Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia
Abstract
:1. Introduction
2. Methods
3. Nutraceuticals and Their Main Effects on LDL-C
3.1. Red Yeast Rice Extract
3.2. Berberine
3.3. Bergamot (Citrus bergamia)
3.4. Garlic Extract
3.5. Artichoke Leaf Extract
3.6. Green Tea
3.7. Olive Extract
3.8. Gamma-Oryzanol
3.9. Soybean Protein
3.10. Lupin Protein
3.11. Policosanol
3.12. Phytosterols
3.13. Viscous Dietary Fibers
3.13.1. β-Glucan
3.13.2. Psyllium
3.13.3. Glucomannan
3.13.4. Guar Gum
3.13.5. Pectin
3.14. Nigella Sativa
3.15. Silymarin
3.16. Sea Buckthorn
3.17. Anthocyanins
3.18. Spirulina
3.19. Probiotics
3.20. Alpha Lipoic Acid
3.21. Conjugated Linoleic Acid
3.22. Chitosan
3.23. Pantethine
4. Nutraceuticals and Their Effects on Other Lipid Targets
4.1. Polyunsaturated n-3 Fatty Acids
4.2. Niacin
4.3. L-Carnitine
4.4. Vitamin E
5. Inconsistent Data Regarding Nutraceuticals and Dyslipidemia
5.1. Resveratrol
5.2. Curcumin
5.3. Magnesium
5.4. Chromium
5.5. Coenzyme Q10
6. Lifestyle Changes and the Impact on Dyslipidemia
The Mediterranean Diet
7. Discussion
7.1. Comparisons of the Effectiveness of Nutraceuticals
7.2. Outcomes Data
7.3. Regulation of Nutraceuticals/Supplements
7.4. Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 aha/acc/aacvpr/aapa/abc/acpm/ada/ags/apha/aspc/nla/pcna guideline on the management of blood cholesterol: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Bachetti, T.; D’Anna, S.E.; Galloway, B.; Bianco, A.; D’Agnano, V.; Papa, A.; Motta, A.; Perrotta, F.; Maniscalco, M. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension. J. Cardiovasc. Dev. Dis. 2022, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Mućka, S.; Miodońska, M.; Jakubiak, G.K.; Starzak, M.; Cieślar, G.; Stanek, A. Endothelial function assessment by flow-mediated dilation method: A valuable tool in the evaluation of the cardiovascular system. Int. J. Env. Res. Public Health 2022, 19, 11242. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Cieślar, G.; Stanek, A. Nitrotyrosine, nitrated lipoproteins, and cardiovascular dysfunction in patients with type 2 diabetes: What do we know and what remains to be explained? Antioxidants 2022, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Raised Cholesterol. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3236 (accessed on 23 October 2022).
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the european atherosclerosis society consensus panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 esc/eas guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Gidding, S.S.; Champagne, M.A.; de Ferranti, S.D.; Defesche, J.; Ito, M.K.; Knowles, J.W.; McCrindle, B.; Raal, F.; Rader, D.; Santos, R.D.; et al. The agenda for familial hypercholesterolemia: A scientific statement from the american heart association. Circulation 2015, 132, 2167–2192. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Guideline, G. Writing Committee for the Cholesterol. 2018 cholesterol clinical practice guidelines: Synopsis of the 2018 american heart association/american college of cardiology/multisociety cholesterol guideline. Ann. Intern Med. 2019, 170, 779–783. [Google Scholar] [CrossRef]
- Cheeley, M.K.; Saseen, J.J.; Agarwala, A.; Ravilla, S.; Ciffone, N.; Jacobson, T.A.; Dixon, D.L.; Maki, K.C. Nla scientific statement on statin intolerance: A new definition and key considerations for ascvd risk reduction in the statin intolerant patient. J. Clin. Lipidol. 2022, 16, 361–375. [Google Scholar] [CrossRef]
- Bytyci, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; et al. Prevalence of statin intolerance: A meta-analysis. Eur. Heart J. 2022, 43, 3213–3223. [Google Scholar] [CrossRef]
- Cheung, B. The intersection of the two complimentary fields of preventive cardiology and integrative cardiology: A fellow’s voice. Am. J. Prev. Cardiol. 2022, 12. [Google Scholar] [CrossRef]
- Bin, Y.S.; Kiat, H. Prevalence of dietary supplement use in patients with proven or suspected cardiovascular disease. Evid.-Based Complement. Alternat. Med. 2011, 2011, 632829. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Catapano, A.L.; Cicero, A.F.G.; Escobar, C.; Foger, B.; Katsiki, N.; Latkovskis, G.; Rakowski, M.; Reiner, Z.; Sahebkar, A.; et al. Red yeast rice for dyslipidaemias and cardiovascular risk reduction: A position paper of the international lipid expert panel. Pharmacol. Res. 2022, 183, 106370. [Google Scholar] [CrossRef] [PubMed]
- Osadnik, T.; Golawski, M.; Lewandowski, P.; Morze, J.; Osadnik, K.; Pawlas, N.; Lejawa, M.; Jakubiak, G.K.; Mazur, A.; Schwingschackl, L.; et al. A network meta-analysis on the comparative effect of nutraceuticals on lipid profile in adults. Pharmacol. Res. 2022, 183, 106402. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid-lowering nutraceuticals in clinical practice: Position paper from an international lipid expert panel. Nutr. Rev. 2017, 75, 731–767. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, S.; Jeong, D.Y.; Jeong, S.Y.; Park, J.J.; Yun, H.S. Cyanidin and malvidin in aqueous extracts of black carrots fermented with aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by ampk activation. Genes Nutr. 2015, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Araki, R.; Yada, A.; Ueda, H.; Tominaga, K.; Isoda, H. Differences in the effects of anthocyanin supplementation on glucose and lipid metabolism according to the structure of the main anthocyanin: A meta-analysis of randomized controlled trials. Nutrients 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, V.; Embers, D.; Wells, E.; Lemler, M.; Rosenfeld, C.R. Prenatal closure of the ductus arteriosus and maternal ingestion of anthocyanins. J. Perinatol. 2010, 30, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Rangboo, V.; Noroozi, M.; Zavoshy, R.; Rezadoost, S.A.; Mohammadpoorasl, A. The effect of artichoke leaf extract on alanine aminotransferase and aspartate aminotransferase in the patients with nonalcoholic steatohepatitis. Int. J. Hepatol. 2016, 2016, 4030476. [Google Scholar] [CrossRef]
- Sahebkar, A.; Pirro, M.; Banach, M.; Mikhailidis, D.P.; Atkin, S.L.; Ciceo, A.F.G. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 2549–2556. [Google Scholar] [CrossRef]
- Natural Medicines. 2022. Available online: https://naturalmedicines.therapeuticresearch.com/ (accessed on 18 August 2022).
