Skincare in Rosacea from the Cosmetologist’s Perspective: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Food Items and Other Triggering Factors for Flares of Rosacea
4. Role of Microorganisms in the Development of Rosacea
5. Microbiome and Its Role in Rosacea
6. Skin Care in Rosacea
7. Cosmetology Treatments
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Wang, L.; Shucheng, H.; Jiang, X. Differences in clinical characteristics of rosacea across age groups: A retrospective study of 840 female patients. J. Cosmet. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.M.; Almeida, L.M.C.; Bonamigo, R.R.; Lima, C.W.G.; Bagatin, E. Consensus on the therapeutic management of rosacea-Brazilian Society of Dermatology. An. Bras. Dermatol. 2020, 95 (Suppl. S1), 53–69. [Google Scholar] [CrossRef]
- Gether, L.; Overgaard, L.K.; Egeberg, A.; Thyssen, J.P. Incidence and prevalence of rosacea: A systematic review and meta-analysis. Br. J. Dermatol. 2018, 179, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, M.A.; Paul, C.; Nijsten, T.; Gisondi, P.; Salavastru, C.; Taieb, C.; Trakatelli, M.; Puig, L.; Stratigos, A. Prevalence of most common skin diseases in Europe: A population-based study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.N.; Shah, M.; Tan, J. Rosacea: An Update in Diagnosis, Classification and Management. Ski. Ther. Lett. 2021, 26, 1–8. [Google Scholar]
- Schaller, M.; Almeida, L.M.C.; Bewley, A.; Cribier, B.; Del Rosso, J.; Dlova, N.C.; Gallo, R.L.; Granstein, R.D.; Kautz, G.; Mannis, M.J.; et al. Recommendations for rosacea diagnosis, classification and management: Update from the global ROSacea COnsensus 2019 panel. Br. J. Dermatol. 2020, 182, 1269–1276. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, H.E.; Harper, J.; Baradaran, S.; Patel, V. Erythema of Rosacea Affects Health-Related Quality of Life: Results of a Survey Conducted in Collaboration with the National Rosacea Society. Dermatol. Ther. 2019, 9, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Steinhoff, M.; Bewley, A.; Gieler, U.; Rives, V. Characterizing high-burden rosacea subjects: A multivariate risk factor analysis from a global survey. J. Dermatol. Treat. 2020, 31, 168–174. [Google Scholar] [CrossRef]
- New Survey Pinpoints Leading Factors That Trigger Symptoms. Available online: http://www.rosacea.org/rosacea-review/2002/summer/new-survey-pinpoints-leading-factors-that-trigger-symptoms (accessed on 10 November 2022).
- Searle, T.; Ali, F.R.; Carolides, S.; Al-Niaimi, F. Rosacea and Diet: What is New in 2021? J. Clin. Aesthetic Dermatol. 2021, 14, 49–54. [Google Scholar]
- Li, S.; Chen, M.L.; Drucker, A.M.; Cho, E.; Geng, H.; Qureshi, A.A.; Li, W.Q. Association of Caffeine Intake and Caffeinated Coffee Consumption With Risk of Incident Rosacea in Women. JAMA Dermatol. 2018, 154, 1394–1400. [Google Scholar] [CrossRef] [Green Version]
- Weiss, E.; Katta, R. Diet and rosacea: The role of dietary change in the management of rosacea. Dermatol. Pract. Concept. 2017, 7, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, R.; Kumar, P.; Kumar, M.; Mehra, N.; Mishra, A. A randomized controlled trial of omega-3 fatty acids in dry eye syndrome. Int. J. Ophthalmol. 2013, 6, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Yan, G.; Cao, Y.; Zeng, Q.; Zhao, J.; Wang, X.; Wang, P. Dietary supplementation of n-3 PUFAs ameliorates LL37-induced rosacea-like skin inflammation via inhibition of TLR2/MyD88/NF-κB pathway. Biomed. Pharmacother. 2023, 157, 114091. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, X.; Wang, B.; Huang, Y.X.; Zhang, Y.Y.; Tang, Y.; Yang, J.Y.; Chen, Q.; Jian, D.; Xie, H.F.; et al. Relationship between rosacea and dietary factors: A multicenter retrospective case-control survey. J. Dermatol. 2019, 46, 219–225. [Google Scholar] [CrossRef]
