The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- MS I (1a): 30 patients with short duration of the disease (time from first symptoms to time of research) ≤ 5 years (mean 2.77 ± 1.5 years). This group included 21 women (70%) and 9 men (30%), aged 21 to 45 (mean age 33.7 ± 6.9 years)
- MS II (1b): 31 patients with a long duration of the disease > 10 years (mean 13.16 ± 4 years). This group consisted of 21 women (68%) and 10 men (32%), aged 26 to 45 (mean age 39.1 ± 5.4 years).
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, S.; Tittgemeyerb, M.; Yves von Cramon, D. Cognitive impairment in multiple sclerosis. Curr. Opin. Neurol. 2007, 20, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Jacques, T.; Sá, M.J.; Alves, R.A. Cognitive impairment in multiple sclerosis phenotypes: Neuropsychological assessment in a Portuguese sample. App.l Neuropsychol. Adult 2022, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, S.; Ferreira, I.; Moreira, I.; Santos, E.; Samões, R.; Sousa, A.P.; Pinheiro, J.; Teixeira-Pinto, A.; Martins da Silva, A. Cognitive dysfunction and mortality in multiple sclerosis: Long-term retrospective review. Mult. Scler. 2022, 28, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Masland, R.H. The neuronal organization of the retina. Neuron 2012, 76, 266–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoreson, W.B.; Mangel, S.C. Lateral interactions in the outer retina. Prog. Retin Eye Res. 2012, 31, 407–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, B.M.; Frohman, E. Optical coherence tomography as a potential readout in clinical trials. Ther. Adv. Neurol. Disord. 2010, 3, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abtahian, F.; Jang, I.K. Optical coherence tomography: Basic, current application and future potential. Curr. Opin. Pharmacol. 2012, 12, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Adgi, M.; Duker, J.S. Optical coherence tomography- current and future applications. Curr. Opin. Ophthalmol. 2013, 24, 213–221. [Google Scholar]
- Toussaint, D.; Perier, O.; Verstappen, A.; Bervoets, S. Clinicopathological study of the visual pathways, eyes and cerebral hemispheres in 32 cases of disseminated sclerosis. J. Clin. Neuroophthalmol. 1983, 3, 211–220. [Google Scholar]
- Petzold, A.; de Boer, J.F.; Schippling, S.; Vermersch, P.; Kardon, R.; Green, A.; Calabresi, P.A.; Polman, C. Optical coherence tomography in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Gundogan, F.C.; Demirkaya, S.; Sobaci, G. Is optical coherence tomography really a new biomarker candidate in multiple sclerosis?—A structural and functional evaluation. Invest. Ophthalmol. Vis. Sci. 2007, 48, 5773–5781. [Google Scholar] [CrossRef]
- Costello, F.; Coupland, S.; Hodge, W.; Lorello, G.R.; Koroluk, J.; Pan, Y.I.; Freedman, M.S.; Zackon, D.H.; Kardon, R.H. Quantifying axonal loss after optic neurotis with optical coherence tomography. Ann. Neurol. 2006, 59, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Dai, H.; Zhang, H.; Wang, X.; Chen, T. Clinical investigation of optic coherence tomography in evaluating the impairment of optic nerve secondary to multiple sclerosis. Zhonghua Yan Ke Za Zhi 2014, 50, 900–905. [Google Scholar] [PubMed]
- Feng, L.; Shen, J.; Jin, X.; Li, J.; Li, Y. The evaluation of the retinal nerve fiber layer in multiple sclerosis with special-domain optical coherence tomography. Ophthalmologica 2013, 230, 116–120. [Google Scholar] [CrossRef]
- Pulicken, M.; Gordon-Lipkin, E.; Balcer, L.J.; Frohman, E.; Cutter, G.; Calabresi, P.A. Optical cohrence tomography and disease subtype in multiple sclerosis. Neurology 2007, 69, 2085–2092. [Google Scholar] [CrossRef]
- Britze, J.; Pihl-Jensen, G.; Frederiksen, J.L. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: A systematic review and meta-analysis. J. Neurol. 2017, 264, 1837–1853. [Google Scholar] [CrossRef]
- Kurtzke, J.F. On the origin of EDSS. Mult. Scler. Relat. Disord. 2015, 4, 95–103. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment (MoCA): A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Hornowska, E. David Wechsler’s WAIS-R and WAIS-III Intelligence Scales for Adults; Scientific Publisher Scholar: Warsaw, Poland, 2004. [Google Scholar]
