Assessing the Relationship between LAMS and CT Perfusion Parameters in Acute Ischemic Stroke Secondary to Large Vessel Occlusion
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Data Collection
2.3. Imaging
2.4. Statistical Analysis
3. Results
3.1. M1 Segmental Subgroup Analysis
3.2. Proximal M2 Segment Subgroup Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [CrossRef] [PubMed]
- Malhotra, K.; Gornbein, J.; Saver, J.L. Ischemic Strokes Due to Large-Vessel Occlusions Contribute Disproportionately to Stroke-Related Dependence and Death: A Review. Front. Neurol. 2017, 8, 651. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van Der Lugt, A.; De Miquel, M.A. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Goyal, M.; Van der Lugt, A.; Menon, B.K.; Majoie, C.B.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA 2016, 316, 1279–1289. [Google Scholar] [CrossRef]
- Hong, J.B.; Diprose, W.K.; Wang, M.T.M.; Meyer, J.; Kilfoyle, D.; Brew, S.; Barber, P.A. Bypass of Primary Stroke Centers Compared With Secondary Transfer for Endovascular Thrombectomy. Stroke Vasc. Interv. Neurol. 2022, 2, e000390. [Google Scholar] [CrossRef]
- Mohamad, N.F.; Hastrup, S.; Rasmussen, M.; Andersen, M.S.; Johnsen, S.P.; Andersen, G.; Simonsen, C.Z. Bypassing primary stroke centre reduces delay and improves outcomes for patients with large vessel occlusion. Eur. Stroke J. 2016, 1, 85–92. [Google Scholar] [CrossRef]
- Zhao, H.; Coote, S.; Pesavento, L.; Churilov, L.; Dewey, H.M.; Davis, S.M.; Campbell, B.C.V. Large Vessel Occlusion Scales Increase Delivery to Endovascular Centers Without Excessive Harm From Misclassifications. Stroke 2017, 48, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Llanes, J.N.; Kidwell, C.S.; Starkman, S.; Leary, M.C.; Eckstein, M.; Saver, J.L. The Los Angeles Motor Scale (LAMS): A new measure to characterize stroke severity in the field. Prehospital Emerg. Care 2004, 8, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Noorian, A.R.; Sanossian, N.; Shkirkova, K.; Liebeskind, D.S.; Eckstein, M.; Stratton, S.J.; Pratt, F.D.; Conwit, R.; Chatfield, F.; Sharma, L.K.; et al. Los Angeles Motor Scale to Identify Large Vessel Occlusion. Stroke 2018, 49, 565–572. [Google Scholar] [CrossRef]
- Nazliel, B.; Starkman, S.; Liebeskind, D.S.; Ovbiagele, B.; Kim, D.; Sanossian, N.; Ali, L.; Buck, B.; Villablanca, P.; Vinuela, F.; et al. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions. Stroke 2008, 39, 2264–2267. [Google Scholar] [CrossRef]
- Shen, J.; Li, X.; Li, Y.; Wu, B. Comparative accuracy of CT perfusion in diagnosing acute ischemic stroke: A systematic review of 27 trials. PLoS ONE 2017, 12, e0176622. [Google Scholar] [CrossRef]
