To Optimize Radiotherapeutic Plans for Superior Tumor Coverage Predicts Malignant Glioma Prognosis and Normal Tissue Complication Probability
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Patient Data and Simulation
2.2. Planning Target and Organ Constraints
2.3. Radiotherapy Planning Technique
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics and Clinical Prognosis
3.2. RT Simulated Planning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. Cbtrus statistical report: Primary brain and central nervous system tumors diagnosed in the united states in 2007–2011. Neuro-Oncology 2014, 16 (Suppl. 4), iv1–iv63. [Google Scholar] [CrossRef]
- Brandes, A.A.; Tosoni, A.; Franceschi, E.; Sotti, G.; Frezza, G.; Amistà, P.; Morandi, L.; Spagnolli, F.; Ermani, M. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: Correlation with mgmt promoter methylation status. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1275–1279. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.T.; Okunieff, P.; Donatello, R.S.; Mohile, N.A.; Sul, J.; Walter, K.A.; Korones, D.N. Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1147–1155. [Google Scholar] [CrossRef]
- McDonald, M.W.; Shu, H.K.; Curran, W.J., Jr.; Crocker, I.R. Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Alksne, J.; Mundt, A.J.; Murphy, K.T.; Cornell, M.; Kesari, S.; Lawson, J.D. Patterns of imaging failures in glioblastoma patients treated with chemoradiation: A retrospective study. Med. Oncol. 2012, 29, 2040–2045. [Google Scholar] [CrossRef]
- Bleeker, F.E.; Molenaar, R.J.; Leenstra, S. Recent advances in the molecular understanding of glioblastoma. J. Neuro-Oncol. 2012, 108, 11–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, A.R.; Kirkpatrick, J.P.; Fiveash, J.B.; Shih, H.A.; Koay, E.J.; Lutz, S.; Petit, J.; Chao, S.T.; Brown, P.D.; Vogelbaum, M.; et al. Radiation therapy for glioblastoma: Executive summary of an american society for radiation oncology evidence-based clinical practice guideline. Pract. Radiat. Oncol. 2016, 6, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valduvieco, I.; Verger, E.; Bruna, J.; Caral, L.; Pujol, T.; Ribalta, T.; Boget, T.; Oleaga, L.; Pineda, E.; Graus, F. Impact of radiotherapy delay on survival in glioblastoma. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2013, 15, 278–282. [Google Scholar] [CrossRef]
- El-Hossiny, H.A.; Diab, N.A.; El-Taher, M.M. A comparative dosimetric study of adjuvant 3d conformal radiotherapy for operable stomach cancer versus ap-pa conventional radiotherapy in nci-cairo. J. Egypt. Natl. Cancer Inst. 2009, 21, 197–202. [Google Scholar] [CrossRef]
