Wound-Related Complication in Growth-Friendly Spinal Surgeries for Early-Onset Scoliosis—Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Criteria Appraisal
3. Results
3.1. Included Studies
3.2. Patient Demographics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, H.-R.; Bess, S.; Wong, M.S.; Patel, V.; Goodall, D.; Burger, E. Adolescent Idiopathic Scoliosis to Operate or Not? A Debate Article. Patient Saf. Surg. 2008, 2, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistovich, R.J.; Jacobs, L.J.; Campbell, R.M.; Spiegel, D.A.; Flynn, J.M.; Baldwin, K.D. Infection Control in Pediatric Spinal Deformity Surgery: A Systematic and Critical Analysis Review. JBJS Rev. 2017, 5, e3. [Google Scholar] [CrossRef] [PubMed]
- Galetta, M.S.; Kepler, C.K.; Divi, S.N.; Russo, G.S.; Segar, A.H.; Boody, B.S.; Bronson, W.H.; Rihn, J.A.; Goyal, D.K.C.; Fang, T.; et al. Consensus on Wound Care of SSI in Spine Surgery. Clin. Spine Surg. 2019, 33, E206–E212. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bess, S.; Akbarnia, B.A.; Thompson, G.H.; Sponseller, P.D.; Shah, S.A.; El Sebaie, H.; Boachie-Adjei, O.; Karlin, L.I.; Canale, S.; Poe-Kochert, C.; et al. Complications of Growing-Rod Treatment for Early-Onset Scoliosis: Analysis of One Hundred and Forty Patients. J. Bone Jt. Surg. Am. 2010, 92, 2533–2543. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.; Gaynes, R.; Martone, W.; Jarvis, W.; Graceemori, T. CDC Definitions of Nosocomial Surgical Site Infections, 1992: A Modification of CDC Definitions of Surgical Wound Infections. Am. J. Infect. Control. 1992, 20, 271–274. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fields, M.W.; Roye, B.D.; Roye, D.P.; Skaggs, D.; Akbarnia, B.A.; Vitale, M.G. Complications in the Treatment of EOS: Is There a Difference between Rib vs. Spine-Based Proximal Anchors? Spine Deform. 2021, 9, 247–253. [Google Scholar] [CrossRef]
- Bachabi, M.; McClung, A.; Pawelek, J.B.; El Hawary, R.; Thompson, G.H.; Smith, J.T.; Vitale, M.G.; Akbarnia, B.A.; Sponseller, P.D.; Children’s Spine Study Group, Growing Spine Study Group. Idiopathic Early-Onset Scoliosis: Growing Rods versus Vertically Expandable Prosthetic Titanium Ribs at 5-Year Follow-up. J. Pediatr. Orthop. 2020, 40, 142–148. [Google Scholar] [CrossRef]
- Peiro-Garcia, A.; Bourget-Murray, J.; Suarez-Lorenzo, I.; Ferri-De-Barros, F.; Parsons, D. Early Complications in Vertical Expandable Prosthetic Titanium Rib and Magnetically Controlled Growing Rods to Manage Early Onset Scoliosis. Int. J. Spine Surg. 2021, 15, 368–375. [Google Scholar] [CrossRef]
- Hardesty, C.K.; Huang, R.P.; El-Hawary, R.; Samdani, A.; Hermida, P.B.; Bas, T.; Balioğlu, M.B.; Gurd, D.; Pawelek, J.; McCarthy, R.; et al. Early-Onset Scoliosis: Updated Treatment Techniques and Results. Spine Deform. 2018, 6, 467–472. [Google Scholar] [CrossRef]