- Lansberg, M.G.; Christensen, S.; Kemp, S.; Mlynash, M.; Mishra, N.; Federau, C.; Tsai, J.P.; Kim, S.; Nogueria, R.G.; Jovin, T.; et al. Computed tomographic perfusion to Predict Response to Recanalization in ischemic stroke. Ann. Neurol. 2017, 81, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Fanou, E.M.; Knight, J.; Aviv, R.I.; Hojjat, S.P.; Symons, S.P.; Zhang, L.; Wintermark, M. Effect of Collaterals on Clinical Presentation, Baseline Imaging, Complications, and Outcome in Acute Stroke. Am. J. Neuroradiol. 2015, 36, 2285. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.C.S.; Yoo, A.J.; Chaudhry, Z.A.; Payabvash, S.; Kemmling, A.; Schaefer, P.W.; Hirsch, J.A.; Furie, K.L.; González, R.G.; Nogueira, R.G.; et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am. J. Neuroradiol. 2012, 33, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Guenego, A.; Marcellus, D.G.; Martin, B.W.; Christensen, S.; Albers, G.W.; Lansberg, M.G.; Marks, M.P.; Wintermark, M.; Heit, J.J. Hypoperfusion Intensity Ratio Is Correlated With Patient Eligibility for Thrombectomy. Stroke 2019, 50, 917–922. [Google Scholar] [CrossRef]
- Guenego, A.; Fahed, R.; Albers, G.W.; Kuraitis, G.; Sussman, E.S.; Martin, B.W.; Marcellus, D.G.; Olivot, J.M.; Marks, M.P.; Lansberg, M.G.; et al. Hypoperfusion intensity ratio correlates with angiographic collaterals in acute ischaemic stroke with M1 occlusion. Eur. J. Neurol. 2020, 27, 864–870. [Google Scholar] [CrossRef]
- MacLellan, A.; Mlynash, M.; Kemp, S.; Ortega-Gutierrez, S.; Heit, J.J.; Marks, M.P.; Lansberg, M.G.; Albers, G.W. Perfusion Imaging Collateral Scores Predict Infarct Growth in Non-Reperfused DEFUSE 3 Patients. J. Stroke Cerebrovasc. Dis. 2022, 31, 106208. [Google Scholar] [CrossRef] [PubMed]
- Arenillas, J.F.; Cortijo, E.; García-Bermejo, P.; Levy, E.I.; Jahan, R.; Liebeskind, D.; Goyal, M.; Saver, J.L.; Albers, G.W. Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME. J. Cereb. Blood Flow Metab. 2018, 38, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Mlynash, M.; Lansberg, M.G.; Kemp, S.; Christensen, S.; Yennu, A.; Heit, J.J.; Marks, M.P.; Albers, G.W. Abstract WP79: Combination of Tmax and Relative CBV Perfusion Parameters More Accurately Predicts CTA Collaterals Than a Single Perfusion Parameter in DEFUSE 3. Stroke 2019, 50 (Suppl. S1), AWP79. [Google Scholar] [CrossRef]
- Stead, T.G.; Banerjee, P.; Ganti, L. Real-World Field Performance of the Los Angeles Motor Scale as a Large Vessel Occlusion Screen: A Prospective Muticentre Study. Cerebrovasc. Dis. 2023, 50, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Wang, X.; Zhang, Z.; Fang, Q.; Hu, C. Relationship between CT angiography-derived collateral status and CT perfusion-derived tissue viability. Clin. Radiol. 2019, 74, 956–961. [Google Scholar] [CrossRef]
- Rao, V.A.-O.; Mlynash, M.; Christensen, S.; Yennu, A.; Kemp, S.; Zaharchuk, G.; Heit, J.A.-O.; Marks, M.P.; Lansberg, M.G.; Albers, G.W. Collateral status contributes to differences between observed and predicted 24-h infarct volumes in DEFUSE 3. J. Cereb. Blood Flow Metab. 2020, 40, 1966–1974. [Google Scholar] [CrossRef]