- Gursel, B.; Meydan, D.; Ozbek, N.; Ofluoglu, T. Dosimetric comparison of three different external beam whole breast irradiation techniques. Adv. Ther. 2011, 28, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Bosma, I.; Vos, M.J.; Heimans, J.J.; Taphoorn, M.J.; Aaronson, N.K.; Postma, T.J.; van der Ploeg, H.M.; Muller, M.; Vandertop, W.P.; Slotman, B.J.; et al. The course of neurocognitive functioning in high-grade glioma patients. Neuro-Oncology 2007, 9, 53–62. [Google Scholar] [CrossRef]
- MacDonald, S.M.; Ahmad, S.; Kachris, S.; Vogds, B.J.; DeRouen, M.; Gittleman, A.E.; DeWyngaert, K.; Vlachaki, M.T. Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: A dosimetric comparison. J. Appl. Clin. Med. Phys. 2007, 8, 47–60. [Google Scholar] [CrossRef]
- Saad, S.; Wang, T.J. Neurocognitive deficits after radiation therapy for brain malignancies. Am. J. Clin. Oncol. 2015, 38, 634–640. [Google Scholar] [CrossRef]
- Hermanto, U.; Frija, E.K.; Lii, M.J.; Chang, E.L.; Mahajan, A.; Woo, S.Y. Intensity-modulated radiotherapy (imrt) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does imrt increase the integral dose to normal brain? Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1135–1144. [Google Scholar] [CrossRef]
- Wagner, D.; Christiansen, H.; Wolff, H.; Vorwerk, H. Radiotherapy of malignant gliomas: Comparison of volumetric single arc technique (rapidarc), dynamic intensity-modulated technique and 3d conformal technique. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2009, 93, 593–596. [Google Scholar] [CrossRef]
- Zach, L.; Stall, B.; Ning, H.; Ondos, J.; Arora, B.; Uma, S.; Miller, R.W.; Citrin, D.; Camphausen, K. A dosimetric comparison of four treatment planning methods for high grade glioma. Radiat. Oncol. 2009, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amelio, D.; Lorentini, S.; Schwarz, M.; Amichetti, M. Intensity-modulated radiation therapy in newly diagnosed glioblastoma: A systematic review on clinical and technical issues. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 97, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Briere, T.M.; McAleer, M.F.; Levy, L.B.; Yang, J.N. Sparing of normal tissues with volumetric arc radiation therapy for glioblastoma: Single institution clinical experience. Radiat. Oncol. 2017, 12, 79. [Google Scholar] [CrossRef]
- Otto, K. Volumetric modulated arc therapy: Imrt in a single gantry arc. Med. Phys. 2008, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Yang, W.; Chen, F.; Sheng, K.; Ye, J.; Mehta, V.; Shepard, D.; Cao, D. Comparison of elekta vmat with helical tomotherapy and fixed field imrt: Plan quality, delivery efficiency and accuracy. Med. Phys. 2010, 37, 1350–1359. [Google Scholar] [CrossRef]
- Teoh, M.; Clark, C.H.; Wood, K.; Whitaker, S.; Nisbet, A. Volumetric modulated arc therapy: A review of current literature and clinical use in practice. Br. J. Radiol. 2011, 84, 967–996. [Google Scholar] [CrossRef] [PubMed]
- Mackie, T.R.; Holmes, T.; Swerdloff, S.; Reckwerdt, P.; Deasy, J.O.; Yang, J.; Paliwal, B.; Kinsella, T. Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Med. Phys. 1993, 20, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [Green Version]