- Li, H.; Dong, B.; Park, S.W.; Lee, H.S.; Chen, W.; Liu, J. Hepatocyte nuclear factor 1alpha plays a critical role in pcsk9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 2009, 284, 28885–28895. [Google Scholar] [CrossRef] [PubMed]
- Abidi, P.; Zhou, Y.; Jiang, J.D.; Liu, J. Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mrna by herbal medicine berberine. Arter. Thromb. Vasc. Biol. 2005, 25, 2170–2176. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, Z.X.; Huang, M.; Feng, R.; He, C.Y.; Ma, C.; Luo, S.H.; Fu, J.; Wen, B.Y.; Ren, L.; et al. Effect of berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. J. Transl. Med. 2015, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.; Tam, S.; Murray-Segal, L.; Huynh, K.; Meikle, P.J.; Scott, J.W.; van Denderen, B.; Chen, Z.; Steel, R.; LeBlond, N.D.; et al. Inhibition of adenosine monophosphate-activated protein kinase-3-hydroxy-3-methylglutaryl coenzyme a reductase signaling leads to hypercholesterolemia and promotes hepatic steatosis and insulin resistance. Hepatol. Commun. 2019, 3, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Lee, Y.S.; Cha, S.H.; Jeong, H.W.; Choe, S.S.; Lee, M.R.; Oh, G.T.; Park, H.S.; Lee, K.U.; Lane, M.D.; et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral ampk activity. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E812–E819. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Lv, X.; Zhang, M.; Song, Y.; Chen, L.; Liu, Y. Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. Eur. J. Pharmacol. 2009, 620, 131–137. [Google Scholar] [CrossRef]
- Bertuccioli, A.; Moricoli, S.; Amatori, S.; Rocchi, M.B.L.; Vici, G.; Sisti, D. Berberine and dyslipidemia: Different applications and biopharmaceutical formulations without statin-like molecules-a meta-analysis. J. Med. Food 2020, 23, 101–113. [Google Scholar] [CrossRef]
- Ju, J.; Li, J.; Lin, Q.; Xu, H. Efficacy and safety of berberine for dyslipidaemias: A systematic review and meta-analysis of randomized clinical trials. Phytomedicine 2018, 50, 25–34. [Google Scholar] [CrossRef]
- Linn, Y.C.; Lu, J.; Lim, L.C.; Sun, H.; Sun, J.; Zhou, Y.; Ng, H.S. Berberine-induced haemolysis revisited: Safety of rhizoma coptidis and cortex phellodendri in chronic haematological diseases. Phytother. Res. 2012, 26, 682–686. [Google Scholar] [CrossRef]
- Musolino, V.; Gliozzi, M.; Carresi, C.; Maiuolo, J.; Mollace, R.; Bosco, F.; Scarano, F.; Scicchitano, M.; Maretta, A.; Palma, E.; et al. Lipid-lowering effect of bergamot polyphenolic fraction: Role of pancreatic cholesterol ester hydrolase. J. Biol. Regul. Homeost. Agents 2017, 31, 1087–1093. [Google Scholar]
- Cappello, A.R.; Dolce, V.; Iacopetta, D.; Martello, M.; Fiorillo, M.; Curcio, R.; Muto, L.; Dhanyalayam, D. Bergamot (Citrus bergamia risso) flavonoids and their potential benefits in human hyperlipidemia and atherosclerosis: An overview. Mini Rev. Med. Chem. 2016, 16, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Lamiquiz-Moneo, I.; Gine-Gonzalez, J.; Alisente, S.; Bea, A.M.; Perez-Calahorra, S.; Marco-Benedi, V.; Baila-Rueda, L.; Jarauta, E.; Cenarro, A.; Civeira, F.; et al. Effect of bergamot on lipid profile in humans: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3133–3143. [Google Scholar] [CrossRef]
- Askarpour, M.; Hadi, A.; Symonds, M.E.; Miraghajani, M.; Sadeghi, O.; Sheikhi, A.; Ghaedi, E. Efficacy of l-carnitine supplementation for management of blood lipids: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1151–1167. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, R.A.; Dvorkin, E.; Homel, P.; Malamud, S.; Culliney, B.; Lapin, J.; Portenoy, R.K.; Esteban-Cruciani, N. Safety, tolerability and symptom outcomes associated with l-carnitine supplementation in patients with cancer, fatigue, and carnitine deficiency: A phase i/ii study. J. Pain Symptom. Manag. 2006, 32, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.H.; Cho, S.C.; Park, Y.; Cha, Y.S. L-carnitine-supplemented parenteral nutrition improves fat metabolism but fails to support compensatory growth in premature korean infants. Nutr. Res. 2010, 30, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Keller, U.; Van Der Wal, C.; Seliger, G.; Scheler, C.; Röpke, F.; Eder, K. Carnitine status of pregnant women: Effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration. Eur. J. Clin. Nutr. 2009, 63, 1098–1105. [Google Scholar] [CrossRef]
- Tarrahi, M.J.; Tarrahi, M.A.; Rafiee, M.; Mansourian, M. The effects of chromium supplementation on lipid profile in humans: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2021, 164, 105308. [Google Scholar] [CrossRef]
- Asbaghi, O.; Naeini, F.; Ashtary-Larky, D.; Moradi, S.; Zakeri, N.; Eslampour, E.; Kelishadi, M.R.; Naeini, A.A. Effects of chromium supplementation on lipid profile in patients with type 2 diabetes: A systematic review and dose-response meta-analysis of randomized controlled trials. J. Trace Elem. Med. Biol. 2021, 66, 126741. [Google Scholar] [CrossRef]
- Chromium Fact Sheet for Health Professionals. NIH. 2022. Available online: https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/#h2 (accessed on 11 September 2022).
- Ylitalo, R.; Lehtinen, S.; Wuolijoki, E.; Ylitalo, P.; Lehtimäki, T. Cholesterol-lowering properties and safety of chitosan. Arzneimittelforschung 2002, 52, 1–7. [Google Scholar] [CrossRef]
- Moraru, C.; Mincea, M.M.; Frandes, M.; Timar, B.; Ostafe, V. A meta-analysis on randomised controlled clinical trials evaluating the effect of the dietary supplement chitosan on weight loss, lipid parameters and blood pressure. Medicina 2018, 54, 109. [Google Scholar] [CrossRef]
- Arenas-Jal, M.; Sune-Negre, J.M.; Garcia-Montoya, E. Coenzyme q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, N.; Tabrizi, R.; Moosazadeh, M.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Chamani, M.; Kolahdooz, F.; Asemi, Z. The effects of coenzyme q10 supplementation on lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Curr. Pharmacol. Des. 2018, 24, 2729–4272. [Google Scholar] [CrossRef] [PubMed]
- Jorat, M.V.; Tabrizi, R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Mottaghi, R.; Asemi, Z. The effects of coenzyme q10 supplementation on lipid profiles among patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2018, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Coenzyme q10. Available online: https://www.cancer.gov/about-cancer/treatment/cam/hp/coenzyme-q10-pdq (accessed on 20 October 2022).