- Lin, L.; Yang, J.; Chen, C.; Tian, H.; Bivard, A.; Spratt, N.J.; Levi, C.R.; Parsons, M.W. Association of Collateral Status and Ischemic Core Growth in Patients with Acute Ischemic Stroke. Neurology 2021, 96, e161–e170. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Ling, Y.; Yang, L.; Wu, F.; Zhang, H.; Cheng, X.; Dong, Q. Association of Admission NIHSS Score with Infarct Core Volume and Target Mismatch of Infarct Core/Penumbra Volume on CT Perfusion in Acute Ischaemic Stroke. Cerebrovasc. Dis. 2021, 50, 700–706. [Google Scholar] [CrossRef]
- Demeestere, J.; Scheldeman, L.; Cornelissen, S.A.; Heye, S.; Wouters, A.; Dupont, P.; Christensen, S.; Mlynash, M.; Albers, G.W.; Lansberg, M.; et al. Alberta Stroke Program Early CT Score Versus Computed Tomographic Perfusion to Predict Functional Outcome after Successful Reperfusion in Acute Ischemic Stroke. Stroke 2018, 49, 2361–2367. [Google Scholar] [CrossRef]
- Huo, X.; Ma, G.; Tong, X.; Zhang, X.; Pan, Y.; Nguyen, T.N.; Yuan, G.; Han, H.; Chen, W.; Wei, M.; et al. Trial of Endovascular Therapy for Acute Ischemic Stroke with Large Infarct. N. Engl. J. Med. 2023, 388, 1272–1283. [Google Scholar] [CrossRef]
- Sarraj, A.; Hassan, A.E.; Abraham, M.G.; Ortega-Gutierrez, S.; Kasner, S.E.; Hussain, M.S.; Chen, M.; Blackburn, S.; Sitton, C.W.; Churilov, L.; et al. Trial of Endovascular Thrombectomy for Large Ischemic Strokes. N. Engl. J. Med. 2023, 388, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Wiegers, E.J.A.; Mulder, M.J.H.L.; Jansen, I.G.H.; Venema, E.; Compagne, K.C.J.; Berkhemer, O.A.; Emmer, B.J.; Marquering, H.A.; van Es, A.C.G.M.; Sprengers, M.E.; et al. Clinical and Imaging Determinants of Collateral Status in Patients with Acute Ischemic Stroke in MR CLEAN Trial and Registry. Stroke 2020, 51, 1493–1502. [Google Scholar] [CrossRef]
- Haight, T.; Tabaac, B.; Patrice, K.-A.; Phipps, M.S.; Butler, J.; Johnson, B.; Aycock, A.; Toral, L.; Yarbrough, K.L.; Schrier, C.; et al. The Maryland Acute Stroke Emergency Medical Services Routing Pilot: Expediting Access to Thrombectomy for Stroke. Front. Neurol. 2021, 12, 663472. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.P.; Kenmuir, C.L.; Aghaebrahim, A.; Limaye, K.; Wechsler, L.R.; Hammer, M.D.; Starr, M.T.; Molyneaux, B.J.; Rocha, M.; Guyette, F.X.; et al. Interfacility Transfer Directly to the Neuroangiography Suite in Acute Ischemic Stroke Patients Undergoing Thrombectomy. Stroke 2017, 48, 1884–1889. [Google Scholar] [CrossRef] [PubMed]
- Ribo, M.; Boned, S.; Rubiera, M.; Tomasello, A.; Coscojuela, P.; Hernández, D.; Pagola, J.; Juega, J.; Rodriguez, N.; Muchada, M.; et al. Direct transfer to angiosuite to reduce door-to-puncture time in thrombectomy for acute stroke. J. Neurointerv. Surg. 2018, 10, 221–224. [Google Scholar] [CrossRef]