- Paddick, I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J. Neurosurg. 2000, 93 (Suppl. 3), 219–222. [Google Scholar] [CrossRef] [PubMed]
- Paddick, I.; Lippitz, B. A simple dose gradient measurement tool to complement the conformity index. J. Neurosurg. 2006, 105, 194–201. [Google Scholar] [CrossRef]
- Gevaert, T.; Levivier, M.; Lacornerie, T.; Verellen, D.; Engels, B.; Reynaert, N.; Tournel, K.; Duchateau, M.; Reynders, T.; Depuydt, T.; et al. Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2013, 106, 192–197. [Google Scholar] [CrossRef]
- Liu, W.H.; Lin, J.C.; Chou, Y.C.; Li, M.H.; Tsai, J.T. Cd44-associated radioresistance of glioblastoma in irradiated brain areas with optimal tumor coverage. Cancer Med. 2020, 9, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Rahman, R.; Sulman, E.; Haas-Kogan, D.; Cagney, D.N. Update on radiation therapy for central nervous system tumors. Hematol. Oncol. Clin. N. Am. 2022, 36, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Buckner, J.C.; Shaw, E.G.; Pugh, S.L.; Chakravarti, A.; Gilbert, M.R.; Barger, G.R.; Coons, S.; Ricci, P.; Bullard, D.; Brown, P.D.; et al. Radiation plus procarbazine, ccnu, and vincristine in low-grade glioma. N. Engl. J. Med. 2016, 374, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Bonosi, L.; Ferini, G.; Giammalva, G.R.; Benigno, U.E.; Porzio, M.; Giovannini, E.A.; Musso, S.; Gerardi, R.M.; Brunasso, L.; Costanzo, R.; et al. Liquid biopsy in diagnosis and prognosis of high-grade gliomas; state-of-the-art and literature review. Life 2022, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, G.; Wang, G.; Zhou, W.; Sun, Y.; Chen, W.; Zeng, Q.; Hong, J.; Xie, Q.; Ou, L.; et al. Comparison of dosimetric gains provided by intensity-modulated radiotherapy, volume-modulated arc therapy, and helical tomotherapy for high-grade glioma. BioMed Res. Int. 2020, 2020, 4258989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.C.; Tsai, J.T.; Chou, Y.C.; Li, M.H.; Liu, W.H. Compared with intensity-modulated radiotherapy, image-guided radiotherapy reduces severity of acute radiation-induced skin toxicity during radiotherapy in patients with breast cancer. Cancer Med. 2018, 7, 3622–3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.F.; Lin, J.C.; Shiau, A.C.; Chen, Y.C.; Li, M.H.; Tsai, J.T.; Liu, W.H. Optimal tumor coverage with different beam energies by imrt, vmat and tomo: Effects on patients with proximal gastric cancer. Medicine 2020, 99, e23328. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Tsai, J.T.; Chen, L.J.; Li, M.H.; Liu, W.H. Compared planning dosimetry of tomo, vmat and imrt in rectal cancer with different simulated positions. Oncotarget 2017, 8, 42020–42029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferini, G.; Tripoli, A.; Molino, L.; Cacciola, A.; Lillo, S.; Parisi, S.; Umina, V.; Illari, S.I.; Marchese, V.A.; Cravagno, I.R.; et al. How much daily image-guided volumetric modulated arc therapy is useful for proctitis prevention with respect to static intensity modulated radiotherapy supported by topical medications among localized prostate cancer patients? Anticancer Res. 2021, 41, 2101–2110. [Google Scholar] [CrossRef]