- Parisi, V.; Manni, G.; Spadaro, M.; Colacino, G.; Restuccia, R.; Marchi, S.; Bucci, M.G.; Pierelli, F. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest. Ophthalmol. Vis. Sci. 1999, 40, 2520–2527. [Google Scholar]
- Costello, F.; Hodge, W.; Pan, Y.I.; Eggenberger, E.; Freedman, M.S. Using retinal architecture to help characterize multiple sclerosis patients. Can. J. Ophthalmol. 2010, 45, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Balcer, L.J. Clinical trials to clinical use: Using vision as a model for multiple sclerosis and beyond. J. Neuroophthalmol. 2014, 34, S18–S23. [Google Scholar] [CrossRef]
- Kupersmith, M.J.; Mandel, G.; Anderson, S.; Meltzer, D.E.; Kardon, R. Baseline, one and three month changes in the prepapillary retinal nerve fiber layer in acute optic neuritis: Relations to baseline vision and MRI. J. Neurol. Sci. 2011, 308, 117–123. [Google Scholar] [CrossRef]
- Garcia-Martin, E.; Ara, J.R.; Martin, J.; Almarcegui, C.; Dolz, I.; Vilades, E.; Gil-Arribas, L.; Fernandez, F.J.; Polo, V.; Larrosa, J.M.; et al. Retinal and optic nerve degeneration in patients with multiple sclerosis followed up for 5 Years. Ophthalmology 2017, 124, 688–696. [Google Scholar] [CrossRef]
- Trip, S.A.; Schlottmann, P.G.; Jones, S.J.; Li, W.Y.; Garway-Heath, D.F.; Thompson, A.J.; Plant, G.T.; Miller, D.H. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: Evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 2006, 31, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Stellmann, J.P.; Cetin, H.; Young, K.L.; Hodecker, S.; Pöttgen, J.; Bittersohl, D.; Hassenstein, A.; Oberwahrenbrock, T.; Heesen, C.; Siemonsen, S. Pattern of gray matter volumes related to retinal thickness and its association with cognitive function in relapsing-remitting MS. Brain Behav. 2016, 7, e00614. [Google Scholar] [CrossRef] [PubMed]
- Cilingir, V.; Batur, M.; Bulut, M.D.; Milanlioglu, A.; Yılgor, A.; Batur, A.; Yasar, T.; Tombul, T. The association between retinal nerve fibre layer thickness and corpus callosum index in different clinical subtypes of multiple sclerosis. Neurol. Sci. 2017, 38, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Petracca, M.; Cordano, C.; Cellerino, M.; Button, J.; Krieger, S.; Vancea, R.; Ghassemi, R.; Farrell, C.; Miller, A.; Calabresi, P.A.; et al. Retinal degeneration in primary-progressive multiple sclerosis: A role for cortical lesions? Mult. Scler. 2017, 23, 43–50. [Google Scholar] [CrossRef]
- Paul, F.; Calabresi, P.A.; Barkhof, F.; Green, A.J.; Kardon, R.; Sastre-Garriga, J.; Schippling, S.; Vermersch, P.; Saidha, S.; Gerendas, B.S.; et al. Optical coherence tomography in multiple sclerosis: A 3-year prospective multicenter study. Ann. Clin. Transl. Neurol. 2021, 8, 2235–2251. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Jordana, A.; Pareto, D.; Cabello, S.; Alberich, M.; Rio, J.; Tintore, M.; Auger, C.; Montalban, X.; Rovira, A.; Sastre-Garriga, J. Optical coherence tomography measures correlate with brain and spinal cord atrophy and multiple sclerosis disease-related disability. Eur. J. Neurol. 2020, 27, 2225–2232. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lapiscina, E.H.; Arnow, S.; Wilson, J.A.; Saidha, S.; Preiningerova, J.L.; Oberwahrenbrock, T.; Brandt, A.U.; Pablo, L.E.; Guerrieri, S.; Gonzalez, I.; et al. IMSVISUAL consortium. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: A cohort study. Lancet Neurol. 2016, 15, 574–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ayoubi, N.K.; Bou Reslan, S.W.; Baalbaki, M.M.; Darwish, H.; Khoury, S.J. Effect of fingolimod vs interferon treatment on OCT measurements and cognitive function in RRMS. Mult. Scler. Relat. Disord. 2021, 53, 103041. [Google Scholar] [CrossRef] [PubMed]
- Esmael, A.; Elsherif, M.; Abdelsalam, M.; Sabry, D.; Mamdouh, M.; Belal, T. Retinal thickness as a potential biomarker of neurodegeneration and a predictor of early cognitive impairment in patients with multiple sclerosis. Neurol. Res. 2020, 42, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Oktem, E.O.; Derle, E.; Kibaroglu, S.; Oktem, C.; Akkoyun, I.; Can, U. The relationship between the degree of cognitive impairment and retinal nerve fiber layer thickness. Neurol. Sci. 2015, 36, 1141–1146. [Google Scholar] [CrossRef]
