Single Sporadic Deceleration during Reactive Nonstress Test—Clinical Significance and Risk for Cesarean Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Retrieval
2.2. Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landon, M.B.; Driscoll, D.A.; Jauniaux, E.R.; Galan, H.L.; Grobman, W.A.; Berghella, V. Gabbe’s Obstetrics Essentials: Normal & Problem Pregnancies; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- American College of Obstetricians and Gynecologists. Antepartum fetal surveillance: ACOG practice bulletin, number 229. Obstet. Gynecol. 2021, 137, e116–e127. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists, Committee on Obstetric Practice, Society for Maternal-Fetal Medicine. Indications for outpatient antenatal fetal surveillance: ACOG Committee Opinion, Number 828. Obstet. Gynecol. 2021, 137, e177–e197. [Google Scholar] [CrossRef] [PubMed]
- Evertson, L.R.; Gauthier, R.J.; Schifrin, B.S.; Paul, R.H. Antepartum fetal heart rate testing: I. Evolution of the nonstress test. Am. J. Obstet. Gynecol. 1979, 133, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.B.; Dambrosia, J.M.; Ting, T.Y.; Grether, J.K. Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N. Engl. J. Med. 1996, 334, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Signore, C.; Freeman, R.K.; Spong, C.Y. Antenatal testing—A reevaluation: Executive summary of a Eunice Kennedy Shriver National Institute of Child Health and Human Development workshop. Obstet. Gynecol. 2009, 113, 687. [Google Scholar] [CrossRef] [PubMed]
- Pattison, N.; McCowan, L. Cardiotocography for Antepartum Fetal Assessment; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Meis, P.J.; Ureda, J.R.; Swain, M.; Kelly, R.T.; Penry, M.; Sharp, P. Variable decelerations during nonstress tests are not a sign of fetal compromise. Am. J. Obstet. Gynecol. 1986, 154, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Jaschevatzky, O.E.; Marom, D.; Ostrovsky, P.; Ellenbogen, A.; Anderman, S.; Ballas, S. Significance of sporadic deceleration during antepartum testing in term pregnancies. Am. J. Perinatol. 1998, 15, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Hagay, Z.J.; Mazor, M.; Leiberman, J.R.; Katz, M.; Insler, V. The significance of single sporadic deceleration during a nonstress test. Eur. J. Obstet. Gynecol. Reprod. Biol. 1983, 15, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Anyaegbunam, A.; Brustman, L.; Divon, M.; Langer, O. The significance of antepartum variable decelerations. Am. J. Obstet. Gynecol. 1986, 155, 707–710. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.A.; Andrinopoulos, G.C.; Giordano, P.C. Variable decelerations and the nonstress test: An indication of cord compromise. Am. J. Obstet. Gynecol. 1980, 137, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, F.J.; Thiagarajah, S.; Harbert, G.M., Jr. The significance of fetal heart rate decelerations during nonstress testing. Am. J. Obstet. Gynecol. 1984, 150, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Druzin, M.L.; Gratacós, J.; Keegan, K.A.; Paul, R.H. Antepartum fetal heart rate testing: VII. The significance of fetal bradycardia. Am. J. Obstet. Gynecol. 1981, 139, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Pazos, R.; Vuolo, K.; Aladjem, S.; Lueck, J.; Anderson, C. Association of spontaneous fetal heart rate decelerations during antepartum nonstress testing and intrauterine growth retardation. Am. J. Obstet. Gynecol. 1982, 144, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.C.; Flint, C.J. Intrapartum fetal heart rate monitoring: Nomenclature, interpretation, and general management principles. In Obstetrics Essentials; Springer: Cham, Switzerland, 2017; pp. 101–107. [Google Scholar]
- Macones, G.A. The 2008 National Institute of Child Health and Human Development Workshop Report on Electronic Fetal Monitoring: Update on Definitions, Interpretation, and Research Guidelines. Obstet. Gynecol. 2009, 113, 230. [Google Scholar] [CrossRef]
- Barth, W.H., Jr.; Jackson, R. Macrosomia ACOG Practice Bulletin, Number 216. Obstet. Gynecol. 2020, 135, E18–E35. [Google Scholar]