- Ferini, G.; Molino, L.; Tripoli, A.; Valenti, V.; Illari, S.I.; Marchese, V.A.; Cravagno, I.R.; Borzi, G.R. Anatomical predictors of dosimetric advantages for deep-inspiration-breath-hold 3d-conformal radiotherapy among women with left breast cancer. Anticancer Res. 2021, 41, 1529–1538. [Google Scholar] [CrossRef]
- Ferini, G.; Valenti, V.; Puliafito, I.; Illari, S.I.; Marchese, V.A.; Borzì, G.R. Volumetric modulated arc therapy capabilities for treating lower-extremity skin affected by several merkel cell carcinoma nodules: When technological advances effectively achieve the palliative therapeutic goal while minimising the risk of potential toxicities. Medicina 2021, 57, 1379. [Google Scholar]
- Shih, H.A.; Sherman, J.C.; Nachtigall, L.B.; Colvin, M.K.; Fullerton, B.C.; Daartz, J.; Winrich, B.K.; Batchelor, T.T.; Thornton, L.T.; Mancuso, S.M.; et al. Proton therapy for low-grade gliomas: Results from a prospective trial. Cancer 2015, 121, 1712–1719. [Google Scholar] [CrossRef]
PTV Coverage | |||
---|---|---|---|
Variables | Adequate (n = 4) | Inadequate (n = 6) | p Value |
Age | 56.5 ± 22.31 | 54.5 ± 9.07 | 0.874 |
Gender | 1.000 | ||
Female | 2 (50.0) | 4 (66.7) | |
Male | 2 (50.0) | 2 (33.3) | |
ECOG 1 | 1.000 | ||
0 | 1 (25.0) | 1 (16.7) | |
1 | 2 (50.0) | 4 (66.7) | |
2 | 1 (25.0) | 1 (16.7) | |
Tumor location | 0.467 | ||
Frontal lobe | 3 (75.0) | 4 (66.7) | |
Parietal lobe | 1 (25.0) | 0 (0) | |
Occipital lobe | 0 (0) | 0 (0) | |
Temporal lobe | 0 (0) | 2 (33.3) | |
Tumor side of brain | 1.000 | ||
Right side | 2 (50.0) | 4 (66.7) | |
Left side | 2 (50.0) | 2 (33.3) | |
Bilateral | 0 (0) | 0 (0) | |
Operation | 0.667 | ||
Total resection | 2 (50.0) | 5 (83.3) | |
Subtotal resection | 1 (25.0) | 0 (0) | |
Biopsy only | 1 (25.0) | 1 (16.7) | |
WHO Grade 2 | 0.432 | ||
OA | 0 (0) | 1 (16.7) | |
AA | 1 (25) | 2 (33.3) | |
GBM | 3 (75) | 3 (50) | |
Chemotherapy | 1.000 | ||
No | 0 (0) | 1 (16.7) | |
Yes (Temozolomide) | 4 (100) | 5 (83.3) |
Structure | PTV 1 Coverage Goal/OARs Dose Constraints |
---|---|
Targets | |
PTV Coverage | V100% ≥ 95% PTV, Ideally V95% ≥ 95% PTV, Adequate |
PTV maximum dose | <110% prescribed dose |
OARs 2 | |
Brain stem | Dmax ≤ 54 Gy |
Lens | Dmax ≤ 5 Gy |
Optic nerve/chiasm | Dmax ≤ 55 Gy |
Cochlea/Inner ear | Dmean ≤ 45 Gy |
Variable | IMRT | VMAT | TOMO | C v N | C v N | C v N | IMRT v VMAT v TOMO | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean + SD | Quick Reference Guide (p-Value) * | ||||||||||