- Szilasiová, J.; Rosenberger, J.; Mikula, P.; Vitková, M.; Fedičová, M.; Gdovinová, Z. Cognitive event-related potentials—The P300 wave is a prognostic factor of long-term disability progression in patients with multiple sclerosis. J. Clin. Neurophysiol. 2022, 39, 390–396. [Google Scholar] [CrossRef]
- Dziadkowiak, E.; Wieczorek, M.; Zagrajek, M.; Chojdak-Łukasiewicz, J.; Gruszka, E.; Budrewicz, S.; Pokryszko-Dragan, A. Multimodal evoked potentials as potential biomarkers of disease activity in patients with clinically isolated syndrome. Front. Neurol. 2022, 12, 678035. [Google Scholar] [CrossRef] [PubMed]
- Knier, B.; Schmidt, P.; Aly, L.; Buck, D.; Berthele, A.; Mühlau, M.; Zimmer, C.; Hemmer, B.; Korn, T. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain 2016, 139, 2855–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.; Barnett, M.H.; Yiannikas, C.; Parratt, J.D.E.; Matthews, J.G.; Graham, S.L.; Klistorner, A. Interferon-β is less effective than other drugs in controlling the rate of retinal ganglion cell loss in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e971. [Google Scholar] [CrossRef]
- Zivadinov, R.; Tavazzi, E.; Hagemeier, J.; Carl, E.; Hojnacki, D.; Kolb, C.; Weinstock-Guttman, B. The effect of glatiramer acetate on retinal nerve fiber layer thickness in patients with relapsing-remitting multiple sclerosis: A longitudinal optical coherence tomography study. CNS Drugs 2018, 32, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Button, J.; Al-Louzi, O.; Lang, A.; Bhargava, P.; Newsome, S.D.; Frohman, T.; Balcer, L.J.; Frohman, E.M.; Prince, J.; Calabresi, P.A.; et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: A retrospective study. Neurology 2017, 88, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Rzepiński, Ł.; Kucharczuk, J.; Maciejek, Z.; Grzybowski, A.; Parisi, V. Spectral-domain optical coherence tomography assessment in treatment-naïve patients with clinically isolated syndrome and different multiple sclerosis types: Findings and relationship with the disability status. J. Clin. Med. 2021, 10, 2892. [Google Scholar] [CrossRef] [PubMed]
- Sotirchos, E.S.; Gonzalez Caldito, N.; Filippatou, A.; Fitzgerald, K.C.; Murphy, O.C.; Lambe, J.; Nguyen, J.; Button, J.; Ogbuokiri, E.; Crainiceanu, C.M.; et al. International Multiple Sclerosis Visual System (IMSVISUAL) Consortium. Progressive Multiple Sclerosis is associated with faster and specific retinal layer atrophy. Ann. Neurol. 2020, 87, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Cordano, C.; Yiu, H.H.; Oertel, F.C.; University of California, San Francisco MS-EPIC Team; Gelfand, J.M.; Hauser, S.L.; Cree, B.A.C.; Green, A.J. Retinal INL thickness in multiple sclerosis: A mere marker of neurodegeneration? Ann. Neurol. 2021, 89, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Bijvank, J.A.; Uitdehaag, B.M.J.; Petzold, A. Interpretation of longitudinal changes of the inner nuclear layer in MS. Ann. Neurol. 2022, 92, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Cordano, C.; Yiu, H.H.; Abdelhak, A.; Beaudry-Richard, A.; Oertel, F.C.; Green, A.J. Reply to “Interpretation of longitudinal changes of the inner nuclear layer in MS”. Ann. Neurol. 2022, 92, 156. [Google Scholar] [CrossRef] [PubMed]
Examined Group | Total N (100) | Age Groups n (%) | Gender n (%) | Education n (%) | |||||
---|---|---|---|---|---|---|---|---|---|
≤30 | 30–40 | >40 | Women | Men | Primary | Secondary | Higher | ||
MS total (1) | 61 | 14 (22.9) | 28 (45.9) | 19 (31.2) | 42 (68.9) | 19 (31.1) | 3 (4.9) | 25 (41) | 33 (54.1) |
MS I (1a) | 30 | 12 (40.0) | 13 (43.3) | 5 (16.7) | 21 (70.0) | 9 (30.0) | 0 (0) | 12 (40) | 18 (60) |
MS II (1b) | 31 | 2 (6.5) | 15 (48.4) | 14 (45.2) | 21 (67.7) | 10 (32.3) | 3 (9.7) | 13 (41.9) | 15 (48.4) |
Control (2) | 21 | 9 (42.9) | 7 (33.3) | 5 (23.8) | 16 (76.2) | 5 (23.8) | 3 (14.3) | 7 (33.3) | 11 (52.4) |
1 vs. 2 A | 0.23 | 0.52 | 0.39 | ||||||
1a vs. 1b B | <0.01 | 0.69 | <0.05 | 0.85 | 0.85 | 0.08 | 0.88 | 0.36 | |