- Du, J.Y.; Poe-Kochert, C.; Thompson, G.H.; Hardesty, C.K.; Pawelek, J.B.; Flynn, J.M.; Emans, J.B.; Pediatric Spine Study Group. Risk Factors for Reoperation Following Final Fusion After the Treatment of Early-Onset Scoliosis with Traditional Growing Rods. J. Bone Jt. Surg. Am. 2020, 102, 1672–1678. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, S.; Xu, D.; Zhuang, Q.; Ren, Z.; Chen, X.; Gao, N. Risk Factors for Predicting Complications Associated with Growing Rod Surgery for Early-Onset Scoliosis. Clin. Neurol. Neurosurg. 2015, 136, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kabirian, N.; Akbarnia, B.A.; Pawelek, J.B.; Alam, M.; Mundis, G.M.; Acacio, R.; Thompson, G.H.; Marks, D.S.; Gardner, A.; Sponseller, P.D.; et al. Deep Surgical Site Infection Following 2344 Growing-Rod Procedures for Early-Onset Scoliosis: Risk Factors and Clinical Consequences. J. Bone Jt. Surg. Am. 2014, 96, e128. [Google Scholar] [CrossRef] [PubMed]
- Dumaine, A.M.; Yu, J.; Poe-Kochert, C.; Thompson, G.H.; Mistovich, R.J. Surgical Site Infections in Early Onset Scoliosis: What Are Long-Term Outcomes in Patients with Traditional Growing Rods? Spine Deform. 2021, 10, 465–470. [Google Scholar] [CrossRef]
- Poe-Kochert, C.; Shannon, C.; Pawelek, J.B.; Thompson, G.H.; Hardesty, C.K.; Marks, D.S.; Akbarnia, B.A.; McCarthy, R.E.; Emans, J.B. Final Fusion After Growing-Rod Treatment for Early Onset Scoliosis: Is It Really Final? J. Bone Jt. Surg. Am. 2016, 98, 1913–1917. [Google Scholar] [CrossRef]
- El-Hawary, R.; Kadhim, M.; Vitale, M.; Smith, J.; Samdani, A.; Flynn, J.M.; Children’s Spine Study Group. VEPTR Implantation to Treat Children With Early-Onset Scoliosis Without Rib Abnormalities: Early Results From a Prospective Multicenter Study. J. Pediatr. Orthop. 2017, 37, e599–e605. [Google Scholar] [CrossRef]
- Hasler, C.-C.; Mehrkens, A.; Hefti, F. Efficacy and Safety of VEPTR Instrumentation for Progressive Spine Deformities in Young Children without Rib Fusions. Eur. Spine J. 2010, 19, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Lucas, G.; Bollini, G.; Jouve, J.-L.; de Gauzy, J.S.; Accadbled, F.; Lascombes, P.; Journeau, P.; Karger, C.; Mallet, J.F.; Neagoe, P.; et al. Complications in Pediatric Spine Surgery Using the Vertical Expandable Prosthetic Titanium Rib: The French Experience. Spine 2013, 38, E1589–E1599. [Google Scholar] [CrossRef]
- Choi, E.; Yaszay, B.; Mundis, G.; Hosseini, P.; Pawelek, J.; Alanay, A.; Berk, H.; Cheung, K.; Demirkiran, G.; Ferguson, J.; et al. Implant Complications After Magnetically Controlled Growing Rods for Early Onset Scoliosis: A Multicenter Retrospective Review. J. Pediatric Orthop. 2017, 37, e588. [Google Scholar] [CrossRef]
