Acids on Blood Pressure in Mild Hypertensive Patients. Thromb. Res. 1998, 91, 105–112. [Google Scholar] [CrossRef]
- Baynes, H.W.; Mideksa, S.; Ambachew, S. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic beta-cells and insulin action. Adipocyte 2018, 7, 81–87. [Google Scholar] [PubMed]
- Deckelbaum, R.J.; Worgall, T.S.; Seo, T. n-3 fatty acids and gene expression. Am. J. Clin. Nutr. 2006, 83 (Suppl. S6), 1520S–1525S. [Google Scholar] [CrossRef] [PubMed]
- Engler, M.M.; Engler, M.B.; Goodfriend, T.L.; Ball, D.L.; Yu, Z.; Su, P.; Kroetz, D.L. Docosahexaenoic acid is an antihypertensive nutrient that affects aldosterone production in SHR. Proc. Soc. Exp. Biol. Med. 1999, 221, 32–38. [Google Scholar] [CrossRef]
- Aune, D.; Ursin, G.; Veierød, M.B. Meat consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Diabetologia 2009, 52, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Kengne, A.P.; George, E.S.; Siervo, M. The association of red meat intake with inflammation and circulating intermediate biomarkers of type 2 diabetes is mediated by central adiposity. Br. J. Nutr. 2021, 125, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Lajous, M.; Tondeur, L.; Fagherazzi, G.; de Lauzon-Guillain, B.; Boutron-Ruaualt, M.-C.; Clavel-Chapelon, F. Processed and Unprocessed Red Meat Consumption and Incident Type 2 Diabetes Among French Women. Diabetes Care 2011, 35, 128–130. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Okubo, H.; Sasaki, S. Prevalence and characteristics of misreporting of energy intake in Japanese adults: The 2012 National Health and Nutrition Survey. Asia Pac. J. Clin. Nutr. 2018, 27, 441–450. [Google Scholar]
- Tada, N.; Maruyama, C.; Koba, S.; Tanaka, H.; Birou, S.; Teramoto, T.; Sasaki, J. Japanese Dietary Lifestyle and Cardiovascular Disease. J. Atheroscler. Thromb. 2011, 18, 723–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eat Well Prevent Frailty. 2021. Available online: https://www.mhlw.go.jp/content/000620855.pdf (accessed on 21 December 2021).
- Fujimoto, W.Y. 2015 Yutaka Seino Distinguished Leadership Award Lecture: The Japanese American Community Diabetes Study and the ‘canary in the coal mine’. J. Diabetes Investig. 2016, 7, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, S.; Moriguchi, E.H.; Ishikawa, P.; Hekman, P.; Nara, Y.; Mimura, G.; Moriguchi, Y.; Yamori, Y. Fish intake and cardiovascular risk among middle-aged Japanese in Japan and Brazil. J. Cardiovasc. Risk 1997, 4, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Abdulai, T.; Runqi, T.; Mao, Z.; Oppong, T.B.; Amponsem-Boateng, C.; Wang, Y.; Liu, X.; Zhang, H.; Wang, C. Preference for High Dietary Salt Intake Is Associated With Undiagnosed Type 2 Diabetes: The Henan Rural Cohort. Front. Nutr. 2020, 7, 537049. [Google Scholar] [CrossRef]
- Kang, M.S.; Kim, C.H.; Jeong, S.J.; Park, T.S. Dietary Sodium Intake in People with Diabetes in Korea: The Korean National Health and Nutrition Examination Survey for 2008 to 2010. Diabetes Metab. J. 2016, 40, 290–296. [Google Scholar] [CrossRef]
- Melander, O.; Groop, L.; Hulthén, U.L. Effect of Salt on Insulin Sensitivity Differs According to Gender and Degree of Salt Sensitivity. Hypertension 2000, 35, 827–831. [Google Scholar] [CrossRef]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Nagai, M.; Ohkubo, T. Epidemiology of hypertension in Japan: Where are we now? Circ. J. 2013, 77, 2226–2231. [Google Scholar] [CrossRef] [Green Version]