- Mehrholz, D.M.; Nowicki, R.; Barańska-Rybak, W.M. Infectious agents in the pathogenesis of rosacea. Dermatol. Rev./Przegląd Dermatol. 2016, 103, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.D. Potential role of microorganisms in the pathogenesis of rosacea. J. Am. Acad. Dermatol. 2013, 69, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.E.; Tsao, H. The skin microbiome: Current perspectives and future challenges. J. Am. Acad. Dermatol. 2013, 69, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Yamasaki, K.; Kanada, K.; Macleod, D.T.; Borkowski, A.W.; Morizane, S.; Nakatsuji, T.; Cogen, A.L.; Gallo, R.L. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Investig. Dermatol. 2011, 131, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Casas, C.; Paul, C.; Lahfa, M.; Livideanu, B.; Lejeune, O.; Alvarez-Georges, S.; Saint-Martory, C.; Degouy, A.; Mengeaud, V.; Ginisty, H.; et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp. Dermatol. 2012, 21, 906–910. [Google Scholar] [CrossRef]
- Yamasaki, K.; Gallo, R.L. Rosacea as a disease of cathelicidins and skin innate immunity. J. Investig. Dermatol. Symp. Proc. 2011, 15, 12–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewa Robak, E.; Kulczycka, L. Trądzik różowaty-współczesne poglądy na patomechanizm i terapię. Postep. Hig. Med. Dosw. (Online) 2010, 64, 439–450. [Google Scholar]
- Powell, F.C. Rosacea and the pilosebaceous follicle. Cutis 2004, 74, 9–12. [Google Scholar]
- Koller, B.; Müller-Wiefel, A.S.; Rupec, R.; Korting, H.C.; Ruzicka, T. Chitin modulates innate immune responses of keratinocytes. PLoS ONE 2011, 6, e16594. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, E.; Fotiadou, C.; Ziakas, N.G.; Giannopoulou, C.; Apalla, Z.; Ioannides, D. Clinical and laboratory study of ocular rosacea in northern Greece. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1428–1431. [Google Scholar] [CrossRef]
- Murillo, N.; Mediannikov, O.; Aubert, J.; Raoult, D. Bartonella quintana detection in Demodex from erythematotelangiectatic rosacea patients. Int. J. Infect. Dis. 2014, 29, 176–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murillo, N.; Aubert, J.; Raoult, D. Microbiota of Demodex mites from rosacea patients and controls. Microb. Pathog. 2014, 71–72, 37–40. [Google Scholar] [CrossRef]
- Lacey, N.; Delaney, S.; Kavanagh, K.; Powell, F.C. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br. J. Dermatol. 2007, 157, 474–481. [Google Scholar] [CrossRef] [Green Version]
- McMahon, F.; Banville, N.; Bergin, D.A.; Smedman, C.; Paulie, S.; Reeves, E.; Kavanagh, K. Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins. Inflammation 2016, 39, 425–433. [Google Scholar] [CrossRef]
- O’Reilly, N.; Menezes, N.; Kavanagh, K. Positive correlation between serum immunoreactivity to Demodex-associated Bacillus proteins and erythematotelangiectatic rosacea. Br. J. Dermatol. 2012, 167, 1032–1036. [Google Scholar] [CrossRef]