1a vs. 2 B | 0.84 | 0.47 | 0.53 | 0.63 | 0.63 | 0.05 | 0.63 | 0.59 | |
1b vs. 2 B | <0.01 | 0.28 | 0.12 | 0.51 | 0.51 | 0.61 | 0.53 | 0.78 |
Multiple Sclerosis | MS Total n = 61 | MS I n = 30 | MS II n = 31 | p-Value A MS I vs. MS II | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min ÷ Max | X ± SD | M (IQR) | Min ÷ Max | X ± SD | M (IQR) | Min ÷ Max | X ± SD | M (IQR) | ||
Age of first symptoms [years] | 16 ÷ 44 | 28.4 ± 6.5 | 28 (10) | 19 ÷ 44 | 30.9 ± 6.7 | 30.5 (11) | 16 ÷ 35 | 26.0 ± 5.3 | 26 (8) | <0.01 |
Age of diagnosis | 18 ÷ 44 | 29.8 ± 6.2 | 29 (10) | 19 ÷ 44 | 31.4 ± 6.6 | 31.5 (11) | 18 ÷ 39 | 28.3 ± 5.4 | 28 (10) | <0.05 |
Disease duration (time from first symptoms) [years] | 1 ÷ 28 | 8.0 ± 6.1 | 10 (10) | 1 ÷ 5 | 2.8 ± 1.5 | 2 (3) | 10 ÷ 28 | 13.2 ± 4.0 | 12 (5) | <0.0001 |
Number of relapses | 1 ÷ 7 | 3.3 ± 1.5 | 3 (2) | 1 ÷ 5 | 2.4 ± 1.0 | 2 (1) | 2 ÷ 7 | 4.2 ± 1.4 | 4 (2) | <0.0001 |
EDSS [points] | 1 ÷ 4.5 | 2.5 ± 1.1 | 2 (1) | 1 ÷ 3 | 1.8 ± 0.6 | 2 (0.5) | 1.5 ÷ 4.5 | 3.1 ± 1.0 | 3 (2) | <0.0001 |
Functional Systems Scores: | ||||||||||
Visual [points] | 0 ÷ 2 | 0.3 ± 0.5 | 0 (0) | 0 ÷ 1 | 0.2 ± 0.4 | 0 (0) | 0 ÷ 2 | 0.3 ± 0.6 | 0 (1) | 0.64 |
Brainstem [points] | 0 ÷ 3 | 1.0 ± 0.9 | 1 (2) | 0 ÷ 2 | 0.7 ± 0.8 | 0.5 (1) | 0 ÷ 3 | 1.2 ± 1.0 | 1 (2) | <0.05 |
Pyramidal [points] | 0 ÷ 4 | 1.4 ± 1.0 | 1 (1) | 0 ÷ 3 | 0.9 ± 0.9 | 1 (2) | 0 ÷ 4 | 1.9 ± 1.0 | 2 (1) | <0.001 |
Cerebellar [points] | 0 ÷ 3 | 0.7 ± 0.9 | 1 (1) | 0 ÷ 2 | 0.4 ± 0.6 | 0 (1) | 0 ÷ 3 | 1.0 ± 1.0 | 1 (1) | <0.05 |
Sensory [points] | 0 ÷ 3 | 1.1 ± 1.0 | 1 (2) | 0 ÷ 2 | 0.6 ± 0.9 | 0 (1) | 0 ÷ 3 | 1.6 ± 0.9 | 1 (1) | <0.001 |
Bowel and bladder [points] | 0 ÷ 3 | 0.6 ± 0.9 | 0 (1) | 0 ÷ 2 | 0.2 ± 0.5 | 0 (0) | 0 ÷ 3 | 1.0 ± 1.0 | 1 (2) | <0.001 |
Cerebral/Mental [points] | 0 ÷ 1 | 0.2 ± 0.4 | 0 (0) | 0 ÷ 1 | 0.1 ± 0.3 | 0 (0) | 0 ÷ 1 | 0.3 ± 0.4 | 0 (1) | 0.20 |
Ambulation Scoring [points] | 0 ÷ 2 | 0.8 ± 0.6 | 1 (1) | 0 ÷ 1 | 0.6 ± 0.5 | 1 (1) | 0 ÷ 2 | 1.0 ± 0.6 | 1 (0) | <0.05 |
Examined Group | pRNFL Total | pRNFL Inferior | pRNFL Temporalis | pRNFL Nasal | pRNFL Superior | mRNFL | GCIPL | mRNFL + GCIPL |
---|---|---|---|---|---|---|---|---|
MS Total (1) | 92.2 ± 11.1 | 111.3 ± 18.1 | 62.7 ± 13.7 | 79.0 ± 13.4 | 109.1 ± 14.0 | 30.0 ± 7.2 | 61.3 ± 8.3 | 91.5 ± 14.5 |
MS I (1a) | 97.3 ± 10.5 | 118.4 ± 14.7 | 68.3 ± 12.3 | 81.7 ± 14.9 | 112.8 ± 15.1 | 33.8 ± 5.7 | 65.5 ± 7.2 | 99.1 ± 11.5 |
MS II (1b) | 87.2 ± 9.5 | 104.5 ± 18.7 | 57.3 ± 13.0 | 76.4 ± 11.5 | 105.6 ± 12.2 | 26.4 ± 6.7 | 57.2 ± 7.3 | 84.0 ± 13.5 |
Control (2) | 102.2 ± 7.3 | 126.4 ± 13.0 | 75.2 ± 7.5 | 77.2 ± 13.9 | 119.9 ± 12.1 | 36.6 ± 6.3 | 67.3 ± 6.0 | 104.3 ± 10.8 |
1 vs. 2 A | <0.001 | <0.01 | <0.01 | 0.68 | <0.01 | <0.001 | <0.01 | <0.001 |
1a vs. 1b B | <0.01 | <0.01 | <0.01 | 0.37 | 0.15 | <0.001 | <0.001 | <0.001 |
1a vs. 2 B | 0.23 | 0.26 | 0.24 | 0.62 | 0.20 | 0.35 | 0.68 | 0.37 |
1b vs. 2 B | <0.0001 | <0.001 | <0.001 | 0.98 | <0.01 | <0.0001 | <0.0001 | <0.0001 |
Examined Group | Picture Completion (Points) | Digit Symbol (Points) | MoCA Visuospatial (Points) | MoCA Naming (Points) | MoCA Attention (Points) | MoCA Language (Points) | MoCA Abstraction (Points) | MoCA Memory (Points) | MoCA Orientation (Points) | MoCA Total (Points) | P300 Latency (ms) |
---|---|---|---|---|---|---|---|---|---|---|---|
MS Total (1) | 27.4 ± 4.4 | 52.6 ± 12.7 | 3.8 ± 1.3 | 3 ± 0.2 | 5.3 ± 0.9 | 2.7 ± 0.6 | 1.9 ± 0.3 | 3.9 ± 1.3 | 6 ± 0 | 26.8 ± 2.9 | 318.1 ± 28.3 |
MS I (1a) | 28.9 ± 3.4 | 61.0 ± 9.3 | 4.2 ± 1.2 | 3 ± 0.2 | 5.6 ± 0.8 | 2.9 ± 0.3 | 2.0 ± 0.0 | 4.1 ± 1.3 | 6 ± 0 | 27.7 ± 2.6 | 312.6 ± 28.6 |
MS II (1b) | 25.9 ± 4.9 | 44.5 ± 1.0 | 3.4 ± 1.2 | 3 ± 0.2 | 5.1 ± 0.9 | 2.5 ± 0.7 | 1.8 ± 0.5 | 3.8 ± 1.3 | 6 ± 0 | 25.9 ± 2.9 | 323.5 ± 27.5 |
Control (2) | 31.0 ± 3.0 | 56.4 ± 7.1 | 4.9 ± 0.3 | 3 ± 0.0 | 5.9 ± 0.4 | 3.0 ± 0.2 | 2.0 ± 0.0 | 4.8 ± 0.4 | 6 ± 0 | 29.5 ± 0.9 | 297.3 ± 16.2 |
1 vs. 2 A | <0.001 | 0.19 | <0.001 | 0.83 | <0.05 | 0.14 | 0.66 | <0.01 | 0.99 | <0.0001 | <0.01 |
1a vs. 1b B | <0.05 | <0.0001 | <0.05 | 0.99 | 0.1 | 0.09 | 0.99 | 0.98 | 0.99 | <0.05 | 0.40 |