C | N | C | N | C | N | IMRT | VMAT | TOMO | C | N | |
Tumor volume (cm3) | |||||||||||
Phase I | 482.13 ± 156.79 | 482.13 ± 156.79 | 482.13 ± 156.79 | 482.13 ± 156.79 | 482.13 ± 156.79 | 482.13 ± 156.79 | |||||
Phase II | 203.32 ± 139.56 | 203.32 ± 139.56 | 203.32 ± 139.56 | 203.32 ± 139.56 | 203.32 ± 139.56 | 203.32 ± 139.56 | |||||
PTV Coverage V100% (%) | |||||||||||
Phase I | 95.07 ± 0.08 | 89.68 ± 5.51 | 95.04 ± 0.08 | 91.75 ± 4.09 | 95.30 ± 0.25 | 93.93 ± 2.56 | 0.013 * | 0.031 * | 0.126 | 0.002 * | 0.099 |
Phase II | 95.17 ± 0.17 | 93.59 ± 4.36 | 95.08 ± 0.08 | 93.32 ± 3.72 | 95.38 ± 0.29 | 94.77 ± 1.98 | 0.280 | 0.170 | 0.341 | 0.006 * | 0.624 |
PTV Coverage V95% (%) | |||||||||||
Phase I | 98.87 ± 0.76 | 95.66 ± 3.31 | 98.75 ± 1.01 | 96.45 ± 2.85 | 98.89 ± 0.94 | 97.92 ± 2.23 | 0.014 * | 0.027 * | 0.216 | 0.931 | 0.214 |
Phase II | 99.45 ± 0.54 | 98.42 ± 2.94 | 99.47 ± 0.50 | 98.51 ± 2.47 | 99.72 ± 0.23 | 99.23 ± 1.62 | 0.289 | 0.241 | 0.351 | 0.335 | 0.716 |
PTV Dmax (Gy) | |||||||||||
Phase I | 50.21 ± 0.54 | 50.28 ± 0.38 | 49.38 ± 0.69 | 49.65 ± 0.40 | 49.37 ± 0.72 | 49.48 ± 0.80 | 0.751 | 0.301 | 0.750 | 0.010 * | 0.009 * |
Phase II | 15.02 ± 0.30 | 15.00 ± 0.29 | 14.90 ± 0.24 | 14.93 ± 0.28 | 14.69 ± 0.24 | 14.75 ± 0.29 | 0.875 | 0.777 | 0.631 | 0.029 * | 0.158 |
PTV Dmin (Gy) | |||||||||||
Phase I | 37.02 ± 2.21 | 34.05 ± 2.80 | 36.82 ± 2.90 | 34.98 ± 3.58 | 31.25 ± 4.30 | 29.19 ± 3.98 | 0.017 * | 0.223 | 0.280 | 0.001 * | 0.002 * |
Phase II | 11.92 ± 1.46 | 11.63 ± 1.59 | 11.79 ± 1.65 | 11.17 ± 1.79 | 12.14 ± 0.93 | 11.64 ± 1.85 | 0.684 | 0.433 | 0.456 | 0.849 | 0.790 |
Planning CI | |||||||||||
Phase I | 0.83 ± 0.04 | 0.80 ± 0.06 | 0.87 ± 0.03 | 0.84 ± 0.05 | 0.92 ± 0.03 | 0.90 ± 0.04 | 0.270 | 0.162 | 0.349 | <0.001 * | 0.001 * |
Phase II | 0.81 ± 0.05 | 0.80 ± 0.08 | 0.82 ± 0.08 | 0.81 ± 0.09 | 0.93 ± 0.02 | 0.93 ± 0.03 | 0.631 | 0.798 | 0.905 | <0.001 * | <0.001 * |
Planning GI | |||||||||||
Phase I | 2.60 ± 0.43 | 2.72 ± 0.53 | 2.59 ± 0.48 | 2.66 ± 0.48 | 2.60 ± 0.37 | 2.62 ± 0.40 | 0.569 | 0.746 | 0.929 | 0.999 | 0.879 |
Phase II | 3.82 ± 1.26 | 3.88 ± 1.29 | 4.00 ± 1.69 | 4.22 ± 2.24 | 3.54 ± 0.76 | 3.62 ± 0.90 | 0.915 | 0.812 | 0.852 | 0.729 | 0.698 |
Planning HI | |||||||||||
Phase I | 0.28 ± 0.05 | 0.34 ± 0.06 | 0.26 ± 0.06 | 0.31 ± 0.08 | 0.39 ± 0.09 | 0.44 ± 0.09 | 0.016 * | 0.163 | 0.266 | 0.001 * | 0.004 * |
Phase II | 0.22 ± 0.12 | 0.23 ± 0.12 | 0.20 ± 0.08 | 0.24 ± 0.10 | 0.18 ± 0.08 | 0.22 ± 0.15 | 0.717 | 0.276 | 0.468 | 0.710 | 0.927 |
Brain stem Dmax (Gy) | |||||||||||
Phase I | 44.38 ± 2.69 | 41.32 ± 0.10 | 43.83 ± 2.96 | 41.20 ± 0.38 | 42.82 ± 3.16 | 40.80 ± 0.44 | 0.006 * | 0.020 * | 0.075 | 0.492 | 0.005 * |
Phase II | 10.07 ± 4.87 | 9.78 ± 4.65 | 9.88 ± 4.61 | 9.47 ± 4.29 | 9.15 ± 4.90 | 8.99 ± 4.74 | 0.893 | 0.837 | 0.942 | 0.903 | 0.927 |