- Whitfeld, M.; Gunasingam, N.; Leow, L.J.; Shirato, K.; Preda, V. Staphylococcus epidermidis: A possible role in the pustules of rosacea. J. Am. Acad. Dermatol. 2011, 64, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.; Duong, A.C.; Otto, M. Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: Implications for diagnosis and pathogenesis. Microbes Infect. 2012, 14, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argenziano, G.; Donnarumma, G.; Iovene, M.R.; Arnese, P.; Baldassarre, M.A.; Baroni, A. Incidence of anti-Helicobacter pylori and anti-CagA antibodies in rosacea patients. Int. J. Dermatol. 2003, 42, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Shiotani, A.; Okada, K.; Yanaoka, K.; Itoh, H.; Nishioka, S.; Sakurane, M.; Matsunaka, M. Beneficial effect of Helicobacter pylori eradication in dermatologic diseases. Helicobacter 2001, 6, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Utaş, S.; Ozbakir, O.; Turasan, A.; Utaş, C. Helicobacter pylori eradication treatment reduces the severity of rosacea. J. Am. Acad. Dermatol. 1999, 40, 433–435. [Google Scholar] [CrossRef]
- Fernandez-Obregon, A.; Patton, D.L. The role of Chlamydia pneumoniae in the etiology of acne rosacea: Response to the use of oral azithromycin. Cutis 2007, 79, 163–167. [Google Scholar] [CrossRef]
- Woźniacka, A.; Czuwara, J.; Krasowska, D.; Chlebus, E.; Wąsik, G.; Wojas-Pelc, A.; Rudnicka, L.; Narbutt, J.; Adamski, Z.; Batycka-Baran, A.; et al. Rosacea. Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Part 1. Epidemiology, classification and clinical presentation. Dermatol. Rev./Przegląd Dermatol. 2022, 109, 101–121. [Google Scholar] [CrossRef]
- Condrò, G.; Guerini, M.; Castello, M.; Perugini, P. Acne Vulgaris, Atopic Dermatitis and Rosacea: The Role of the Skin Microbiota-A Review. Biomedicines 2022, 10, 2523. [Google Scholar] [CrossRef]
- Polkowska-Pruszyńska, B.; Gerkowicz, A.; Krasowska, D. The gut microbiome alterations in allergic and inflammatory skin diseases—An update. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 455–464. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lee, W.H.; Ho, H.J.; Tseng, C.H.; Wu, C.Y. An altered fecal microbial profiling in rosacea patients compared to matched controls. J. Formos. Med. Assoc. 2021, 120, 256–264. [Google Scholar] [CrossRef]
- Nam, J.H.; Yun, Y.; Kim, H.S.; Kim, H.N.; Jung, H.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Kim, W.S. Rosacea and its association with enteral microbiota in Korean females. Exp. Dermatol. 2018, 27, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Agnoletti, A.F.; Parodi, A.; Schiavetti, I.; Savarino, V.; Rebora, A.; Paolino, S.; Cozzani, E.; Drago, F. Etiopathogenesis of rosacea: A prospective study with a three-year follow-up. G. Ital. Dermatol. Venereol. 2017, 152, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Kim, H.N.; Chang, Y.; Lee, Y.; Ryu, S.; Shin, H.; Kim, W.S.; Kim, H.L.; Nam, J.H. Characterization of the Blood Microbiota in Korean Females with Rosacea. Dermatology 2019, 235, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.G.; Rainer, B.M.; Antonescu, C.; Florea, L.; Mongodin, E.F.; Kang, S.; Chien, A.L. Comparison of the skin microbiota in acne and rosacea. Exp. Dermatol. 2021, 30, 1375–1380. [Google Scholar] [CrossRef]
- O’Reilly, N.; Bergin, D.; Reeves, E.P.; McElvaney, N.G.; Kavanagh, K. Demodex-associated bacterial proteins induce neutrophil activation. Br. J. Dermatol. 2012, 166, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Dahl, M.V.; Ross, A.J.; Schlievert, P.M. Temperature regulates bacterial protein production: Possible role in rosacea. J. Am. Acad. Dermatol. 2004, 50, 266–272. [Google Scholar] [CrossRef]
- Torok, H.M. Rosacea skin care. Cutis 2000, 66, 14–16. [Google Scholar]