- Vaisar, T.; Wang, S.; Omer, M.; Irwin, A.D.; Storey, C.; Tang, C.; den Hartigh, L.J. 10,12-conjugated linoleic acid supplementation improves hdl composition and function in mice. J. Lipid Res. 2022, 63, 100241. [Google Scholar] [CrossRef] [PubMed]
- Derakhshande-Rishehri, S.M.; Mansourian, M.; Kelishadi, R.; Heidari-Beni, M. Association of foods enriched in conjugated linoleic acid (cla) and cla supplements with lipid profile in human studies: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 2041–2054. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.V.; Jacques, H.; Plourde, M.; Mitchell, P.L.; McLeod, R.S.; Jones, P.J. Conjugated linoleic acid supplementation for 8 weeks does not affect body composition, lipid profile, or safety biomarkers in overweight, hyperlipidemic men. J. Nutr. 2011, 141, 1286–1291. [Google Scholar] [CrossRef]
- Al, M.D.; van Houwelingen, A.C.; Badart-Smook, A.; Hornstra, G. Some aspects of neonatal essential fatty acid status are altered by linoleic acid supplementation of women during pregnancy. J Nutr 1995, 125, 2822–2830. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Malhotra, P.; Ma, K.; Singla, A.; Hedroug, O.; Saksena, S.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Srebp2 mediates the modulation of intestinal npc1l1 expression by curcumin. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G148–G155. [Google Scholar] [CrossRef] [PubMed]
- Tai, M.H.; Chen, P.K.; Chen, P.Y.; Wu, M.J.; Ho, C.T.; Yen, J.H. Curcumin enhances cell-surface ldlr level and promotes ldl uptake through downregulation of pcsk9 gene expression in hepg2 cells. Mol. Nutr. Food Res. 2014, 58, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.L.; Liu, M.H.; Hu, H.J.; Feng, H.R.; Fan, X.J.; Zou, W.W.; Pan, Y.Q.; Hu, X.M.; Wang, Z. Curcumin enhanced cholesterol efflux by upregulating abca1 expression through ampk-sirt1-lxralpha signaling in thp-1 macrophage-derived foam cells. DNA Cell Biol. 2015, 34, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin. Nutr. 2014, 33, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Tumeric. NIH. Available online: https://www.nccih.nih.gov/health/turmeric (accessed on 11 November 2022).
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.V.T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J.L.; Au-Yeung, F.; Jenkins, A.L.; Duvnjak, L.; Leiter, L.; Vuksan, V. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on ldl cholesterol and the new lipid targets non-hdl cholesterol and apolipoprotein b. Am. J. Clin. Nutr. 2017, 105, 1239–1247. [Google Scholar] [CrossRef]
- Henrion, M.; Francey, C.; Le, K.A.; Lamothe, L. Cereal b-glucans: The impact of processing and how it affects physiological responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xia, J.; Yang, C.; Pan, D.; Xu, D.; Sun, G.; Xia, H. Effects of oat beta-glucan intake on lipid profiles in hypercholesterolemic adults: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2022, 14, 2043. [Google Scholar] [CrossRef]
- Lin, J.; Sun, Y.; Santos, H.O.; Găman, M.A.; Bhat, L.T.; Cui, Y. Effects of guar gum supplementation on the lipid profile: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3271–3281. [Google Scholar] [CrossRef]
- Gylling, H.; Riikonen, S.; Nikkilä, K.; Savonius, H.; Miettinen, T.A. Oral guar gum treatment of intrahepatic cholestasis and pruritus in pregnant women: Effects on serum cholestanol and other non-cholesterol sterols. Eur. J. Clin. Investig. 1998, 28, 359–363. [Google Scholar] [CrossRef]
- Jovanovski, E.; Yashpal, S.; Komishon, A.; Zurbau, A.; Blanco Mejia, S.; Ho, H.V.T.; Li, D.; Sievenpiper, J.; Duvnjak, L.; Vuksan, V. Effect of psyllium (Plantago ovata) fiber on ldl cholesterol and alternative lipid targets, non-hdl cholesterol and apolipoprotein b: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2018, 108, 922–932. [Google Scholar] [CrossRef]
- Chen, C.; Shang, C.; Xin, L.; Xiang, M.; Wang, Y.; Shen, Z.; Jiao, L.; Ding, F.; Cui, X. Beneficial effects of psyllium on the prevention and treatment of cardiometabolic diseases. Food Funct. 2022, 13, 7473–7486. [Google Scholar] [CrossRef]
- Shirah, B.H.; Shirah, H.A.; Fallata, A.H.; Alobidy, S.N.; Al Hawsawi, M.M. Hemorrhoids during pregnancy: Sitz bath vs. Ano-rectal cream: A comparative prospective study of two conservative treatment protocols. Women Birth 2018, 31, e272–e277. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and biological properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.E.; Wang, W.; Qin, J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: A meta-analysis. Medicine 2018, 97, e0255. [Google Scholar] [CrossRef] [PubMed]
- Ried, K.; Toben, C.; Fakler, P. Effect of garlic on serum lipids: An updated meta-analysis. Nutr. Rev. 2013, 71, 282–299. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The role of nutraceuticals in statin intolerant patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, H.; Teng, J.; Wu, Z.L.; Wei, L.; Xia, N. Antihyperlipidemic effect and increased antioxidant enzyme levels of aqueous extracts from liupao tea and green tea in vivo. J. Food Sci. 2022, 87, 4203–4220. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Odouli, R.; Li, D.K. Maternal caffeine consumption during pregnancy and the risk of miscarriage: A prospective cohort study. Am. J. Obstet. Gynecol. 2008, 198, 279.e1–279.e8. [Google Scholar] [CrossRef] [PubMed]
- Erickson, N.; Zafron, M.; Harding, S.V.; Marinangeli, C.P.; Rideout, T.C. Evaluating the lipid-lowering effects of alpha-lipoic acid supplementation: A systematic review. J. Diet. Suppl. 2020, 17, 753–767. [Google Scholar] [CrossRef]
- Mahmoudinezhad, M.; Farhangi, M.A. Alpha lipoic acid supplementation affects serum lipids in a dose and duration-dependent manner in different health status. Int. J. Vitam. Nutr. Res. 2021. [Google Scholar] [CrossRef]
- Najafi, N.; Mehri, S.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother. Res. 2022, 36, 2300–2323. [Google Scholar] [CrossRef]
- Lammi, C.; Fassi, E.M.A.; Li, J.; Bartolomei, M.; Benigno, G.; Roda, G.; Arnoldi, A.; Grazioso, G. Computational design and biological evaluation of analogs of lupin peptide p5 endowed with dual pcsk9/hmg-coar inhibiting activity. Pharmaceutics 2022, 14, 665. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Lecca, D.; Abbracchio, M.P.; Arnoldi, A. Lupin peptide t9 (gqeqshqdegvivr) modulates the mutant pcsk9(d374y) pathway: In vitro characterization of its dual hypocholesterolemic behavior. Nutrients 2019, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Zanoni, C.; Scigliuolo, G.M.; D’Amato, A.; Arnoldi, A. Arnoldi. Lupin peptides lower low-density lipoprotein (ldl) cholesterol through an up-regulation of the ldl receptor/sterol regulatory element binding protein 2 (srebp2) pathway at hepg2 cell line. J. Agric. Food Chem. 2014, 62, 7151–7159. [Google Scholar] [CrossRef] [PubMed]
- Bähr, M.; Fechner, A.; Krämer, J.; Kiehntopf, M.; Jahreis, G. Lupin protein positively affects plasma ldl cholesterol and ldl:Hdl cholesterol ratio in hypercholesterolemic adults after four weeks of supplementation: A randomized, controlled crossover study. Nutr. J. 2013, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qian, Z.Y.; Zhou, P.H.; Zhou, X.L.; Zhang, D.L.; He, N.; Zhang, J.; Liu, Y.H.; Gu, Q. Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis. 2018, 17, 165. [Google Scholar] [CrossRef]
- Asbaghi, O.; Moradi, S.; Nezamoleslami, S.; Moosavian, S.P.; Hojjati Kermani, M.A.; Lazaridi, A.V.; Miraghajani, M. The effects of magnesium supplementation on lipid profile among type 2 diabetes patients: A systematic review and meta-analysis of randomized controlled trials. Biol. Trace Elem. Res. 2021, 199, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendia, L.E.; Simental-Mendia, M.; Sahebkar, A.; Rodriguez-Moran, M.; Guerrero-Romero, F. Effect of magnesium supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 2017, 73, 525–536. [Google Scholar] [CrossRef]
- Liu, M.; Dudley, S.C., Jr. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020, 9, 907. [Google Scholar] [CrossRef]
- Van Laecke, S. Hypomagnesemia and hypermagnesemia. Acta Clin. Belg. 2019, 74, 41–47. [Google Scholar] [CrossRef]
- Kamanna, V.S.; Kashyap, M.L. Mechanism of action of niacin. Am. J. Cardiol. 2008, 101, 20b–26b. [Google Scholar] [CrossRef]
- HPS2-Thrive Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar] [CrossRef]
- Aim-High Investigators. Niacin in patients with low hdl cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Palawaththa, S.; Islam, R.M.; Illic, D.; Rabel, K.; Lee, M.; Romero, L.; Leung, X.Y.; Karim, M.N. Effect of maternal dietary niacin intake on congenital anomalies: A systematic review and meta-analysis. Eur. J. Nutr. 2022, 61, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Niacin. Available online: https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/#h9 (accessed on 18 October 2022).