Phase I + II | 54.17 ± 5.41 | 51.00 ± 4.62 | 53.50 ± 5.47 | 50.59 ± 4.09 | 51.58 ± 5.39 | 49.23 ± 4.24 | 0.175 | 0.195 | 0.294 | 0.548 | 0.639 |
Optic chiasm Dmax (Gy) | |||||||||||
Phase I | 40.95 ± 7.87 | 38.65 ± 6.79 | 39.34 ± 10.08 | 37.71 ± 9.08 | 37.90 ± 11.20 | 36.42 ± 10.15 | 0.493 | 0.709 | 0.761 | 0.787 | 0.851 |
Phase II | 8.64 ± 5.79 | 8.36 ± 5.54 | 8.24 ± 6.14 | 7.97 ± 5.89 | 7.95 ± 5.59 | 7.82 ± 5.45 | 0.914 | 0.919 | 0.959 | 0.966 | 0.976 |
Phase I + II | 49.46 ± 12.07 | 46.83 ± 10.90 | 47.47 ± 14.62 | 45.48 ± 13.49 | 45.55 ± 14.35 | 44.02 ± 13.69 | 0.615 | 0.756 | 0.810 | 0.817 | 0.886 |
Left optic nerve Dmax(Gy) | |||||||||||
Phase I | 29.38 ± 15.39 | 28.42 ± 15.32 | 28.51 ± 15.83 | 28.16 ± 15.73 | 27.09 ± 15.08 | 26.10 ± 14.79 | 0.890 | 0.962 | 0.883 | 0.945 | 0.933 |
Phase II | 6.44 ± 5.19 | 6.33 ± 5.32 | 6.63 ± 5.51 | 6.61 ± 5.49 | 5.45 ± 4.56 | 5.34 ± 4.57 | 0.962 | 0.994 | 0.955 | 0.858 | 0.845 |
Phase I + II | 35.72 ± 19.92 | 34.68 ± 20.05 | 34.97 ± 20.43 | 34.68 ± 20.49 | 32.01 ± 18.38 | 30.88 ± 18.10 | 0.909 | 0.975 | 0.891 | 0.905 | 0.882 |
Right optic nerve Dmax (Gy) | |||||||||||
Phase I | 31.05 ± 14.89 | 30.08 ± 14.11 | 27.96 ± 15.11 | 26.92 ± 14.12 | 26.39 ± 14.20 | 25.84 ± 13.88 | 0.882 | 0.875 | 0.932 | 0.773 | 0.784 |
Phase II | 5.59 ± 4.37 | 5.57 ± 4.36 | 5.24 ± 4.56 | 5.00 ± 4.19 | 4.36 ± 3.42 | 4.52 ± 3.67 | 0.993 | 0.903 | 0.920 | 0.794 | 0.848 |
Phase I + II | 36.54 ± 17.97 | 35.60 ± 17.06 | 33.17 ± 18.39 | 31.89 ± 17.02 | 30.56 ± 16.41 | 30.17 ± 16.32 | 0.906 | 0.873 | 0.959 | 0.750 | 0.763 |
Left lens Dmax (Gy) | |||||||||||
Phase I | 3.93 ± 1.34 | 3.37 ± 0.84 | 2.88 ± 0.98 | 2.87 ± 0.82 | 2.95 ± 1.00 | 2.81 ± 0.92 | 0.276 | 0.988 | 0.752 | 0.082 | 0.301 |
Phase II | 0.77 ± 0.41 | 0.76 ± 0.41 | 0.62 ± 0.34 | 0.63 ± 0.34 | 0.62 ± 0.37 | 0.62 ± 0.37 | 0.953 | 0.995 | 0.976 | 0.631 | 0.663 |
Phase I + II | 4.68 ± 1.63 | 4.11 ± 1.12 | 3.49 ± 1.14 | 3.48 ± 1.03 | 3.55 ± 1.31 | 3.41 ± 1.22 | 0.377 | 0.985 | 0.802 | 0.114 | 0.326 |
Right lens Dmax (Gy) | |||||||||||
Phase I | 3.77 ± 0.86 | 3.45 ± 0.69 | 2.86 ± 0.74 | 2.82 ± 0.73 | 3.05 ± 0.80 | 3.11 ± 0.83 | 0.367 | 0.895 | 0.869 | 0.041 * | 0.192 |
Phase II | 0.78 ± 0.41 | 0.78 ± 0.41 | 0.64 ± 0.34 | 0.65 ± 0.34 | 0.65 ± 0.38 | 0.64 ± 0.37 | 0.996 | 0.964 | 0.981 | 0.656 | 0.672 |
Phase I + II | 4.53 ± 1.16 | 4.21 ± 0.97 | 3.49 ± 0.95 | 3.46 ± 0.94 | 3.65 ± 1.04 | 3.72 ± 1.06 | 0.519 | 0.931 | 0.890 | 0.079 | 0.240 |
Left inner ear Dmean (Gy) | |||||||||||
Phase I | 20.16 ± 14.18 | 17.11 ± 12.72 | 16.26 ± 11.69 | 16.43 ± 11.71 | 14.66 ± 11.20 | 14.23 ± 11.17 | 0.619 | 0.974 | 0.932 | 0.602 | 0.852 |
Phase II | 2.43 ± 2.86 | 2.58 ± 2.89 | 2.45 ± 2.40 | 2.30 ± 2.36 | 1.58 ± 1.74 | 1.57 ± 1.75 | 0.907 | 0.890 | 0.991 | 0.655 | 0.627 |
Phase I + II | 22.58 ± 16.07 | 19.69 ± 14.65 | 18.71 ± 13.51 | 18.73 ± 13.56 | 16.17 ± 12.31 | 15.73 ± 12.32 | 0.679 | 0.997 | 0.938 | 0.596 | 0.794 |
Right inner ear Dmean (Gy) | |||||||||||