1a vs. 2 B | 0.10 | 0.66 | 0.12 | 0.99 | 0.85 | 0.99 | 0.99 | 0.13 | 0.99 | <0.05 | 0.10 |
1b vs. 2 B | <0.0001 | <0.01 | <0.0001 | 0.99 | <0.01 | 0.05 | 0.99 | <0.05 | 0.99 | <0.0001 | <0.01 |
Parameter | Group | P300 Latency | Digit Symbol | Picture Completion | MoCA Visuo-Spatial | MoCA Naming | MoCA Attention | MoCA Language | MoCA Abstraction | MoCA Memory | MoCA Orientation |
---|---|---|---|---|---|---|---|---|---|---|---|
pRNFL Total | MS Total (1) | 0.12 | 0.21 | 0.02 | −0.07 | −0.29 * | 0.12 | −0.05 | −0.18 | −0.18 | −0.08 |
MS I (1a) | 0.08 | 0.01 | −0.10 | −0.31 | −0.25 | −0.15 | −0.19 | 0.00 | −0.19 | −0.20 | |
MS II (1b) | 0.31 | −0.28 | −0.13 | −0.09 | −0.32 | 0.02 | −0.21 | −0.44 * | −0.37 | −0.35 | |
Control (2) | −0.42 | −0.20 | 0.02 | 0.17 | 0.00 | 0.01 | −0.09 | 0.00 | −0.04 | 0.14 | |
pRNFL Inferior | MS Total (1) | 0.07 | 0.22 | 0.14 | 0.08 | −0.16 | 0.09 | 0.08 | −0.15 | 0.04 | 0.11 |
MS I (1a) | −0.15 | 0.08 | 0.16 | −0.04 | 0.09 | 0.02 | 0.00 | 0.00 | 0.15 | 0.13 | |
MS II (1b) | 0.30 | −0.14 | −0.06 | −0.05 | −0.30 | −0.13 | −0.02 | −0.36 | −0.17 | −0.19 | |
Control (2) | −0.32 | −0.13 | 0.08 | 0.05 | 0.00 | 0.13 | 0.04 | 0.00 | 0.05 | 0.17 | |
pRNFL Temporalis | MS Total (1) | −0.03 | 0.25 | −0.04 | 0.01 | −0.24 | 0.26 | −0.04 | −0.18 | −0.11 | 0.00 |
MS I (1a) | 0.05 | 0.10 | −0.14 | −0.05 | −0.25 | −0.02 | 0.05 | 0.00 | −0.08 | −0.07 | |
MS II (1b) | 0.04 | −0.25 | −0.29 | −0.19 | −0.25 | 0.20 | −0.36 | −0.44 * | −0.32 | −0.35 | |
Control (2) | −0.31 | 0.22 | −0.02 | 0.17 | 0.00 | −0.46 | 0.00 | 0.00 | 0.08 | −0.15 | |
pRNFL Nasal | MS Total (1) | 0.19 | 0.04 | 0.06 | −0.07 | −0.03 | 0.18 | 0.03 | −0.08 | 0.00 | −0.02 |
MS I (1a) | 0.24 | 0.01 | −0.21 | −0.01 | 0.20 | −0.08 | 0.23 | 0.00 | 0.09 | −0.02 | |
MS II (1b) | 0.19 | −0.29 | 0.15 | −0.22 | −0.23 | 0.29 | −0.19 | −0.23 | −0.22 | −0.23 | |
Control (2) | −0.12 | −0.03 | 0.39 | 0.23 | 0.00 | 0.34 | 0.00 | 0.00 | 0.46 | 0.64 * | |
pRNFL Superior | MS Total (1) | 0.18 | 0.21 | −0.05 | −0.15 | −0.31 * | −0.08 | −0.05 | −0.16 | −0.35 * | −0.22 |
MS I (1a) | 0.31 | 0.05 | −0.19 | −0.32 | −0.33 | −0.30 | −0.19 | 0.00 | −0.48 * | −0.36 | |
MS II (1b) | 0.10 | 0.03 | −0.07 | −0.15 | −0.33 | −0.19 | −0.18 | −0.30 | −0.35 | −0.37 | |
Control (2) | −0.15 | −0.45 | −0.23 | 0.02 | 0.00 | −0.28 | −0.39 | 0.00 | −0.22 | −0.14 | |
mRNFL | MS Total (1) | −0.18 | 0.33 * | 0.10 | 0.06 | −0.28 * | 0.21 | 0.17 | −0.02 | 0.05 | 0.18 |
MS I (1a)I | −0.01 | −0.04 | −0.06 | −0.14 | −0.21 | −0.01 | −0.02 | 0.00 | −0.01 | 0.02 | |
MS II (1b) | −0.27 | 0.00 | −0.19 | −0.15 | −0.33 | −0.05 | 0.04 | −0.26 | −0.06 | −0.07 | |
Control (2) | −0.12 | 0.02 | 0.08 | 0.29 | 0.00 | −0.08 | 0.13 | 0.00 | −0.11 | −0.03 | |
GCIPL | MS Total (1) | −0.09 | 0.27 | −0.01 | 0.03 | −0.15 | 0.12 | −0.02 | −0.10 | 0.04 | 0.10 |
MS I (1a) | 0.04 | −0.11 | −0.13 | −0.15 | 0.07 | 0.01 | −0.14 | 0.00 | 0.23 | 0.06 | |
MS II (1b) | −0.12 | −0.10 | −0.22 | −0.22 | −0.30 | −0.17 | −0.23 | −0.37 | −0.23 | −0.28 | |
Control (2) | −0.31 | −0.22 | 0.19 | 0.20 | 0.00 | 0.00 | −0.06 | 0.00 | −0.02 | 0.13 | |
GCIPL +mRNFL | MS Total (1) | −0.10 | 0.26 | 0.01 | 0.01 | −0.23 | 0.15 | 0.01 | −0.16 | −0.01 | 0.09 |
MS I (1a)I | 0.06 | −0.19 | −0.13 | −0.16 | −0.09 | −0.08 | −0.17 | 0.00 | 0.06 | −0.01 | |
MS II (1b) | −0.21 | −0.10 | −0.23 | −0.22 | −0.33 | −0.09 | −0.14 | −0.42 * | −0.18 | −0.21 | |
Control (2) | −0.17 | −0.18 | 0.13 | 0.19 | 0.00 | −0.36 | −0.19 | 0.00 | −0.13 | −0.19 |
Parameter | Group | Gender | Age Groups | Education Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Women | Men | p-Value A | ≤30 | 30–40 | >40 | p-Value B | Primary | Secondary | Higher | p-Value B | ||
pRNFL Total | MS Total (1) | 92 ± 11 | 93 ± 11 | 0.52 | 98 ± 9 | 94 ± 10 | 85 ± 11 | <0.01 | 93 ± 13 | 94 ± 9 | 90 ± 12 | 0.46 |
MS I (1a) | 98 ± 12 | 97 ± 6 | 0.87 | 98 ± 9 | 99 ± 9 | 91 ± 17 | 0.46 | - | 97 ± 9 | 98 ± 12 | - | |
MS II (1b) | 86 ± 7 | 89 ± 14 | 0.79 | 100 ± 12 | 89 ± 8 | 83 ± 9 | <0.05 | 93 ± 13 | 92 ± 9 | 83 ± 8 | <0.05 | |
Control (2) | 101 ± 8 | 106 ± 4 | 0.34 | 102 ± 7 | 106 ± 4 | 97 ± 10 | 0.13 | 105 ± 0 | 104 ± 10 | 101 ± 6 | 0.58 | |
1 vs. 2 A/C | <0.01 | <0.05 | <0.01 | 0.38 | <0.0001 | 0.08 | <0.0001 | 0.31 | <0.05 | <0.01 | <0.05 | |