- Asgary, S.; Sahebkar, A.; Goli-Malekabadi, N. Ameliorative effects of nigella sativa on dyslipidemia. J. Endocrinol. Investig. 2015, 38, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Hallajzadeh, J.; Milajerdi, A.; Mobini, M.; Amirani, E.; Azizi, S.; Nikkhah, E.; Bahadori, B.; Sheikhsoleimani, R.; Mirhashemi, S.M. Effects of nigella sativa on glycemic control, lipid profiles, and biomarkers of inflammatory and oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Phytother. Res. 2020, 34, 2586–2608. [Google Scholar] [CrossRef]
- Jahan, S.; Mozumder, Z.M.; Shill, D.K. Use of herbal medicines during pregnancy in a group of bangladeshi women. Heliyon 2022, 8, e08854. [Google Scholar] [CrossRef]
- Lockyer, S.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Olive leaf phenolics and cardiovascular risk reduction: Physiological effects and mechanisms of action. Nutr. Aging 2012, 1, 125–140. [Google Scholar] [CrossRef]
- Lockyer, S.; Rowland, I.; Spencer, J.P.E.; Yaqoob, P.; Stonehouse, W. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. Eur. J. Nutr. 2017, 56, 1421–1432. [Google Scholar] [CrossRef]
- Olive. Available online: https://medlineplus.gov/druginfo/natural/233.html (accessed on 18 October 2022).
- Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Biological and pharmacological effects of gamma-oryzanol: An updated review of the molecular mechanisms. Curr. Pharm. Des. 2021, 27, 2299–2316. [Google Scholar] [CrossRef]
- Yan, S.; Chen, J.; Zhu, L.; Guo, T.; Qin, D.; Hu, Z.; Han, S.; Zhou, Y.; Akan, O.D.; Wang, J.; et al. Oryzanol attenuates high fat and cholesterol diet-induced hyperlipidemia by regulating the gut microbiome and amino acid metabolism. J. Agric. Food Chem. 2022, 70, 6429–6443. [Google Scholar] [CrossRef]
- Pourrajab, B.; Sohouli, M.H.; Amirinejad, A.; Fatahi, S.; Gaman, M.A.; Shidfar, F. The impact of rice bran oil consumption on the serum lipid profile in adults: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 6005–6015. [Google Scholar] [CrossRef]
- Evans, M.; Rumberger, J.A.; Azumano, I.; Napolitano, J.J.; Citrolo, D.; Kamiya, T. Pantethine, a derivative of vitamin b5, favorably alters total, ldl and non-hdl cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: A triple-blinded placebo and diet-controlled investigation. Vasc. Health Risk Manag. 2014, 10, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Donati, C.; Barbi, G.; Cairo, G.; Prati, G.F.; Degli Esposti, E. Pantethine improves the lipid abnormalities of chronic hemodialysis patients: Results of a multicenter clinical trial. Clin. Nephrol. 1986, 25, 70–74. [Google Scholar] [PubMed]
- Bertolini, S.; Donati, C.; Elicio, N.; Daga, A.; Cuzzolaro, S.; Marcenaro, A.; Saturnino, M.; Balestreri, R. Lipoprotein changes induced by pantethine in hyperlipoproteinemic patients: Adults and children. Int. J. Clin. Pharmacol. Ther. Toxicol. 1986, 24, 630–637. [Google Scholar] [PubMed]
- Harris, W.S.; Bulchandani, S. Why do omega-3 fatty acids lower serum triglycerides? Curr. Opin. Lipidol. 2006, 17, 387–393. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the substantiation of health claims related to epa, dha, dpa and maintenance of normal blood pressure (id 502), maintenance of normal hdl-cholesterol concentrations (id 515), maintenance of normal (fasting) blood concentrations of triglycerides (ID 517), maintenance of normal LDL-cholesterol concentrations (ID 528, 698) and maintenance of joints (ID 503, 505, 507, 511, 518, 524, 526, 535, 537) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009, 7, 1263. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: The strength randomized clinical trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef]
- Zhang, H.J.; Gao, X.; Guo, X.F.; Li, K.L.; Li, S.; Sinclair, A.J.; Li, D. Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clin. Nutr. 2021, 40, 4538–4550. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Saha, S.; Saha, S. The effects of prenatal dietary supplements on blood glucose and lipid metabolism in gestational diabetes mellitus patients: A systematic review and network meta-analysis protocol of randomized controlled trials. PLoS ONE 2022, 17, e0267854. [Google Scholar] [CrossRef]
- Brouns, F.; Theuwissen, E.; Adam, A.; Bell, M.; Berger, A.; Mensink, R.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012, 66, 591–599. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, S.; Liu, F.; Zhang, P.; Muhammad, Z.; Pan, S. Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in c57bl/6 mice. J. Agric. Food Chem. 2019, 67, 11922–11930. [Google Scholar] [CrossRef] [PubMed]
- Fermentable fibers and vitamin b12 dependency. Nutr. Rev. 1991, 49, 119–120. [CrossRef]
- Shaghaghi, M.A.; Abumweis, S.S.; Jones, P.J. Cholesterol-lowering efficacy of plant sterols/stanols provided in capsule and tablet formats: Results of a systematic review and meta-analysis. J. Acad. Nutr. Diet. 2013, 113, 1494–14503. [Google Scholar] [CrossRef] [PubMed]
- Sabeva, N.S.; McPhaul, C.M.; Li, X.; Cory, T.J.; Feola, D.J.; Graf, G.A. Phytosterols differentially influence abc transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells. J. Nutr. Biochem. 2011, 22, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.S.; Pal, S. Margarine phytosterols decrease the secretion of atherogenic lipoproteins from hepg2 liver and caco2 intestinal cells. Atherosclerosis 2005, 182, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wang, G.; Wang, L.; Guo, N. Phytosterol nutritional supplement improves pregnancy and neonatal complications of gestational diabetes mellitus in a double-blind and placebo-controlled clinical study. Food Funct. 2017, 8, 424–428. [Google Scholar] [CrossRef]