- Clark, S.L.; Sabey, P.; Jolley, K. Nonstress testing with acoustic stimulation and amniotic fluid volume assessment: 5973 tests without unexpected fetal death. Am. J. Obstet. Gynecol. 1989, 160, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, K.; Murata, Y.; Sato, A. Sporadic fetal heart rate decelerations associated with electrocortical changes in fetal lambs. J. Obstet. Gynaecol. Res. 2006, 32, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Katsura, D.; Takahashi, Y.; Iwagaki, S.; Chiaki, R.; Asai, K.; Koike, M.; Nagai, R.; Yasumi, S.; Furuhashi, M. Amnioinfusion for variable decelerations caused by umbilical cord compression without oligohydramnios but with the sandwich sign as an early marker of deterioration. J. Obstet. Gynaecol. 2019, 39, 49–53. [Google Scholar] [CrossRef] [PubMed]
SSD (N = 84) | No SSD (N = 168) | p-Value | |
---|---|---|---|
Maternal age (years) | 29.6 ± 5.5 | 29.7 ± 5.2 | 0.94 |
BMI (Kg\m2) | 24.7 ± 5.4 | 25.3 ± 5.5 | 0.44 |
Ethnicity: | |||
• Jewish | 38 (45.2) | 96 (57.1) | 0.083 |
• Arabic | 46 (54.8) | 72(42.9) | |
Maternal smoking | 2 (2.4) | 12 (7.3) | 0.091 |
Pregestational diabetes mellitus | 1 (1.2) | 1 (0.6) | 0.55 |
Chronic hypertension | 0 (0) | 3 (1.8) | 0.55 |
Nulliparity | 42 (50) | 84 (50) | >0.99 |
Previous cesarean delivery | 3 (3.6) | 6 (3.6) | >0.99 |
Hypertensive disorders during pregnancy: | |||
■ Preeclampsia | 2 (2.4) | 11 (6.5) | 0.076 |
■ Gestational hypertension | 2 (2.4) | 13 (7.7) | |
Gestational diabetes | 11 (13.1) | 29 (17.3) | 0.46 |
SSD (N = 84) | No SSD (N = 168) | p-Value | |
---|---|---|---|
Gestational age at delivery (weeks) | 39.8 ± 1.1 | 39.6 ± 1.1 | 0.12 |
Induction of labor | 60 (71.4) | 132 (78.6) | 0.21 |
FHR decelerations during labor | 15 (17.9) | 18 (10.7) | 0.11 |
Meconium | 18 (21.4) | 22 (13.1) | 0.10 |
Amnioinfusion during labor | 3 (3.6) | 0 (0) | 0.03 |
Fever during labor | 0 (0) | 14 (8.3) | 0.006 |
Mode of delivery: | |||
• Spontaneous vaginal delivery | 64 (76.1) | 137 (81.5) | 0.6 |
• VAVD delivery | 5 (6) | 8 (4.8) | |
• Cesarean delivery | 15 (17.9) | 23 (13.7) | |
Cesarean delivery indication | |||
• NRFHRM | 9 (60) | 13 (52.2) | 0.59 |
• Arrested labor | 6 (40) | 9 (39.1) | |
• Other | 0 (0) | 1 (4.3) | |
Cesarean delivery for NRFHRM | 9 (10.7) | 13 (7.7) | 0.48 |
VAVD indication | |||
■ NRFHRM | 3 (60) | 6 (75) | 0.51 |
■ Arrested labor | 2 (40) | 2 (25) |
SSD (N = 84) | No SSD (N = 168) | p-Value | |
---|---|---|---|
Maternal outcomes: | |||
Postpartum hemorrhage | 4 (4.8) | 4 (2.4) | 0.44 |
OASIS | 1 (1.2) | 2 (1.2) | >0.99 |
Blood transfusion | 0 (0) | 6 (3.5) | 0.08 |
Neonatal outcomes: | |||
Birthweight (grams) | 3302 ± 393 | 3313 ± 392 | 0.91 |
Male gender | 43 (51.2) | 92 (54.8) | 0.5 |
PH < 7.2 | 11 (14.1) | 14 (8.9) | 0.26 |
Apgar 5 min < 7 | 1 (1.2) | 4 (2.4) | 0.46 |
NICU admission | 2 (2.4) | 1 (0.6) | 0.25 |
Cephalohematoma | 1 (1.2) | 0 (0) | 0.33 |
Hypoglycemia | 1 (1.2) | 0 (0) | 0.33 |
Asphyxia | 1 (1.2) | 0 (0) | 0.33 |
Induction of Labor (N = 60) | Expectant Management (N = 24) | p-Value | |
---|---|---|---|
FHR decelerations during labor | 12 (20) | 3 (12.5) | 0.31 |
Meconium | 11 (18.3) | 7 (29.1) | 0.21 |
Amnioinfusion during labor | 3 (5) | 0 (0) | 0.35 |
Mode of delivery: | |||
• Spontaneous vaginal delivery | 44 (73.3) | 20 (83.3) | 0.6 |
• VAVD delivery | 4 (6.6) | 1 (4.1) | |
• Cesarean delivery | 12 (20) | 3 (12.5) | |
Cesarean delivery for NRFHRM | 7 (58.3) | 2 (66.6) | 0.49 |
PH < 7.2 | 6 (10.9) | 5 (21.7) | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinberger, H.; Nekave, S.; Hallak, M.; Naeh, A.; Gabbay-Benziv, R. Single Sporadic Deceleration during Reactive Nonstress Test—Clinical Significance and Risk for Cesarean Delivery. J. Clin. Med. 2023, 12, 3387. https://doi.org/10.3390/jcm12103387
Weinberger H, Nekave S, Hallak M, Naeh A, Gabbay-Benziv R. Single Sporadic Deceleration during Reactive Nonstress Test—Clinical Significance and Risk for Cesarean Delivery. Journal of Clinical Medicine. 2023; 12(10):3387. https://doi.org/10.3390/jcm12103387
Chicago/Turabian StyleWeinberger, Hila, Shlomit Nekave, Mordechai Hallak, Amir Naeh, and Rinat Gabbay-Benziv. 2023. "Single Sporadic Deceleration during Reactive Nonstress Test—Clinical Significance and Risk for Cesarean Delivery" Journal of Clinical Medicine 12, no. 10: 3387. https://doi.org/10.3390/jcm12103387
APA StyleWeinberger, H., Nekave, S., Hallak, M., Naeh, A., & Gabbay-Benziv, R. (2023). Single Sporadic Deceleration during Reactive Nonstress Test—Clinical Significance and Risk for Cesarean Delivery. Journal of Clinical Medicine, 12(10), 3387. https://doi.org/10.3390/jcm12103387