1a vs. 1b vs. 2 B/C | <0.001 | 0.05 | <0.0001 | 0.67 | <0.001 | 0.10 | <0.0001 | - | <0.05 | <0.0001 | - | |
pRNFL Inferior | MS Total (1) | 110 ± 19 | 113 ± 17 | 0.68 | 121 ± 14 | 115 ± 15 | 98 ± 19 | <0.01 | 112 ± 20 | 115 ± 13 | 108 ± 21 | 0.41 |
MS I (1a) | 119 ± 17 | 117 ± 10 | 0.71 | 119 ± 13 | 123 ± 13 | 105 ± 19 | 0.11 | - | 118 ± 10 | 119 ± 18 | - | |
MS II (1b) | 102 ± 17 | 109 ± 22 | 0.88 | 133 ± 19 | 108 ± 13 | 96 ± 20 | <0.05 | 112 ± 20 | 112 ± 15 | 98 ± 19 | 0.13 | |
Control (2) | 126 ± 15 | 127 ± 2 | 0.96 | 127 ± 13 | 130 ± 13 | 120 ± 15 | 0.50 | 136 ± 13 | 127 ± 15 | 124 ± 12 | 0.51 | |
1 vs. 2 A/C | <0.01 | <0.05 | <0.05 | 0.33 | <0.05 | 0.06 | <0.0001 | 0.24 | 0.06 | <0.05 | <0.05 | |
1a vs. 1b vs. 2 B/C | <0.001 | 0.09 | <0.01 | 0.26 | <0.01 | 0.12 | <0.0001 | - | 0.1 | <0.001 | - | |
pRNFL Temporalis | MS Total (1) | 63 ± 15 | 62 ± 11 | 0.85 | 72 ± 12 | 63 ± 12 | 56 ± 14 | <0.01 | 62 ± 17 | 64 ± 10 | 62 ± 16 | 0.95 |
MS I (1a) | 70 ± 15 | 65 ± 5 | 0.22 | 72 ± 12 | 65 ± 9 | 66 ± 20 | 0.48 | - | 66 ± 10 | 70 ± 14 | - | |
MS II (1b) | 57 ± 13 | 58 ± 14 | 0.84 | 70 ± 13 | 60 ± 14 | 52 ± 10 | 0.11 | 62 ± 17 | 60 ± 9 | 54 ± 15 | 0.43 | |
Control (2) | 75 ± 8 | 76 ± 7 | 0.74 | 76 ± 6 | 77 ± 9 | 69 ± 6 | 0.42 | 80 ± 0 | 71 ± 5 | 77 ± 8 | 0.32 | |
1 vs. 2 A/C | <0.05 | <0.05 | <0.05 | 0.39 | <0.05 | 0.22 | <0.001 | 0.45 | 0.18 | <0.05 | 0.08 | |
1a vs. 1b vs. 2 B/C | <0.01 | <0.05 | <0.001 | 0.68 | <0.05 | 0.09 | <0.001 | - | 0.14 | <0.001 | - | |
pRNFL Nasal | MS Total (1) | 79 ± 15 | 79 ± 11 | 0.99 | 79 ± 12 | 81 ± 13 | 76 ± 16 | 0.56 | 80 ± 11 | 81 ± 12 | 77 ± 15 | 0.64 |
MS I (1a) | 82 ± 18 | 81 ± 8 | 0.79 | 79 ± 13 | 86 ± 13 | 78 ± 23 | 0.46 | - | 81 ± 13 | 82 ± 17 | - | |
MS II (1b) | 76 ± 11 | 77 ± 14 | 1 | 81 ± 4 | 77 ± 11 | 76 ± 14 | 0.84 | 79 ± 11 | 82 ± 11 | 72 ± 11 | 0.13 | |
Control (2) | 75 ± 14 | 86 ± 12 | 0.35 | 77 ± 9 | 84 ± 15 | 61 ± 12 | 0.12 | 72 ± 0 | 78 ± 22 | 77 ± 11 | 0.93 | |
1 vs. 2 A/C | 0.41 | 0.37 | 0.64 | 0.74 | 0.63 | 0.20 | 0.34 | 0.62 | 0.70 | 0.99 | 0.94 | |
1a vs. 1b vs. 2 B/C | 0.4 | 0.53 | 0.60 | 0.92 | 0.17 | 0.44 | 0.36 | - | 0.92 | 0.15 | - | |
mRNFL | MS Total (1) | 31 ± 7 | 29 ± 8 | 0.90 | 33 ± 7 | 31 ± 5 | 27 ± 9 | <0.05 | 28 ± 10 | 30 ± 5 | 31 ± 9 | 0.82 |
MS I (1a) | 34 ± 7 | 33 ± 3 | 0.37 | 34 ± 7 | 34 ± 4 | 32 ± 7 | 0.75 | - | 33 ± 4 | 35 ± 7 | - | |
MS II (1b) | 27 ± 4 | 25 ± 10 | 0.89 | 27 ± 6 | 28 ± 5 | 25 ± 9 | 0.6 | 28 ± 10 | 27 ± 4 | 26 ± 8 | 0.90 | |
Control (2) | 37 ± 7 | 35 ± 1 | 0.73 | 37 ± 5 | 36 ± 6 | 36 ± 10 | 0.97 | 35 ± 1 | 39 ± 10 | 36 ± 3 | 0.55 | |
1 vs. 2 A/C | <0.01 | 0.07 | <0.01 | 0.20 | <0.05 | 0.07 | <0.01 | 0.43 | 0.05 | <0.01 | <0.05 | |
1a vs. 1b vs. 2 B/C | <0.01 | <0.05 | <0.0001 | 0.17 | <0.001 | 0.08 | <0.001 | - | <0.01 | <0.001 | - | |
GCIPL | MS Total (1) | 61 ± 8 | 62 ± 9 | 0.45 | 64 ± 9 | 63 ± 8 | 57 ± 7 | <0.05 | 59 ± 10 | 62 ± 7 | 61 ± 9 | 0.72 |
MS I (1a) | 66 ± 8 | 65 ± 6 | 0.85 | 65 ± 8 | 68 ± 6 | 60 ± 8 | 0.17 | - | 66 ± 5 | 66 ± 9 | - | |
MS II (1b) | 57 ± 5 | 59 ± 11 | 0.49 | 61 ± 18 | 58 ± 6 | 56 ± 7 | 0.53 | 59 ± 10 | 59 ± 8 | 56 ± 7 | 0.53 | |
Control (2) | 67 ± 7 | 69 ± 1 | 0.62 | 67 ± 7 | 69 ± 4 | 64 ± 8 | 0.36 | 69 ± 1 | 69 ± 8 | 66 ± 5 | 0.62 | |
1 vs. 2 A/C | <0.05 | 0.17 | <0.05 | 0.41 | <0.05 | 0.09 | <0.01 | 0.28 | 0.06 | 0.09 | 0.11 | |
1a vs. 1b vs. 2 B/C | <0.001 | 0.16 | <0.001 | 0.55 | <0.001 | 0.15 | <0.001 | - | <0.05 | <0.001 | - | |
GCIPL +mRNFL | MS Total (1) | 92 ± 14 | 92 ± 17 | 0.46 | 97 ± 14 | 93 ± 12 | 83 ± 16 | <0.05 | 91 ± 25 | 92 ± 11 | 91 ± 16 | 0.94 |
MS I (1a) | 100 ± 14 | 98 ± 6 | 0.61 | 99 ± 13 | 102 ± 8 | 92 ± 14 | 0.28 | - | 99 ± 7 | 100 ± 14 | - | |
MS II (1b) | 84 ± 8 | 84 ± 22 | 0.60 | 89 ± 24 | 86 ± 10 | 81 ± 16 | 0.52 | 91 ± 25 | 86 ± 12 | 82 ± 14 | 0.62 | |
Control (2) | 104 ± 12 | 105 ± 1 | 0.42 | 105 ± 10 | 106 ± 8 | 100 ± 18 | 0.68 | 105 ± 1 | 108 ± 17 | 102 ± 6 | 0.54 | |
1 vs. 2 A | <0.01 | 0.11 | <0.05 | 0.21 | <0.05 | 0.08 | <0.01 | 0.57 | <0.05 | <0.01 | <0.05 | |
1a vs. 1b vs. 2 B/C | <0.001 | 0.12 | <0.0001 | 0.29 | <0.0001 | 0.12 | <0.0001 | - | <0.01 | <0.001 | - |