- Singh, D.K.; Li, L.; Porter, T.D. Policosanol inhibits cholesterol synthesis in hepatoma cells by activation of amp-kinase. J. Pharmacol Exp. Ther. 2006, 318, 1020–1026. [Google Scholar] [CrossRef]
- Zhai, Z.; Niu, K.M.; Liu, H.; Lin, C.; Tu, Y.; Liu, Y.; Cai, L.; Ouyang, K.; Liu, J. Policosanol alleviates hepatic lipid accumulation by regulating bile acids metabolism in c57bl6/mice through ampk-fxr-tgr5 cross-talk. J. Food Sci. 2021, 86, 5466–5478. [Google Scholar] [CrossRef]
- Gong, J.; Qin, X.; Yuan, F.; Hu, M.; Chen, G.; Fang, K.; Wang, D.; Jiang, S.; Li, J.; Zhao, Y.; et al. Efficacy and safety of sugarcane policosanol on dyslipidemia: A meta-analysis of randomized controlled trials. Mol. Nutr. Food Res. 2018, 62, 1700280. [Google Scholar] [CrossRef]
- Rodriguez, M.D.; Garcia, H. Evaluation of peri- and post-natal toxicity of policosanol in rats. Teratog. Carcinog. Mutagen. 1998, 18, 1–7. [Google Scholar] [CrossRef]
- Rodríguez, M.D.; García, H. Teratogenic and reproductive studies of policosanol in the rat and rabbit. Teratog. Carcinog. Mutagen. 1994, 14, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.B.; Yi, S.H.; Lee, B.H. Purification and characterization of three different types of bile salt hydrolases from bifidobacterium strains. J. Dairy Sci. 2004, 87, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Lee, Y.; Kang, H.J.; Ju, J.; Ji, Y.; Park, H.; Lee, H.; Holzapfel, W.H. Two putative probiotic strains improve diet-induced hypercholesterolemia through modulating intestinal cholesterol uptake and hepatic cholesterol efflux. J. Appl. Microbiol. 2022, 132, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zheng, J.; Zong, X.; Yang, X.; Zhang, Y.; Man, C.; Jiang, Y. Preventive effect and molecular mechanism of lactobacillus rhamnosus jl1 on food-borne obesity in mice. Nutrients 2021, 13, 3989. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Liu, Z.; Wang, H. The effect of probiotics on the serum lipid levels in non-obese healthy adults with hyperlipidemia: A systematic review and meta-analysis of randomized controlled trials. Nutr. Hosp. 2022, 39, 157–170. [Google Scholar] [CrossRef]
- Probiotics Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/ (accessed on 9 December 2022).
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Statins: Drug Safety Communication–FDA Requests Removal of Strongest Warning Against Using Cholesterol-Lowering Statins during Pregnancy; FDA: Silver Spring, MD, USA, 2021.
- Banach, M.; Bruckert, E.; Descamps, O.S.; Ellegard, L.; Ezhov, M.; Foger, B.; Fras, Z.; Kovanen, P.T.; Latkovskis, G.; Marz, W.; et al. The role of red yeast rice (ryr) supplementation in plasma cholesterol control: A review and expert opinion. Atheroscler. Suppl. 2019, 39, e1–e8. [Google Scholar] [CrossRef]
- Ahn, J.; Cho, I.; Kim, S.; Kwon, D.; Ha, T. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J. Hepatol. 2008, 49, 1019–1028. [Google Scholar] [CrossRef]
- Dong, W.; Wang, X.; Bi, S.; Pan, Z.; Liu, S.; Yu, H.; Lu, H.; Lin, X.; Wang, X.; Ma, T.; et al. Inhibitory effects of resveratrol on foam cell formation are mediated through monocyte chemotactic protein-1 and lipid metabolism-related proteins. Int. J. Mol. Med. 2014, 33, 1161–1168. [Google Scholar] [CrossRef]
- Resveratrol. Available online: https://medlineplus.gov/druginfo/natural/307.html (accessed on 18 October 2022).
- Simental-Mendia, L.E.; Guerrero-Romero, F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo-controlled trial. Nutrition 2019, 58, 7–10. [Google Scholar] [CrossRef]
- Cao, X.; Liao, W.; Xia, H.; Wang, S.; Sun, G. The effect of resveratrol on blood lipid profile: A dose-response meta-analysis of randomized controlled trials. Nutrients 2022, 14, 3755. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.T.; Liu, S.Y.; Kuang, Y.J.; Jiang, Z.M.; Lin, Y.; Xie, Z.S.; Liu, E.H. Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. J. Ethnopharmacol. 2022, 264, 113380. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Wang, J.; Chen, K.; Li, Q.; Ping, Z.; Xue, R.; Zhang, S. Effects of sea buckthorn (Hippophae rhamnoides L.) on factors related to metabolic syndrome: A systematic review and meta-analysis of randomized controlled trial. Phytother. Res. 2022, 36, 4101–4114. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Zhao, P.; Qin, G.; Tang, S.; Li, B.; Zhang, J.; Peng, L. Genotoxicity and teratogenicity of seabuckthorn (Hippophae rhamnoides L.) berry oil. Drug Chem. Toxicol. 2020, 43, 391–397. [Google Scholar] [CrossRef]
- Xiao, P.; Ji, H.; Ye, Y.; Zhang, B.; Chen, Y.; Tian, J.; Liu, P.; Chen, L.; Du, Z. Dietary silymarin supplementation promotes growth performance and improves lipid metabolism and health status in grass carp (Ctenopharyngodon idellus) fed diets with elevated lipid levels. Fish Physiol. Biochem. 2017, 43, 245–263. [Google Scholar] [CrossRef]
- Wang, L.; Rotter, S.; Ladurner, A.; Heiss, E.H.; Oberlies, N.H.; Dirsch, V.M.; Atanasov, A.G. Silymarin constituents enhance abca1 expression in thp-1 macrophages. Molecules 2015, 21, 55. [Google Scholar] [CrossRef]
- Soleymani, S.; Ayati, M.H.; Mansourzadeh, M.J.; Namazi, N.; Zargaran, A. The effects of silymarin on the features of cardiometabolic syndrome in adults: A systematic review and meta-analysis. Phytother. Res. 2022, 36, 842–856. [Google Scholar] [CrossRef]
- Milk Thistle. August 2022. Available online: https://www.nccih.nih.gov/health/milk-thistle (accessed on 9 December 2022).