- Huang, Y.X.; Li, J.; Zhao, Z.X.; Zheng, B.L.; Deng, Y.X.; Shi, W.; Steinhoff, M.; Xie, H.F. Effects of skin care habits on the development of rosacea: A multi-center retrospective case-control survey in Chinese population. PLoS ONE 2020, 15, e0231078. [Google Scholar] [CrossRef]
- Draelos, Z.D. Vehicle Effects on the Rosacea Skin Barrier. J. Drugs Dermatol. 2021, 20, 630–632. [Google Scholar] [CrossRef]
- Zegarska, B.; Placek, W. Zasady pielęgnacji skóry w przebiegu trądzikuróżowatego. Dermatol. Estet. 2004, 6, 281–284. [Google Scholar]
- Kallis, P.J.; Price, A.; Dosal, J.R.; Nichols, A.J.; Keri, J. A Biologically Based Approach to Acne and Rosacea. J. Drugs Dermatol. 2018, 17, 611–617. [Google Scholar] [PubMed]
- Broniarczyk-Dyła, G.; Prusińska-Bratoś, M.; Kmieć, M.L. Original paperAssessment of the influence of licochalcone on selected functional skin parameters in patients with impaired vasomotor disorders and rosacea. Adv. Dermatol. Allergol./Postępy Dermatol. Alergol. 2011, 28, 241–247. [Google Scholar]
- Goh, C.L.; Wu, Y.; Welsh, B.; Abad-Casintahan, M.F.; Tseng, C.J.; Sharad, J.; Jung, S.; Rojanamatin, J.; Sitohang, I.B.S.; Chan, H.N.K. Expert consensus on holistic skin care routine: Focus on acne, rosacea, atopic dermatitis, and sensitive skin syndrome. J. Cosmet. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Juliandri, J.; Wang, X.; Liu, Z.; Zhang, J.; Xu, Y.; Yuan, C. Global rosacea treatment guidelines and expert consensus points: The differences. J. Cosmet. Dermatol. 2019, 18, 960–965. [Google Scholar] [CrossRef]
- Deaver Peterson, J.; Katz, T.M. Open-label study assessing the efficacy and tolerability of topical skin care and sun protection alone and in combination with intense pulsed light therapy. J. Cosmet. Dermatol. 2019, 18, 1758–1764. [Google Scholar] [CrossRef]
- Kennedy Carney, C.; Cantrell, W.; Elewski, B.E. Rosacea: A review of current topical, systemic and light-based therapies. G. Ital. Dermatol. Venereol. 2009, 144, 673–688. [Google Scholar]
- Husein-ElAhmed, H.; Steinhoff, M. Light-based therapies in the management of rosacea: A systematic review with meta-analysis. Int. J. Dermatol. 2022, 61, 216–225. [Google Scholar] [CrossRef]
- Piccolo, D.; Zalaudek, I.; Genovesi, C.; Dianzani, C.; Crisman, G.; Fusco, I.; Conforti, C. Long-pulsed Nd:YAG laser using an “in motion” setting to treat telangiectatic rosacea. Ann. Dermatol. Venereol. 2022, in press. [CrossRef]
- Uebelhoer, N.S.; Bogle, M.A.; Stewart, B.; Arndt, K.A.; Dover, J.S. A split-face comparison study of pulsed 532-nm KTP laser and 595-nm pulsed dye laser in the treatment of facial telangiectasias and diffuse telangiectatic facial erythema. Dermatol. Surg. 2007, 33, 441–448. [Google Scholar] [CrossRef]
- Kapicioglu, Y.; Sarac, G.; Cenk, H. Treatment of erythematotelangiectatic rosacea, facial erythema, and facial telangiectasia with a 577-nm pro-yellow laser: A case series. Lasers Med. Sci. 2019, 34, 93–98. [Google Scholar] [CrossRef]
- Temiz, S.A.; Durmaz, K.; Işık, B.; Ataseven, A.; Dursun, R. The effect of 577-nm pro-yellow laser on demodex density in patients with rosacea. J. Cosmet. Dermatol. 2022, 21, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Bae, S.H.; Moon, K.R.; Na, E.Y.; Yun, S.J.; Lee, S.C. Light-emitting diodes downregulate cathelicidin, kallikrein and toll-like receptor 2 expressions in keratinocytes and rosacea-like mouse skin. Exp. Dermatol. 2016, 25, 956–961. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, M.; Bae, J.M.; Cho, B.K.; Park, H.J. Efficacy of the long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet laser (LPND) (rejuvenation mode) in the treatment of papulopustular rosacea (PPR): A pilot study of clinical outcomes and patient satisfaction in 30 cases. J. Am. Acad. Dermatol. 2015, 73, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Ablon, G. Phototherapy with Light Emitting Diodes: Treating a Broad Range of Medical and Aesthetic Conditions in Dermatology. J. Clin. Aesthetic Dermatol. 2018, 11, 21–27. [Google Scholar]