Phase I | 19.11 ± 15.01 | 17.80 ± 12.73 | 17.78 ± 13.87 | 16.37 ± 12.61 | 14.49 ± 14.68 | 13.40 ± 12.72 | 0.836 | 0.815 | 0.862 | 0.767 | 0.734 |
Phase II | 2.34 ± 2.84 | 2.60 ± 3.26 | 2.86 ± 3.50 | 2.70 ± 3.27 | 1.75 ± 2.27 | 1.69 ± 2.25 | 0.851 | 0.919 | 0.956 | 0.699 | 0.706 |
Phase I + II | 21.45 ± 16.57 | 20.41 ± 14.97 | 20.64 ± 16.09 | 19.07 ± 14.76 | 16.21 ± 15.70 | 15.07 ± 13.75 | 0.884 | 0.823 | 0.865 | 0.740 | 0.697 |
Normal brain (WB-CTV_H) | |||||||||||
Phase I + II Dmax (Gy) | 64.44 ± 0.80 | 64.29 ± 0.74 | 63.34 ± 0.82 | 63.52 ± 0.61 | 62.60 ± 1.15 | 62.83 ± 1.17 | 0.669 | 0.574 | 0.656 | 0.001 * | 0.004 * |
Phase I + II Dmean (Gy) | 34.80 ± 4.12 | 34.35 ± 3.89 | 33.67 ± 3.59 | 33.01 ± 3.33 | 31.85 ± 3.24 | 31.67 ± 3.20 | 0.804 | 0.674 | 0.900 | 0.213 | 0.247 |
Phase I + II NTCP (%) | 5.20 ± 2.57 | 4.50 ± 2.37 | 4.20 ± 1.75 | 4.00 ± 1.70 | 2.70 ± 1.34 | 2.70 ± 1.34 | 0.535 | 0.798 | 1.000 | 0.027 * | 0.697 |
PTV Coverage | |||
---|---|---|---|
Variables | Adequate | Inadequate | p-Value |
Phase I | 0.202 | ||
IMRT_N | 3 | 7 | |
VMAT_N | 5 | 5 | |
TOMO_N | 7 | 3 | |
Phase II | 1.000 | ||
IMRT_N | 8 | 2 | |
VMAT_N | 8 | 2 | |
TOMO_N | 9 | 1 | |
Phase I | 0.003 * | ||
IMRT_C | 10 | 0 | |
IMRT_N | 3 | 7 | |
Phase II | 0.474 | ||
IMRT_C | 10 | 0 | |
IMRT_N | 8 | 2 | |
Phase I | 0.033 * | ||
VMAT_C | 10 | 0 | |
VMAT_N | 5 | 5 | |
Phase II | 0.474 | ||
VMAT_C | 10 | 0 | |
VMAT_N | 8 | 2 | |
Phase I | 0.211 | ||
TOMO_C | 10 | 0 | |
TOMO_N | 7 | 3 | |
Phase II | 1.000 | ||
TOMO_C | 10 | 0 | |
TOMO_N | 9 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-Y.; Liu, W.-H.; Chou, Y.-C.; Li, M.-H.; Tsai, J.-T.; Huang, D.Y.; Lin, J.-C. To Optimize Radiotherapeutic Plans for Superior Tumor Coverage Predicts Malignant Glioma Prognosis and Normal Tissue Complication Probability. J. Clin. Med. 2022, 11, 2413. https://doi.org/10.3390/jcm11092413
Kuo C-Y, Liu W-H, Chou Y-C, Li M-H, Tsai J-T, Huang DY, Lin J-C. To Optimize Radiotherapeutic Plans for Superior Tumor Coverage Predicts Malignant Glioma Prognosis and Normal Tissue Complication Probability. Journal of Clinical Medicine. 2022; 11(9):2413. https://doi.org/10.3390/jcm11092413
Chicago/Turabian StyleKuo, Chun-Yuan, Wei-Hsiu Liu, Yu-Ching Chou, Ming-Hsien Li, Jo-Ting Tsai, David YC Huang, and Jang-Chun Lin. 2022. "To Optimize Radiotherapeutic Plans for Superior Tumor Coverage Predicts Malignant Glioma Prognosis and Normal Tissue Complication Probability" Journal of Clinical Medicine 11, no. 9: 2413. https://doi.org/10.3390/jcm11092413
APA StyleKuo, C. -Y., Liu, W. -H., Chou, Y. -C., Li, M. -H., Tsai, J. -T., Huang, D. Y., & Lin, J. -C. (2022). To Optimize Radiotherapeutic Plans for Superior Tumor Coverage Predicts Malignant Glioma Prognosis and Normal Tissue Complication Probability. Journal of Clinical Medicine, 11(9), 2413. https://doi.org/10.3390/jcm11092413