- Li, T.T.; Tong, A.J.; Liu, Y.Y.; Huang, Z.R.; Wan, X.Z.; Pan, Y.Y.; Jia, R.B.; Liu, B.; Chen, X.H.; Zhao, C. Polyunsaturated fatty acids from microalgae spirulina platensis modulates lipid metabolism disorders and gut microbiota in high-fat diet rats. Food Chem. Toxicol. 2019, 131, 110558. [Google Scholar] [CrossRef]
- Hatami, E.; Ghalishourani, S.S.; Najafgholizadeh, A.; Pourmasoumi, M.; Hadi, A.; Clark, C.C.; Assaroudi, M.; Salehi-Sahlabadi, A.; Joukar, F.; Mansour-Ghanaei, F. The effect of spirulina on type 2 diabetes: A systematic review and meta-analysis. J. Diabetes Metab. Disord. 2021, 20, 883–892. [Google Scholar] [CrossRef]
- Macchi, C.; Greco, M.F.; Ferri, N.; Magni, P.; Arnoldi, A.; Corsini, A.; Sirtori, C.R.; Ruscica, M.; Lammi, C. Impact of soy beta-conglycinin peptides on pcsk9 protein expression in hepg2 cells. Nutrients 2021, 14, 193. [Google Scholar] [CrossRef]
- Cho, S.J.; Juillerat, M.A.; Lee, C.H. Cholesterol lowering mechanism of soybean protein hydrolysate. J. Agric. Food Chem. 2007, 55, 10599–10604. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.M. Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J. Nutr. 1995, 125, 606S–611S. [Google Scholar] [CrossRef] [PubMed]
- Butteiger, D.N.; Hibberd, A.A.; McGraw, N.J.; Napawan, N.; Hall-Porter, J.M.; Krul, E.S. Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in golden syrian hamsters. J. Nutr. 2016, 146, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Leccese, M.; Palumbo, G.; De Nigris, F.; Chiariello, P.; Zuliani, P.; Somma, P.; Di Loreto, M.; De Matteis, C.; Cacciatore, F.; et al. Effects of vitamin e and hmg-coa reductase inhibition on cholesteryl ester transfer protein and lecithin-cholesterol acyltransferase in hypercholesterolemia. Coron. Artery Dis. 1998, 9, 257–264. [Google Scholar] [CrossRef]
- Li, F.; Tan, W.; Kang, Z.; Wong, C.W. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors. Atherosclerosis 2010, 211, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Head, B. Vitamin e: How much is enough, too much and why! Free Radic. Biol. Med. 2021, 177, 212–225. [Google Scholar] [CrossRef]
- Zuo, S.; Wang, G.; Han, Q.; Xiao, H.; Santos, H.O.; Rodriguez, D.A.; Khani, V.; Tang, J. The effects of tocotrienol supplementation on lipid profile: A meta-analysis of randomized controlled trials. Complement Ther. Med. 2020, 52, 102450. [Google Scholar] [CrossRef] [PubMed]
- Saremi, A.; Arora, R. Vitamin e and cardiovascular disease. Am. J. Ther. 2010, 17, e56–e65. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Yuan, Y.; Wang, L.; Xin, Q.; Wang, Y.; Shi, W.; Miao, Y.; Leng, S.X.; Chen, K.; Cong, W.; et al. Red yeast rice preparations reduce mortality, major cardiovascular adverse events, and risk factors for metabolic syndrome: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 744928. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, Q.; Chen, K.; Zou, S.; Shu, S.; Lu, C.; Wang, S.; Jiang, Y.; Fan, C.; Luo, Y. Red yeast rice for hyperlipidemia: A meta-analysis of 15 high-quality randomized controlled trials. Front. Pharmacol. 2021, 12, 819482. [Google Scholar] [CrossRef]
- Sungthong, B.; Yoothaekool, C.; Promphamorn, S.; Phimarn, W. Efficacy of red yeast rice extract on myocardial infarction patients with borderline hypercholesterolemia: A meta-analysis of randomized controlled trials. Sci. Rep. 2020, 10, 2769. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 2018, 16, e05368. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 esc guidelines on cardiovascular disease prevention in clinical practice. Eur. J. Prev. Cardiol. 2022, 29, 5–115. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Banach, M. Effect of garlic on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 2016, 32, 33–40. [Google Scholar] [CrossRef]
- Matsumoto, S.; Nakanishi, R.; Li, D.; Alani, A.; Rezaeian, P.; Prabhu, S.; Abraham, J.; Fahmy, M.A.; Dailing, C.; Flores, F.; et al. Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with metabolic syndrome in a prospective randomized double-blind study. J. Nutr. 2016, 146, 427S–432S. [Google Scholar] [CrossRef]
- Shaikh, K.; Kinninger, A.; Cherukuri, L.; Birudaraju, D.; Nakanishi, R.; Almeida, S.; Jayawardena, E.; Shekar, C.; Flores, F.; Hamal, S.; et al. Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with diabetes: A randomized, double-blind, placebo-controlled study. Exp. Ther. Med. 2020, 19, 1457–1461. [Google Scholar] [CrossRef]
- Ben Salem, M.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr. 2015, 70, 441–453. [Google Scholar] [CrossRef]
- Henning, S.M.; Fajardo-Lira, C.; Lee, H.W.; Youssefian, A.A.; Go, V.L.; Heber, D. Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutr. Cancer 2003, 45, 226–235. [Google Scholar] [CrossRef]
- Busnelli, M.; Manzini, S.; Sirtori, C.R.; Chiesa, G.; Parolini, C. Effects of vegetable proteins on hypercholesterolemia and gut microbiota modulation. Nutrients 2018, 10, 1249. [Google Scholar] [CrossRef]
- Blanco Mejia, S.; Messina, M.; Li, S.S.; Viguiliouk, E.; Chiavaroli, L.; Khan, T.A.; Srichaikul, K.; Mirrahimi, A.; Sievenpiper, J.L.; Kris-Etherton, P.; et al. A meta-analysis of 46 studies identified by the fda demonstrates that soy protein decreases circulating ldl and total cholesterol concentrations in adults. J. Nutr. 2019, 149, 968–981. [Google Scholar] [CrossRef]
- Simental-Mendia, L.E.; Gotto, A.M., Jr.; Atkin, S.L.; Banach, M.; Pirro, M.; Sahebkar, A. Effect of soy isoflavone supplementation on plasma lipoprotein(a) concentrations: A meta-analysis. J. Clin. Lipidol. 2018, 12, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Zhang, Y.; Yu, K. Phytosterol compositions of enriched products influence their cholesterol-lowering efficacy: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2019, 73, 1579–1593. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Maki, K.C.; Orringer, C.; Jones, E.P.; Kris-Etherton, H.P.; Sikand, G.; La Forge, R.; Daniels, S.R.; Wilson, D.P.; Morris, P.B.; et al. National lipid association recommendations for patient-centered management of dyslipidemia: Part 2. J. Clin. Lipidol. 2015, 9 (Suppl. S6), S1-122.e1. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the substantiation of health claims related to dietary fibre and maintenance of normal blood cholesterol concentrations (id 747, 750, 811) pursuant to article 13(1) of regulation (ec) no 1924/2006. EFSA J. 2015, 7, 1255. [Google Scholar] [CrossRef]
- Soltani, M.D.; Meftahizadeh, H.; Barani, M.; Rahdar, A.; Hosseinikhah, S.M.; Hatami, M.; Ghorbanpour, M. Guar (Cyamopsis tetragonoloba L.) plant gum: From biological applications to advanced nanomedicine. Int. J. Biol. Macromol. 2021, 193, 1972–1985. [Google Scholar] [CrossRef]
- Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef]
- Budoff, M.J.; Bhatt, D.L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J.B.; Le, V.T.; May, H.T.; Shaikh, K.; Shekar, C.; Roy, S.K.; et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: Final results of the evaporate trial. Eur. Heart J. 2020, 41, 3925–3932. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Q.; Liao, X.; Elbelt, U.; Weylandt, K.H. The effects of omega-3 fatty acids in type 2 diabetes: A systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fat. Acids 2022, 182, 102456. [Google Scholar] [CrossRef]
- Saito, Y.; Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of epa on coronary artery disease in hypercholesterolemic patients with multiple risk factors: Sub-analysis of primary prevention cases from the japan epa lipid intervention study (jelis). Atherosclerosis 2008, 200, 135–140. [Google Scholar] [CrossRef]
- D’Andrea, E.; Hey, S.P.; Ramirez, C.L.; Kesselheim, A.S. Assessment of the role of niacin in managing cardiovascular disease outcomes: A systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e192224. [Google Scholar] [CrossRef]
- Sahebkar, A.; Reiner, Ž.; Simental-Mendia, L.E.; Ferretti, G.; Cicero, A.F. Effect of extended-release niacin on plasma lipoprotein(a) levels: A systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism 2016, 65, 1664–1678. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Withdrawal of approval of indications related to the coadministration with statins in applications for niacin extended-release tablets and fenofibric acid delayed-release capsules. Fed. Regist. 2016, 81, 22612–22613. [Google Scholar]
- European Medicines Agency Confirms Recommendation to Suspend Tredaptive, Pelzont and Trevaclyn. 2013. Available online: https://www.ema.europa.eu/en/news/european-medicines-agency-confirms-recommendation-suspend-tredaptive-pelzont-trevaclyn (accessed on 12 December 2022).