- Schlessinger, J.; Lupin, M.; McDaniel, D.; George, R. Safety and Effectiveness of Microfocused Ultrasound for Treating Erythematotelangiectatic Rosacea. J. Drugs Dermatol. 2019, 18, 522. [Google Scholar]
- Daadaa, N.; Litaiem, N.; Karray, M.; Bacha, T.; Jones, M.; Belajouza Noueiri, C.; Goucha, S.; Zeglaoui, F. Intradermal tranexamic acid microinjections: A novel treatment option for erythematotelangiectatic rosacea. J. Cosmet. Dermatol. 2021, 20, 3324–3329. [Google Scholar] [CrossRef]
- Del Rosso, J.Q.; Tanghetti, E.; Webster, G.; Stein Gold, L.; Thiboutot, D.; Gallo, R.L. Update on the Management of Rosacea from the American Acne & Rosacea Society (AARS). J. Clin. Aesthetic Dermatol. 2019, 12, 17–24. [Google Scholar]
- Musthaq, S.; Mazuy, A.; Jakus, J. The microbiome in dermatology. Clin. Dermatol. 2018, 36, 390–398. [Google Scholar] [CrossRef]
Study | Study Conclusions |
---|---|
Chen et al. [41] | Using next-generation sequencing, a decrease in the colon microbiome was observed in patients and a simultaneous increase in colonization by Rabdochlamydia, Bifidobacterium, Sarcina, and Ruminococcus and a decrease in colonization by Lactobacillus, Megasphaera, Acidaminococcus, Haemophilus, Roseburia, and Clostridium. |
Nam et al. [42] | The study showed increased colonization by Acidaminococcus, Megasphaera, and Lactobacillus. |
Agnoletti et al. [43] | The study showed a relationship between the maculopapular form of rosacea, SIBO syndrome, Helicobacter pylori infection, and the presence of the erythematous phase of acne. |
Yun et al. [44] | The study indicated the possibility of altering the blood microbiome in the course of rosacea and other dermatological diseases. The presence of Chromatiaceae, Fusobacteriaceae, and Rheinheimer was demonstrated in patients with rosacea. |
Thompson et al. [45] | The skin analysis in the course of rosacea showed an increased amount of Actinobacteria, including Serratia marcescens and Cutibacterium acnes compared to patients with acne vulgaris. |
O’Reilly et al. [46] | In people with the presence of erythematous changes with telangiectasias and maculopapulars, an increased amount of Demodex folliculorum was found. |
Dahl et al. [47] | High levels of Staphylococcus epidermidis were found in patients with rosacea. This microorganism is able to produce proteins at higher temperatures in patients with rosacea, which influences its pathogenic role. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicka, D.; Chilicka, K.; Dzieńdziora-Urbińska, I.; Szyguła, R. Skincare in Rosacea from the Cosmetologist’s Perspective: A Narrative Review. J. Clin. Med. 2023, 12, 115. https://doi.org/10.3390/jcm12010115
Nowicka D, Chilicka K, Dzieńdziora-Urbińska I, Szyguła R. Skincare in Rosacea from the Cosmetologist’s Perspective: A Narrative Review. Journal of Clinical Medicine. 2023; 12(1):115. https://doi.org/10.3390/jcm12010115
Chicago/Turabian StyleNowicka, Danuta, Karolina Chilicka, Iwona Dzieńdziora-Urbińska, and Renata Szyguła. 2023. "Skincare in Rosacea from the Cosmetologist’s Perspective: A Narrative Review" Journal of Clinical Medicine 12, no. 1: 115. https://doi.org/10.3390/jcm12010115