- Urbański, W.; Tucker, S.; Ember, T.; Nadarajah, R. Single vs Dual Rod Constructs in Early Onset Scoliosis Treated with Magnetically Controlled Growing Rods. Adv. Clin. Exp. Med. 2020, 29, 1169–1174. [Google Scholar] [CrossRef]
- Obid, P.; Yiu, K.; Cheung, K.; Kwan, K.; Ruf, M.; Cheung, J.P.Y. Magnetically Controlled Growing Rods in Early Onset Scoliosis: Radiological Results, Outcome, and Complications in a Series of 22 Patients. Arch. Orthop. Trauma Surg. 2020, 141, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Lampe, L.P.; Schulze Bövingloh, A.; Gosheger, G.; Schulte, T.L.; Lange, T. Magnetically Controlled Growing Rods in Treatment of Early-Onset Scoliosis: A Single Center Study With a Minimum of 2-Year-Follow up and Preliminary Results After Converting Surgery. Spine 2019, 44, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Lebel, D.E.; Rocos, B.; Helenius, I.; Sigal, A.; Struder, D.; Yazici, M.; Bekmez, S.; Hasler, C.-C.; Pesenti, S.; Jouve, J.-L.; et al. Magnetically Controlled Growing Rods Graduation: Deformity Control with High Complication Rate. Spine 2021, 46, E1105–E1112. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, R.E.; Sucato, D.; Turner, J.L.; Zhang, H.; Henson, M.A.W.; McCarthy, K. Shilla Growing Rods in a Caprine Animal Model: A Pilot Study. Clin. Orthop. Relat. Res. 2010, 468, 705–710. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, R.E.; McCullough, F.L. Shilla Growth Guidance for Early-Onset Scoliosis: Results After a Minimum of Five Years of Follow-Up. J. Bone Jt. Surg. Am. 2015, 97, 1578–1584. [Google Scholar] [CrossRef]
- Crews, J.D.; Mina, M.; Johnson, E.; Guillen, J.; Simmons, J.; Joshi, A. Risk Factors for Surgical Site Infections Following Vertical Expandable Prosthetic Titanium Rib (VEPTR) Surgery in Children. Spine Deform. 2018, 6, 791–796. [Google Scholar] [CrossRef]
- Striano, B.M.; Refakis, C.A.; Anari, J.B.; Campbell, R.M.; Flynn, J.M. Site-Specific Surgical Site Infection Rates for Rib-Based Distraction. J. Pediatr. Orthop. 2019, 39, e698–e702. [Google Scholar] [CrossRef]
- Garg, S.; Cyr, M.; St. Hilaire, T.; Flynn, T.; Carry, P.; Glotzbecker, M.; Smith, J.T.; Sawyer, J.; Pahys, J.; Luhmann, S.; et al. Variability of Surgical Site Infection With VEPTR at Eight Centers: A Retrospective Cohort Analysis. Spine Deform. 2016, 4, 59–64. [Google Scholar] [CrossRef]
- Dumaine, A.M.; Du, J.Y.; Parent, S.; Sturm, P.; Sponseller, P.; Glotzbecker, M.P.; Pediatric Spine Study Group. Use of Vancomycin Powder in the Surgical Treatment of Early Onset Scoliosis Is Associated With Different Microbiology Cultures After Surgical Site Infection. J. Pediatr. Orthop. 2021, 41, e702–e705. [Google Scholar] [CrossRef]
- Weiss, H.-R.; Goodall, D. Rate of Complications in Scoliosis Surgery—A Systematic Review of the Pub Med Literature. Scoliosis 2008, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Uno, K.; Suzuki, T.; Kawakami, N.; Tsuji, T.; Yanagida, H.; Ito, M.; Hirano, T.; Yamazaki, K.; Minami, S.; et al. Risk Factors for Complications Associated with Growing-Rod Surgery for Early-Onset Scoliosis. Spine 2013, 38, E464–E468. [Google Scholar] [CrossRef] [PubMed]