- DiNicolantonio, J.J. Coq10 and l-carnitine for statin myalgia? Expert. Rev. Cardiovasc. Ther. 2012, 10, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Serban, M.C.; Sahebkar, A.; Mikhailidis, D.P.; Toth, P.P.; Jones, S.R.; Muntner, P.; Blaha, M.J.; Andrica, F.; Martin, S.S.; Borza, C.; et al. Impact of l-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2016, 6, 19188. [Google Scholar] [CrossRef]
- Salonen, R.M.; Nyyssönen, K.; Kaikkonen, J.; Porkkala-Sarataho, E.; Voutilainen, S.; Rissanen, T.H.; Tuomainen, T.P.; Valkonen, V.P.; Ristonmaa, U.; Lakka, H.M.; et al. Six-year effect of combined vitamin c and e supplementation on atherosclerotic progression: The antioxidant supplementation in atherosclerosis prevention (asap) study. Circulation 2003, 107, 947–953. [Google Scholar] [CrossRef]
- Akbari, M.; Tamtaji, O.R.; Lankarani, K.B.; Tabrizi, R.; Dadgostar, E.; Haghighat, N.; Kolahdooz, F.; Ghaderi, A.; Mansournia, M.A.; Asemi, Z. The effects of resveratrol on lipid profiles and liver enzymes in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2020, 19, 25. [Google Scholar] [CrossRef]
- Khalili, L.; Nammi, S. The effects of curcumin supplementation on metabolic biomarkers and body mass index in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Curr. Pharmacol. Des. 2022, 28, 1911–1925. [Google Scholar] [CrossRef]
- Altobelli, E.; Angeletti, P.M.; Marziliano, C.; Mastrodomenico, M.; Giuliani, A.R.; Petrocelli, R. Potential therapeutic effects of curcumin on glycemic and lipid profile in uncomplicated type 2 diabetes-a meta-analysis of randomized controlled trial. Nutrients 2021, 13, 404. [Google Scholar] [CrossRef]
- Mahdi, G.S. Chromium deficiency might contribute to insulin resistance, type 2 diabetes mellitus, dyslipidaemia, and atherosclerosis. Diabet. Med. 1996, 13, 389–390. [Google Scholar]
- Warden, B.A.; Guyton, J.R.; Kovacs, A.C.; Durham, J.A.; Jones, L.K.; Dixon, D.L.; Jacobson, T.A.; Duell, P.B. Assessment and management of statin-associated muscle symptoms (sams): A clinical perspective from the national lipid association. J. Clin. Lipidol. 2022, 17, 19–39. [Google Scholar] [CrossRef]
- Alehagen, U.; Aaseth, J.; Alexander, J.; Johansson, P. Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme q10 for four years: A validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly. PLoS ONE 2018, 13, e0193120. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Johansson, P.; Björnstedt, M.; Rosén, A.; Dahlström, U. Cardiovascular mortality and n-terminal-probnp reduced after combined selenium and coenzyme q10 supplementation: A 5-year prospective randomized double-blind placebo-controlled trial among elderly swedish citizens. Int. J. Cardiol. 2013, 167, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- AHA eStaff. What is the Mediterranean Diet? 2020. Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/mediterranean-diet#:~:text=A%20Mediterranean-style%20diet%20typically%20includes%3A%201%20plenty%20of,fish%20and%20poultry%20in%20low%20to%20moderate%20amounts (accessed on 1 February 2023).