Parameter | Group | First MS Symptoms | MS Treatment | |||||||
---|---|---|---|---|---|---|---|---|---|---|
≤30 | >30 | p-Value A | Interferon Beta | Natalizumab | Fingolimod | Glatiramer Acetate | No Treatment | p-Value B | ||
pRNFL Total | MS Total (1) | 93 ± 2 | 91 ± 12 | 0.53 | 93 ± 12 | 87 ± 12 | 92 ± 1 | 99 ± 2 | 10 ± 2 | 0.45 |
MS I (1a) | 100 ± 9 | 94 ± 12 | 0.19 | 96 ± 1 | 113 ± 0 | 97 ± 9 | 106 ± 2 | 94 ± 15 | 0.40 | |
MS II (1b) | 88 ± 9 | 82 ± 9 | 0.20 | 90 ± 12 | 84 ± 6 | 86 ± 9 | 87 ± 0 | 88 ± 6 | 0.83 | |
1a vs. 1b A/C | <0.01 | 0.05 | - | 0.16 | - | 0.20 | - | 0.83 | - | |
pRNFL Inferior | MS Total (1) | 113 ± 17 | 109 ± 22 | 0.45 | 114 ± 17 | 102 ± 26 | 109 ± 14 | 128 ± 22 | 108 ± 12 | 0.47 |
MS I (1a) | 122 ± 14 | 115 ± 15 | 0.25 | 117 ± 15 | 133 ± 0 | 112 ± 12 | 140 ± 15 | 117 ± 7 | 0.24 | |
MS II (1b) | 107 ± 16 | 94 ± 29 | 0.15 | 109 ± 19 | 98 ± 24 | 106 ± 16 | 106 ± 0 | 98 ± 8 | 0.80 | |
1a vs. 1b A/C | <0.01 | 0.06 | - | 0.19 | - | 0.77 | - | 0.08 | - | |
pRNFL Temporalis | MS Total (1) | 64 ± 14 | 61 ± 14 | 0.52 | 64 ± 13 | 54 ± 17 | 62 ± 10 | 78 ± 4 | 62 ± 15 | 0.11 |
MS I (1a) | 71 ± 11 | 65 ± 13 | 0.18 | 68 ± 13 | 90 ± 0 | 66 ± 11 | 77 ± 2 | 60 ± 9 | 0.23 | |
MS II (1b) | 59 ± 13 | 52 ± 12 | 0.28 | 58 ± 12 | 49 ± 10 | 58 ± 7 | 82 ± 0 | 64 ± 22 | 0.26 | |
1a vs. 1b A/C | <0.01 | 0.07 | - | <0.05 | - | 0.15 | - | 0.66 | - | |
pRNFL Nasal | MS Total (1) | 78 ± 13 | 80 ± 15 | 0.61 | 79 ± 15 | 80 ± 11 | 81 ± 14 | 76 ± 10 | 78 ± 2 | 0.98 |
MS I (1a) | 81 ± 14 | 83 ± 16 | 0.70 | 80 ± 17 | 98 ± 0 | 91 ± 7 | 82 ± 0 | 73 ± 8 | 0.27 | |
MS II (1b) | 77 ± 11 | 75 ± 14 | 0.80 | 77 ± 13 | 78 ± 10 | 71 ± 11 | 65 ± 0 | 82 ± 14 | 0.59 | |
1a vs. 1b A/C | 0.33 | 0.39 | - | 0.52 | - | <0.05 | - | 0.38 | - | |
pRNFL Superior | MS Total (1) | 111 ± 13 | 105 ± 15 | 0.14 | 110 ± 14 | 108 ± 11 | 109 ± 2 | 111 ± 1 | 105 ± 23 | 0.94 |
MS I (1a) | 117 ± 13 | 108 ± 16 | 0.12 | 111 ± 15 | 129 ± 0 | 115 ± 1 | 117 ± 5 | 112 ± 30 | 0.59 | |
MS II (1b) | 107 ± 12 | 98 ± 13 | 0.15 | 109 ± 15 | 105 ± 8 | 103 ± 8 | 100 ± 0 | 97 ± 16 | 0.59 | |
1a vs. 1b A/C | <0.05 | 0.27 | - | 0.98 | - | 0.11 | - | 0.38 | - | |
mRNFL | MS Total (1) | 29 ± 8 | 32 ± 5 | 0.11 | 31 ± 7 | 29 ± 7 | 30 ± 6 | 32 ± 4 | 27 ± 11 | 0.84 |
MS I (1a) | 34 ± 6 | 33 ± 5 | 0.65 | 34 ± 6 | 40 ± 0 | 32 ± 7 | 33 ± 4 | 35 ± 1 | 0.75 | |
MS II (1b) | 26 ± 7 | 3 ± 5 | 0.17 | 27 ± 7 | 27 ± 5 | 27 ± 4 | 29 ± 0 | 19 ± 11 | 0.67 | |
1a vs. 1b A/C | <0.001 | 0.27 | - | <0.05 | - | 0.25 | - | 0.08 | - | |
GCIPL | MS Total (1) | 61 ± 9 | 62 ± 7 | 0.50 | 63 ± 8 | 57 ± 7 | 60 ± 8 | 63 ± 7 | 59 ± 11 | 0.40 |
MS I (1a) | 67 ± 8 | 64 ± 7 | 0.38 | 66 ± 8 | 69 ± 0 | 62 ± 7 | 66 ± 6 | 68 ± 5 | 0.87 | |
MS II (1b) | 57 ± 8 | 58 ± 3 | 0.70 | 60 ± 8 | 55 ± 5 | 57 ± 8 | 57 ± 0 | 51 ± 10 | 0.69 | |
1a vs. 1b A/C | <0.001 | 0.10 | - | 0.07 | - | 0.31 | - | 0.08 | - | |
GCIPL +mRNFL | MS Total (1) | 90 ± 16 | 96 ± 10 | 0.10 | 95 ± 14 | 86 ± 13 | 89 ± 13 | 95 ± 10 | 87 ± 22 | 0.49 |
MS I (1a) | 101 ± 12 | 97 ± 2 | 0.48 | 99 ± 12 | 108 ± 0 | 95 ± 15 | 99 ± 2 | 103 ± 6 | 0.75 | |
MS II (1b) | 83 ± 14 | 91 ± 5 | 0.27 | 88 ± 14 | 82 ± 9 | 84 ± 11 | 88 ± 0 | 71 ± 3 | 0.57 | |
1a vs. 1b A/C | <0.001 | 0.28 | - | 0.07 | - | 0.31 | - | 0.08 | - |
Parameter | Group | EDSS Score | Number of Relapses | MS Duration | Model A p-Value B Coefficient; p-Value |
---|---|---|---|---|---|
pRNFL Total | MS Total (1) | −0.36 * | −0.25 | −0.37 * | <0.001 Duration: −0.80; <0.001 |
MS I (1a) | −0.03 | 0.05 | 0.29 | ||
MS II (1b) | −0.16 | 0.03 | −0.16 | ||
pRNFL Inferior | MS Total (1) | −0.30 * | −0.16 | −0.40 * | <0.001 Age: −1.20; <0.001 |
MS I (1a) | −0.13 | 0.05 | 0.20 | ||
MS II (1b) | −0.01 | 0.18 | −0.27 | ||
pRNFL Temporalis | MS Total (1) | −0.41 * | −0.27 | −0.36 * | <0.001 Age: −0.78; <0.01 EDSS: −0.80, <0.001 |
MS I (1a) | −0.04 | 0.03 | 0.16 | ||
MS II (1b) | −0.24 | −0.09 | −0.18 | ||
pRNFL Nasal | MS Total (1) | −0.02 | 0.01 | −0.08 | 0.25 Duration: −0.34; 0.25 |
MS I (1a) | 0.37 | 0.25 | 0.41 * | ||
MS II (1b) | −0.10 | 0.07 | 0.03 | ||
pRNFL Superior | MS Total (1) | −0.26 | −0.16 | −0.25 | 0.03 Age: −0.53; 0.06 EDSS: −2.86; 0.12 |
MS I (1a) | −0.07 | 0.07 | 0.11 | ||
MS II (1b) | −0.22 | −0.04 | −0.18 | ||