- Hattori, T.; Konno, S.; Munakata, M. Gender Differences in Lifestyle Factors Associated with Metabolic Syndrome and Preliminary Metabolic Syndrome in the General Population: The Watari Study. Intern. Med. 2017, 56, 2253–2259. [Google Scholar] [CrossRef] [Green Version]
- Link, J.C.; Reue, K. Genetic Basis for Sex Differences in Obesity and Lipid Metabolism. Annu. Rev. Nutr. 2017, 37, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Power, M.L.; Schulkin, J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: Possible evolutionary origins. Br. J. Nutr. 2008, 99, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Matsuo, R.; Imatake, K.; Suzuki, Y.; Yagi, T.; Takahashi, A.; Matsumoto, N.; Okumura, Y. Gender differences in the associations among fish intake, lifestyle, and non-HDL-C level in Japanese subjects over the age of 50 years: Anti-atherosclerotic effect of fish consumption. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Agudo, A.; Pera, G. EPIC Group of Spain Vegetable and fruit consumption associated with anthropometric, dietary and lifestyle factors in Spain. Public Health Nutr. 1999, 2, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Koba, S.; Tanaka, H.; Maruyama, C.; Tada, N.; Birou, S.; Teramoto, T.; Sasaki, J. Physical activity in the Japan population: Association with blood lipid levels and effects in reducing cardiovascular and all-cause mortality. J. Atheroscler. Thromb. 2011, 18, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Ohya, Y.; Tudor-Locke, C.; Yoshiike, N.; Shimomitsu, T. Step-Defined Physical Activity and Cardiovascular Risk Among Middle-Aged Japanese: The National Health and Nutrition Survey of Japan 2006. J. Phys. Act. Health 2012, 9, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Nishi, N.; Yoshizawa, T.; Okuda, N. Effects of rapid aging and lower participation rate among younger adults on the short-term trend of physical activity in the National Health and Nutrition Survey, Japan. Geriatr. Gerontol. Int. 2017, 17, 1677–1682. [Google Scholar] [CrossRef]
- Tarui, I.; Okada, E.; Okada, C.; Saito, A.; Takimoto, H. Trends in BMI among elderly Japanese population: Findings from 1973 to 2016 Japan National Health and Nutrition Survey. Public Health Nutr. 2020, 23, 1907–1915. [Google Scholar] [CrossRef]
- Tanaka, S. Status of physical activity in Japanese adults and children. Ann. Hum. Biol. 2019, 46, 305–310. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fauzi, M.; Kartiko-Sari, I.; Poudyal, H. Trends of Dietary Intakes and Metabolic Diseases in Japanese Adults: Assessment of National Health Promotion Policy and National Health and Nutrition Survey 1995–2019. J. Clin. Med. 2022, 11, 2350. https://doi.org/10.3390/jcm11092350
Fauzi M, Kartiko-Sari I, Poudyal H. Trends of Dietary Intakes and Metabolic Diseases in Japanese Adults: Assessment of National Health Promotion Policy and National Health and Nutrition Survey 1995–2019. Journal of Clinical Medicine. 2022; 11(9):2350. https://doi.org/10.3390/jcm11092350
Chicago/Turabian StyleFauzi, Muhammad, Indri Kartiko-Sari, and Hemant Poudyal. 2022. "Trends of Dietary Intakes and Metabolic Diseases in Japanese Adults: Assessment of National Health Promotion Policy and National Health and Nutrition Survey 1995–2019" Journal of Clinical Medicine 11, no. 9: 2350. https://doi.org/10.3390/jcm11092350
APA StyleFauzi, M., Kartiko-Sari, I., & Poudyal, H. (2022). Trends of Dietary Intakes and Metabolic Diseases in Japanese Adults: Assessment of National Health Promotion Policy and National Health and Nutrition Survey 1995–2019. Journal of Clinical Medicine, 11(9), 2350. https://doi.org/10.3390/jcm11092350