- Johari, J.; Sharifudin, M.A.; Ab Rahman, A.; Omar, A.S.; Abdullah, A.T.; Nor, S.; Lam, W.C.; Yusof, M.I. Relationship between Pulmonary Function and Degree of Spinal Deformity, Location of Apical Vertebrae and Age among Adolescent Idiopathic Scoliosis Patients. Singap. Med. J. 2016, 57, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedequist, D.; Haugen, A.; Hresko, T.; Emans, J. Failure of Attempted Implant Retention in Spinal Deformity Delayed Surgical Site Infections. Spine 2009, 34, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Poe-Kochert, C.; Shimberg, J.L.; Thompson, G.H.; Son-Hing, J.P.; Hardesty, C.K.; Mistovich, R.J. Surgical Site Infection Prevention Protocol for Pediatric Spinal Deformity Surgery: Does It Make a Difference? Spine Deform. 2020, 8, 931–938. [Google Scholar] [CrossRef] [PubMed]
Ref. | Construct | Subject | Sex (Male/Female) | Age at IP | Follow-Up | Diagnosis | Kind of Complication Analyzed |
---|---|---|---|---|---|---|---|
Bess et al., 2010 | TGR | 140 | 71/59 | 6 | 5 | N (n = 52), Id (n = 40), C (n = 24), other (n = 24) | WIAM |
Du et al., 2020 | TGR | 167 | 69/98 | 7.2 | 10.7 | Id (n = 45), N (n = 56), S (n = 43), C (n = 21), other (n = 2) | WIAM |
Liang et al., 2015 | TGR | 55 | 16/39 | 6.8 | 38.4 | C (n = 28), Id (n = 6), S (n = 8), N (n = 6), miscellaneous disorders (n = 7) | WIAM |
Poe-Kochert et al., 2016 | TGR | 100 | 42/58 | 7 | 4.3 | N (n = 38), S (n = 31), Id (n = 22), C (n = 9) | WI |
Kabirian et al., 2014 | TGR | 379 | 177/202 | 6.3 | 5.3 | nd | W |
Bachabi et al., 2020 | TGR | 50 | nd | 5.5 | 8.3 | nd | WIAM |
Matsumoto et.al., 2021 | TGR | 28 | 9/19 | 6.5 | 5.7 | S (n = 12), Id (n = 5), C (n = 1), N (n = 10) | WI |
Dumaine et al., 2021 | TGR | 81 | 30/51 | 7.3 | 5 | S (n = 18), Id (n = 19), C (n = 13), N (n = 31) | W |
Crews, 2018 | VEPTR | 151 | 16/6 | 7.1 | 3+ | nd | W |
Murphy et al., 2016 | VEPTR | 25 | 12/13 | 5.7 | 4.5 | C (n = 25) | WIM |
Hasler et al., 2010 | VEPTR | 23 | 8/15 | 6.5 | 3.6 | early onset Id scoliosis (n = 1), N (n = 11), post-thoracotomy scoliosis (n = 2), Sprengel deformity (n = 1), hyperkyphosis (n = 2), myopathy (n = 1), S (n = 5) | WIAM |
Latalski et al., 2011 | VEPTR | 12 | nd | 5.25 | 2.5 | C (n = 3), N (n = 9), | WIAM |
Waldhausen et al., 2016 | VEPTR | 65 | nd | 6.9 | 6.9 | C (n = 23), N (n = 12), S (n = 14), Id (n = 2), other (n = 14) | WI |
Striano et al., 2019 | VEPTR | 166 | nd | 6.81 | N (n = 61), S (n = 38), C (n = 64), Id (n = 3) | W | |
Lucas et al., 2013 | VEPTR | 54 | 21/33 | 7 | 2 | N (n = 19), C (n = 30), S (n = 7), Id (n = 3) | WIAM |