- Broocks, G.; Kemmling, A.; Meyer, L.; Nawabi, J.; Schön, G.; Fiehler, J.; Kniep, H.; Hanning, U. Computed Tomography Angiography Collateral Profile Is Directly Linked to Early Edema Progression Rate in Acute Ischemic Stroke. Stroke 2019, 50, 3424–3430. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.J.; Roh, H.G.; Kim, J.H.; Lee, S.B.; Park, J.J.; Lee, H.J.; Jeon, Y.S.; Choi, J.W.; Chun, Y.I.; Jung, Y.J.; et al. Collateral and permeability imaging derived from dynamic contrast material-enhanced MR angiography in prediction of PH 2 hemorrhagic transformation after acute ischemic stroke: A pilot study. Neuroradiology 2021, 63, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ye, G.; Cao, R.; Qi, P.; Lu, J.; Chen, J.; Wang, D. Identification of Predictors for Hemorrhagic Transformation in Patients with Acute Ischemic Stroke After Endovascular Therapy Using the Decision Tree Model. Clin. Interv. Aging 2020, 15, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, Q.; Shi, X.; Xu, X.; Ge, L.; Ding, X.; Zhou, Z. Predictors of malignant brain edema after mechanical thrombectomy for acute ischemic stroke. J. Neurointerv. Surg. 2019, 11, 994. [Google Scholar] [CrossRef] [PubMed]
Variables | All Cases (N = 85) | LAMS Score | p-Value | |||
---|---|---|---|---|---|---|
0–3 (N = 28) | 4–5 (N = 57) | |||||
Age (years), Mean ± SD | 68.6 ± 14.7 | 63.1 ± 14.23 | 71.02 ± 14.4 | ⌂ 0.02 * | ||
Sex (n, %) | Male | 40 (47.1%) | 13 (50%) | 27 (45.7%) | # 0.97 | |
Female | 45 (52.9%) | 13 (50%) | 32 (54.23%) | |||
Race (n, %) | African | 44 (51.8%) | 14 (53.8%) | 30 (50.84%) | § 0.89 | |
White/Caucasian | 36 (42.4%) | 10 (38.4%) | 26 (44.06%) | |||
Others | 5 (5.9%) | 2 (7.6%) | 3 (5.08%) | |||
Atrial Fibrillation, (n, %) | 28 (32.9%) | 6 (23.1%) | 22 (37.3%) | # 0.86 | ||
Diabetes, (n, %) | 25 (29.4%) | 6 (23.1%) | 19 (32.2%) | # 0.87 | ||
Dyslipidemia, (n, %) | 30 (35.3%) | 10 (38.5%) | 20 (33.9%) | # 0.12 | ||
HTN, (n, %) | 60 (70.6%) | 14 (53.8%) | 46 (78.0%) | # 0.14 | ||
Prior CVA, (n, %) | 17 (20.0%) | 4 (15.4%) | 13 (22.0%) | § 0.92 | ||
CKD, (n, %) | 8 (9.4%) | 4 (15.4%) | 4 (6.8%) | § 0.13 | ||
Smoking history, (n, %) | 16 (18.8%) | 4 (15.4%) | 12 (20.3%) | § 0.74 | ||
CAD, (n, %) | 16 (18.8%) | 6 (23.1%) | 10 (16.9%) | § 0.83 | ||
ASPECTS, Mean ± SD | 7.4 ± 2.5 | 7.8 ± 2.4 | 7.3 ± 2.6 | ⌂ 0.41 | ||
Time parameters, minutes Median (IQR) | Last known well to door | 230 (70, 642) | 148 (74, 736) | 262 (70, 592) | ^ 0.98 | |
Door to CT | 29 (18, 44) | 28 (18, 37) | 30 (21, 45) | ^ 0.35 | ||
Last known well to CT | 274.5 (98, 683) | 198 (87, 796) | 302 (112, 635) | ^ 0.88 |
Total Cases (n = 85) | Descriptive (n) | p Value | Correlation Coefficient |
---|---|---|---|
CBF < 30% (mL) | 24.94 ± 42.6(85) | 0.01 * | 0.32 |
Tmax > 6 s (mL) | 113.61 ± 83.4(84) | 0.04 * | 0.23 |
Mismatch Volume (mL) | 88.67 ± 77.7(84) | 0.36 | 0.10 |
Mismatch ratio | 6.34 ± 7.03(46) | 0.98 | −0.01 |
Hypoperfusion Index | 0.375 ± 0.25(84) | 0.01 * | 0.27 |
ASPECTS | 7.45 ± 2.57(85) | 0.38 | −0.10 |
CBV Index (rCBV Tmax > 6 s) | 0.70 ± 0.19(66) | 0.05 * | −0.24 |
LAMS score | 3.85 ± 1.5(85) | 0 | 1 |
Intracranial ICA Only (n = 9) | Descriptive (n) | p Value | Correlation Coefficient |