mRNFL | MS Total (1) | −0.56 * | −0.24 | −0.52 * | <0.0001 Duration: −0.67; <0.0001 |
MS I (1a) | −0.13 | 0.23 | 0.26 | ||
MS II (1b) | −0.41 * | 0.04 | −0.50 * | ||
GCIPL | MS Total (1) | −0.44 * | −0.34 * | −0.52 * | <0.0001 Duration: −0.76; <0.0001 |
MS I (1a) | 0.06 | −0.01 | 0.13 | ||
MS II (1b) | −0.38 * | −0.13 | −0.51 * | ||
GCIPL + mRNFL | MS Total (1) | −0.51 * | −0.32 * | −0.54 * | <0.0001 Duration: −1.40; <0.0001 |
MS I (1a) | −0.04 | 0.12 | 0.19 | ||
MS II (1b) | −0.44 * | −0.08 | −0.52 * |
Parameter | Group | Visual Functions | Brainstem Functions | Pyramidal System Functions | Cerebellar Functions | Sensory Functions | Bladder and Bowel Functions | Cognitive Functions | Ambulation Index |
---|---|---|---|---|---|---|---|---|---|
pRNFL Total | MS Total (1) | −0.01 | −0.38 * | −0.17 | −0.29 * | −0.25 | −0.45 * | −0.19 | −0.10 |
MS I (1a) | −0.13 | −0.22 | 0.25 | −0.11 | 0.09 | 0.11 | 0.25 | 0.16 | |
MS II (1b) | 0.07 | −0.38 * | −0.05 | −0.19 | −0.11 | −0.45 * | −0.21 | −0.05 | |
pRNFL Inferior | MS Total (1) | −0.06 | −0.36 * | −0.23 | −0.11 | −0.18 | −0.50 * | −0.19 | −0.02 |
MS I (1a) | −0.21 | −0.23 | 0.03 | 0.12 | 0.17 | −0.25 | −0.09 | 0.03 | |
MS II (1b) | 0.12 | −0.36 | −0.04 | −0.02 | −0.05 | −0.38 | −0.11 | 0.16 | |
pRNFL Temporalis | MS Total (1) | −0.10 | −0.32 * | −0.17 | −0.30 * | −0.33 * | −0.25 | −0.24 | −0.24 |
MS I (1a) | −0.23 | −0.16 | 0.20 | 0.08 | −0.08 | 0.39 * | 0.25 | 0.13 | |
MS II (1b) | −0.03 | −0.23 | −0.04 | −0.36 | −0.25 | −0.16 | −0.24 | −0.27 | |
pRNFL Nasal | MS Total (1) | 0.03 | −0.14 | 0.06 | −0.09 | −0.04 | −0.33 * | −0.21 | 0.15 |
MS I (1a) | 0.10 | 0.22 | 0.36 | −0.02 | 0.16 | −0.31 | −0.20 | 0.45 * | |
MS II (1b) | 0.02 | −0.38 * | 0.07 | 0.03 | −0.04 | −0.30 | −0.21 | 0.00 | |
pRNFL Superior | MS Total (1) | 0.07 | −0.16 | −0.19 | −0.33 * | −0.15 | −0.31 * | −0.13 | −0.19 |
MS I (1a) | 0.02 | −0.18 | 0.13 | −0.21 | −0.02 | 0.24 | 0.33 | 0.04 | |
MS II (1b) | 0.07 | 0.08 | −0.27 | −0.36 | 0.08 | −0.40 * | −0.18 | −0.30 | |
mRNFL | MS Total (1) | −0.04 | −0.31 * | −0.40 * | −0.34 * | −0.34 * | −0.39 * | −0.15 | −0.20 |
MS I (1a) | −0.01 | −0.06 | 0.05 | −0.14 | −0.12 | 0.18 | 0.21 | −0.03 | |
MS II (1b) | −0.10 | −0.29 | −0.38 * | −0.38 * | −0.02 | −0.27 | −0.04 | 0.01 | |
GCIPL | MS Total (1) | −0.12 | −0.22 | −0.28 * | −0.39 * | −0.26 | −0.37 * | −0.21 | −0.12 |
MS I (1a) | −0.28 | −0.04 | 0.23 | −0.01 | 0.04 | 0.25 | −0.07 | 0.24 | |
MS II (1b) | −0.02 | −0.04 | −0.29 | −0.51 * | 0.02 | −0.22 | −0.05 | −0.16 | |
GCIPL + mRNFL | MS Total (1) | −0.05 | −0.26 | −0.35 * | −0.38 * | −0.33 * | −0.39 * | −0.22 | −0.18 |
MS I (1a) | −0.21 | −0.06 | 0.12 | −0.07 | −0.03 | 0.18 | 0.09 | 0.10 | |
MS II (1b) | −0.03 | −0.16 | −0.36 | −0.49 * | −0.04 | −0.24 | −0.10 | −0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torbus, M.; Niewiadomska, E.; Dobrakowski, P.; Papuć, E.; Rybus-Kalinowska, B.; Szlacheta, P.; Korzonek-Szlacheta, I.; Kubicka-Bączyk, K.; Łabuz-Roszak, B. The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. J. Clin. Med. 2023, 12, 93. https://doi.org/10.3390/jcm12010093
Torbus M, Niewiadomska E, Dobrakowski P, Papuć E, Rybus-Kalinowska B, Szlacheta P, Korzonek-Szlacheta I, Kubicka-Bączyk K, Łabuz-Roszak B. The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. Journal of Clinical Medicine. 2023; 12(1):93. https://doi.org/10.3390/jcm12010093
Chicago/Turabian StyleTorbus, Magdalena, Ewa Niewiadomska, Paweł Dobrakowski, Ewa Papuć, Barbara Rybus-Kalinowska, Patryk Szlacheta, Ilona Korzonek-Szlacheta, Katarzyna Kubicka-Bączyk, and Beata Łabuz-Roszak. 2023. "The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study" Journal of Clinical Medicine 12, no. 1: 93. https://doi.org/10.3390/jcm12010093
APA StyleTorbus, M., Niewiadomska, E., Dobrakowski, P., Papuć, E., Rybus-Kalinowska, B., Szlacheta, P., Korzonek-Szlacheta, I., Kubicka-Bączyk, K., & Łabuz-Roszak, B. (2023). The Usefulness of Optical Coherence Tomography in Disease Progression Monitoring in Younger Patients with Relapsing-Remitting Multiple Sclerosis: A Single-Centre Study. Journal of Clinical Medicine, 12(1), 93. https://doi.org/10.3390/jcm12010093