Peiro-Garcia et al., 2021 | VEPTR | 20 | 9/11 | 4 | 2+ | S (n = 5), Id (n = 1), C (n = 3), N (n = 11) | WIA |
Matsumoto et al., 2021 | VEPTR | 76 | 32/44 | 6.2 | 5.7 | S (n = 11), Id (n = 14), C (n = 14), N (n = 37) | WIM |
Garg et al., 2016 | VEPTR | 38 | 22/16 | 5.51 | 4.1 | N (n = 18), C (n = 13), S (n = 5), Id (n = 2) | W |
Urbański et al., 2020 | MAGEC | 47 | 14/18 | 8.8 | 1–2.5 | N (n = 10), S (n = 11), Id (n = 20), C (n = 6) | WIAM |
Obid et al., 2020 | MAGEC | 22 | 4/18 | 9.5 | 3.966667 | Id (n = 14), neurofbromatosis (n = 2), N and S (n = 6) | WIAM |
Lampe et al., 2019 | MAGEC | 24 | 7/17 | 10.5 | 3.525 | S (n = 4), Id (n = 9), C (n = 1), N (n = 10) | WIAM |
Lebel et al., 2021 | MAGEC | 47 | 12/35 | 9.2 | 4.2 | S (n = 10), Id (n = 10), C (n = 10), N (n = 17) | WIAM |
Peiro-Garcia et al., 2021 | MAGEC | 15 | 8/7 | 7 | 2+ | S (n = 2), Id (n = 1), C (n = 3), N (n = 9) | WIAM |
Nazareth et al., 2020 | Shilla | 20 | 10/10 | 5.7 | 5.2 | S (n = 9), N (n = 5), Id (n = 3), C (n = 3). | WIM |
McCarthy et al., 2015 | Shilla | 40 | 17/23 | 6.11 | 5 | Id (n = 9), C (n = 1), N (n = 16), S (n = 14) | WIA |
Dumaine et al., 2021 | varia | 1115 | nd | nd | 7.2 | no data | W |
Ref. | Construct | Subject | Complications Total (No.) | Wound Complications Total (No.) | Unplanned Surgery Due to Wound Problems (No.) | Wound Complication Rate Per Complication (%) | Wound Complication Rate Per Patient (%) | Surgical Procedures (No.) | Planned Surgical Procedures (No.) | Unplanned Surgical Procedure (No.) | Unplanned Surgery in All Groups (5%) | Unplanned Wound Surgery in All Unplanned Surgeries (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bess et al., 2010 | TGR | 140 | 177 | 34 | 29 | 19.2 | 24.3 | 897 | 823 | 74 | 52.9 | 39.2 |
Du et al., 2020 | TGR | 167 | 49 | 19 | nd | 38.8 | 11.4 | 199 | 167 | 32 | 19.2 | |
Liang et al., 2015 | TGR | 55 | 42 | 5 | nd | 11.9 | 9.1 | 272 | 263 | 9 | 16.4 | |
Bachabi et al., 2020 | TGR | 50 | 23 | 7 | nd | 30.4 | 14.0 | 179 | 179 | 0.0 | ||
Lucas et al., 2013 | VEPTR | 54 | 74 | 18 | 24.3 | 33.3 | 416 | 0.0 | ||||
Peiro-Garcia et al., 2021 | VEPTR | 20 | 16 | 2 | 5 | 12.5 | 10.0 | 116 | 16 | 80.0 | 31.3 | |
Hasler et al., 2010 | VEPTR | 23 | 31 | 16 | 8 | 51.6 | 69.6 | 100 | 86 | 14 | 60.9 | 57.1 |
Latalski et al., 2011 | VEPTR | 12 | 15 | 1 | 0 | 6.7 | 8.3 | 183 | 178 | 5 | 41.7 | |
Urbański et al., 2020 | MAGEC | 47 | 17 | 2 | 11.8 | 4.3 | 50 | 47 | 3 | 6.4 | 0.0 | |
Obid et al., 2020 | MAGEC | 22 | 12 | 1 | 1 | 16.7 | 4.5 | 16 | 12 | 4 | 18.2 | 25.0 |
Peiro-Garcia et al., 2021 | MAGEC | 15 | 3 | 1 | 1 | 33.3 | 6.7 | nd | nd | 3 | 20.0 | 33.3 |
Lebel et al., 2021 | MAGEC | 47 | 31 | 5 | nd | 16.1 | 10.6 | nd | 47 | nd | ||
Lampe et al., 2019 | MAGEC | 24 | 20 | 3 | 3 | 15.0 | 12.5 | 24 | 24 | 0 | 0.0 |
Ref. | Construct | Subject | Patients with at Least 1 Infection | Wound Complications Total | Infections | Superficial | Deep | Wound Complication Rate Per Patient (%) |