---|---|---|---|
CBF < 30% (mL) | 62.63 ± 82.66 (11) | 0.81 | 0.08 |
Tmax > 6 s (mL) | 200.81 ± 137.16 (11) | 0.43 | 0.27 |
Mismatch Volume (mL) | 138.18 ± 144.6 (11) | 0.65 | 0.15 |
Mismatch ratio | 4.43 ± 4.07 (8) | 0.95 | 0.03 |
Hypoperfusion Index | 0.55 ± 0.22 (11) | 0.86 | 0.06 |
ASPECTS | 5.18 ± 3.45 (11) | 0.40 | 0.29 |
CBV Index (rCBV Tmax > 6 s) | 0.655 ± 2.87 (9) | 0.56 | −0.23 |
LAMS score | 3 ± 1.67 (11) | 0 | 1 |
M1 (n = 53) | Descriptive (n) | p Value | Correlation Coefficient |
---|---|---|---|
CBF < 30% (mL) | 19.8 ± 31.4 (52) | 0.01 * | 0.42 |
Tmax > 6 s (mL) | 113 ± 66.2 (52) | 0.01 * | 0.42 |
Mismatch Volume (mL) | 93.8 ± 61.3 (52) | 0.28 | 0.24 |
Mismatch ratio | 7.98 ± 8.42 (27) | 0.57 | −0.12 |
Hypoperfusion Index | 0.33 ± 0.25 (52) | 0.01 * | 0.34 |
ASPECTS | 7.69 + 2.39 (52) | 0.03 * | −0.30 |
CBV Index (rCBV Tmax > 6 s) | 0.73 ± 0.14 (40) | 0.39 | −0.14 |
LAMS score | 4.06 ± 1.29 (52) | 0 | 1 |
Proximal M2 (n = 23) | Descriptive (n) | p Value | Correlation Coefficient |
---|---|---|---|
CBF < 30% (mL) | 17.7 ± 26.8 (21) | 0.01 * | 0.53 |
Tmax > 6 s (mL) | 67.6 ± 43.9 (21) | 0.69 | 0.09 |
Mismatch Volume (mL) | 49.9 ± 45.1 (21) | 0.21 | −0.29 |
Mismatch ratio | 3.72 ± 2.92 (11) | 0.57 | −0.20 |
Hypoperfusion Index | 0.37 ± 0.25 (21) | 0.03 * | 0.48 |
ASPECTS | 8.05 ± 1.88 (22) | 0.53 | −0.14 |
CBV Index (rCBV in Tmax > 6 s) | 0.68 ± 0.23 (17) | 0.01 * | −0.69 |
LAMS score | 3.77 ± 1.77 (22) | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthur, K.C.; Huang, S.; Gudenkauf, J.C.; Mohseni, A.; Wang, R.; Aslan, A.; Nabi, M.; Hoseinyazdi, M.; Johnson, B.; Patel, N.; et al. Assessing the Relationship between LAMS and CT Perfusion Parameters in Acute Ischemic Stroke Secondary to Large Vessel Occlusion. J. Clin. Med. 2023, 12, 3374. https://doi.org/10.3390/jcm12103374
Arthur KC, Huang S, Gudenkauf JC, Mohseni A, Wang R, Aslan A, Nabi M, Hoseinyazdi M, Johnson B, Patel N, et al. Assessing the Relationship between LAMS and CT Perfusion Parameters in Acute Ischemic Stroke Secondary to Large Vessel Occlusion. Journal of Clinical Medicine. 2023; 12(10):3374. https://doi.org/10.3390/jcm12103374
Chicago/Turabian StyleArthur, Karissa C, Shenwen Huang, Julie C. Gudenkauf, Alireza Mohseni, Richard Wang, Alperen Aslan, Mehreen Nabi, Meisam Hoseinyazdi, Brenda Johnson, Navangi Patel, and et al. 2023. "Assessing the Relationship between LAMS and CT Perfusion Parameters in Acute Ischemic Stroke Secondary to Large Vessel Occlusion" Journal of Clinical Medicine 12, no. 10: 3374. https://doi.org/10.3390/jcm12103374
APA StyleArthur, K. C., Huang, S., Gudenkauf, J. C., Mohseni, A., Wang, R., Aslan, A., Nabi, M., Hoseinyazdi, M., Johnson, B., Patel, N., Urrutia, V. C., & Yedavalli, V. (2023). Assessing the Relationship between LAMS and CT Perfusion Parameters in Acute Ischemic Stroke Secondary to Large Vessel Occlusion. Journal of Clinical Medicine, 12(10), 3374. https://doi.org/10.3390/jcm12103374