---|---|---|---|---|---|---|---|---|
Kabirian et al., 2014 | TGR | 379 | 70 | 70 | 70 | 18.5 | ||
Dumaine et al., 2021 | TGR | 81 | 21 | 27 | 27 | 25.9 | ||
Crews, 2018 | VEPTR | 151 | 26 | 26 | 3 | 23 | 17.2 | |
Striano et al., 2019 | VEPTR | 166 | 40 | 47 | 28.3 | |||
Garg et al., 2016 | VEPTR | 213 | 38 | 55 | 55 | 13 | 42 | 25.8 |
Dumaine et al., 2021 | varia | 1115 | 55 | 55 | 55 | 9 | 46 | 4.9 |
Ref. | Construct | Subject | Wound Complications Total | Infections | Superficial | Deep | Other Wound Problems |
---|---|---|---|---|---|---|---|
Bess et al., 2010 | TGR | 140 | 30 | 21 | 6 | 15 | 9 |
Liang et al., 2015 | TGR | 55 | 5 | 4 | 2 | 2 | 1 |
Poe-Kochert et al., 2016 | TGR | 100 | 33 | 25 | 2 | 23 | 8 |
Matsumoto et.al., 2021 | TGR | 28 | 2 | 1 | nd | 1 | |
Dumaine et al., 2021 | TGR | 81 | 27 | 27 | 27 | 0 | 0 |
Crews, 2018 | VEPTR | 151 | 26 | 26 | 23 | 23 | 0 |
Murphy, 2016 | VEPTR | 25 | 21 | 16 | 8 | 8 | 5 |
Hasler et al., 2010 | VEPTR | 23 | 16 | 16 | 10 | 6 | 0 |
Waldhausen et al., 2016 | VEPTR | 65 | 12 | 12 | 3 | 9 | 0 |
Lucas et al., 2013 | VEPTR | 54 | 20 | 9 | 9 | 11 | |
Matsumoto et al., 2021 | VEPTR | 76 | 19 | 15 | nd | 4 | |
Garg et al., 2016 | VEPTR | 213 | 55 | 55 | 13 | 42 | 0 |
Urbański et al., 2020 | MAGEC | 47 | 2 | 2 | 0 | 2 | 0 |
Lampe et al., 2019 | MAGEC | 24 | 3 | 3 | 2 | 1 | 0 |
Nazareth et al., 2020 | Shilla | 20 | 4 | 3 | 1 | 2 | 1 |
McCarthy et al., 2015 | Shilla | 40 | 6 | 1 | 1 | 0 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latalski, M.; Starobrat, G.; Fatyga, M.; Sowa, I.; Wójciak, M.; Wessely-Szponder, J.; Dresler, S.; Danielewicz, A. Wound-Related Complication in Growth-Friendly Spinal Surgeries for Early-Onset Scoliosis—Literature Review. J. Clin. Med. 2022, 11, 2669. https://doi.org/10.3390/jcm11092669
Latalski M, Starobrat G, Fatyga M, Sowa I, Wójciak M, Wessely-Szponder J, Dresler S, Danielewicz A. Wound-Related Complication in Growth-Friendly Spinal Surgeries for Early-Onset Scoliosis—Literature Review. Journal of Clinical Medicine. 2022; 11(9):2669. https://doi.org/10.3390/jcm11092669
Chicago/Turabian StyleLatalski, Michał, Grzegorz Starobrat, Marek Fatyga, Ireneusz Sowa, Magdalena Wójciak, Joanna Wessely-Szponder, Sławomir Dresler, and Anna Danielewicz. 2022. "Wound-Related Complication in Growth-Friendly Spinal Surgeries for Early-Onset Scoliosis—Literature Review" Journal of Clinical Medicine 11, no. 9: 2669. https://doi.org/10.3390/jcm11092669
APA StyleLatalski, M., Starobrat, G., Fatyga, M., Sowa, I., Wójciak, M., Wessely-Szponder, J., Dresler, S., & Danielewicz, A. (2022). Wound-Related Complication in Growth-Friendly Spinal Surgeries for Early-Onset Scoliosis—Literature Review. Journal of Clinical Medicine, 11(9), 2669. https://doi.org/10.3390/jcm11092669