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 acc/aha guideline on the primary prevention of cardiovascular disease: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The effect of the mediterranean diet on metabolic health: A systematic review and meta-analysis of controlled trials in adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvado, J.; Ros, E.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; Lamuela-Raventós, R.M.; Schröder, H.; et al. A provegetarian food pattern and reduction in total mortality in the prevención con dieta mediterránea (predimed) study. Am. J. Clin. Nutr. 2014, 100, 320s–328s. [Google Scholar] [CrossRef]
- Tang, C.; Wang, X.; Qin, L.Q.; Dong, J.Y. Mediterranean diet and mortality in people with cardiovascular disease: A meta-analysis of prospective cohort studies. Nutrients 2021, 13, 2623. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Chaimani, A.; Cipriani, A.S.; Davis, J.M.; Furukawa, T.A.; Salanti, G. Network meta-analyses should be the highest level of evidence in treatment guidelines. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 477–480. [Google Scholar] [CrossRef]
- Laffin, L.J.; Bruemmer, D.; Garcia, M.; Brennan, D.M.; McErlean, E.; Jacoby, D.S.; Michos, E.D.; Ridker, P.M.; Wang, T.Y.; Watson, K.E.; et al. Comparative effects of low-dose rosuvastatin, placebo and dietary supplements on lipids and inflammatory biomarkers. J. Am. Coll. Cardiol. 2022, 81, 1–12. [Google Scholar] [CrossRef]
Nutraceutical | Class | Level of Evidence | Mechanism of Action | Daily Dose | Lipid Lowering Effect | Safety | Drug Interactions |
---|---|---|---|---|---|---|---|
Anthocyanins | IIb | A | Downregulates the mRNA of SREBP-1c and fatty acid synthase, resulting in less fat accumulation in adipocytes [17] | 100 to 450 mg [18] | LDL-C: −5 to −10% [16] | Well tolerated [16] Precautions during pregnancy (polyhydramnios) [19] | No known drug interactions [16] |
Artichoke Leaf Extract | IIa | A | Inhibit HMG-CoA reductase [16,20], induce pathways involving SREBP and ACAT, [20] increase excretion of bile acids [21] | 500 to 2800 mg [21] | LDL-C: −5 to −15% [16] | GI discomfort, skin reactions, and asthma exacerbations [16,22] Insufficient data in pregnant or breastfeeding patients [22] | Antidiabetic drugs, antihypertensive drugs, and CYP2B6 and CPY2C19 inducers and inhibitors [22] |
Berberine | I | A | PCSK9-I [23], upregulates the hepatic LDL receptor by activing the Jun amino-terminal kinase and extracellular signal regulated kinases [16,24] Decreased GI reabsorption of cholesterol, enhanced fecal excretion, increased hepatic bile acid formation, [25] activates AMPK, [26,27] inhibits NADPH [28] | 200 to 1500 mg [29] | LDL-C: −15 to −20% [16] | GI symptoms, headaches, and elevated transaminases [30,31] No serious liver injury [16,29,31] Kernicterus in infants [31] Pregnant women, breastfeeding mothers, and infants should avoid [22] | Anticoagulants, anti- platelets, antidiabetic drugs, antihypertensive drugs, central nervous system depressants, cyclosporine, CYP substrates (CYP2C9, CYP2D6, CYP3A4), dextromethorphan, and tacrolimus [22] |
Bergamot | IIa | A | Inhibits HMG-CoA reductase, ACAT [16] pancreatic cholesterol ester hydrolase, [32] activates AMPK, [26] radical-scavenging activity, [16] increases fecal excretion of bile acids [16,33] | 200 to 1500 mg [16] | LDL-C: −7 to −40% [34] | GI discomfort and muscle cramps Little safety data in patients who are pregnant or breastfeeding [22] | Antidiabetic drugs due to hypoglycemia [22] |
L-carnitine | IIb | A | Decreases TG synthesis by decreasing available free fatty acids, increases mitochondrial oxidation of long chain fatty acids, and increases production of apolipoprotein A1 [35] | 500 mg to 6 g [35] | LDL-C: −0.14 mmol/L; 95% CI, –0.22 to −0.06 TG: −0.11 mmol/L; 95% CI, –0.18 to −0.03 [35] | Fishy body odor, minor nausea, or GI discomfort [22,36] Safe in patients who are pregnant or breastfeeding Parenteral carnitine supplementation is safe in infants [22,37,38] | Thyroid hormones and warfarin [22] |
Chromium | III | A | Upregulates gene expression of PPAR-γ and LDL receptor [39] | 40 to 1000 mcg [39] | TC: −0.17 mmol/L; 95% CI, –0.27 to −0.07 [40] | Weight loss, hypoglycemia, anemia, thrombocytopenia, elevated transaminases, elevated creatinine, rhabdomyolysis, and dermatitis Safe during pregnancy and in women breastfeeding [41] | Levothyroxine, insulin, metformin, and other anti- diabetic medication [41] |
Chitosan | IIb | A | Interferes with GI absorption by binding to negatively charged fatty acids and bile acids and disrupting the emulsification of neutrally charged cholesterol [42] | 0.3 to 3 g [43] | LDL-C: −5% [16] | Should not be used in patients with allergies to crustaceans or shellfish [42] GI discomfort Insufficient data on use in patients who are pregnant or breastfeeding [22] | Acyclovir or warfarin [22] |
Coenzyme Q10 | III | A | Reduce oxidative stress and restores coenzyme Q10 [44] | 30 to 250 mg [45] | TG: −0.0032 mmol/L; 95% CI, –0.0063 to −0.0001 [45] HDL-C: 0.03 mmol/L; 95% CI, 0.01 to 0.06 [46] | Insomnia, GI discomfort, dizziness, headache, dyspepsia, photophobia, irritability, and fatigue [47] | Anticoagulants, insulin, and cancer treatments Beta-blockers can inhibit enzyme reactions involving coenzyme Q10 [47] |
Conjugated Linoleic Acid | IIb | A | Promotes cholesterol efflux by increasing expression of ABCA1 and ABCG1 [48] | 0.5 to 7 g [49] | LDL-C: −5% [16] | GI discomfort, hepatotoxicity [50] Safe in patients who are pregnant [51] Insufficient data in patients breastfeeding [22] | Anticoagulants, anti- platelet drugs, and antihypertensives [22] |
Curcumin | IIb | A | Inhibits intestinal NPC1L1 cholesterol transporter expression by inhibiting the SREBP2 transcription factor, [52] downregulates PCSK9 expression, [53] upregulates ABCA1 expression [54] | 50 mg to 6 g [55] | LDL-C: −5% [16] | GI discomfort [22,56] Precautions in patients who are pregnant or breastfeeding as levels greater than dietary levels may be unsafe [22] | Alkylating agents, amlodipine, anticoagulants, anti- platelets, antidiabetic drugs, CYP3A4 substrates, sulfasalazine, tacrolimus, talinolol, tamoxifen, and warfarin [22] |
Soluble Fiber | |||||||
Glucomannan | IIa | A | Inhibits HMG-CoA reductase, reduces GI cholesterol absorption, [57] increases the conversion of bile acids into cholesterol through increased 7-α- hydroxylase activity [16] | 1 to 15 g per day [16,58] | LDL: −0.35 mmol/L; 95% CI, –0.46 to −0.25 [58] | GI discomfort, obstructions in the bowel or esophagus, [22,58] reduce absorption of vitamin E Insufficient data in patients who are pregnant or breastfeeding [22] | May be issues with absorption of medicines [22] |
β-Glucan | IIa | A | Viscosity reduces cholesterol absorption, increases bile acid excretion [59] | 3 to 25 g [16,60] | LDL-C: −0.27 mmol/L; 95% CI, −0.35 to −0.20 [60] | Insufficient data in patients who are pregnant or breastfeeding [22] | antihypertensives and immunosuppressant drugs [22] |
Guar Gum | IIa | A | Prevents GI cholesterol absorption, increases bile acid extraction [61] | 30 to 100 g [61] | LDL-C: −0.45 mmol/L; 95% CI, –0.61 to −0.29 [61] | GI discomfort, obstruction of the esophagus or bowel [22,61] Safe during pregnancy as it treats intrahepatic cholestasis of pregnancy [62] Insufficient data in patients who are breastfeeding [22] | Penicillin, metformin, estradiol, and digoxin May inhibit the absorption of oral drugs [22] |
Psyllium | IIa | A | Reduces GI absorption cholesterol, binds to bile acids [63] | 2 to 20 g per day [63] | LDL-C: −0.33 mmol/L; 95% CI, –0.38 to −0.27 [63] | GI discomfort, mild anaphylactic allergic reactions, bowel obstructions, and esophageal obstructions [16,22,64] Safe during pregnancy or while breastfeeding [65] | Carbamazepine, digoxin, estradiol, lithium, metformin, and olanzapine [22] |
Garlic Extract | IIa | A | Inhibits HMG-CoA reductase, acetyl-CoA synthetase, squalene- monooxygenase, and potentially non- acetylated CoA, [66] GI absorption of fatty acids and cholesterol, increases the excretion of bile acids [16] | 0.3 to 20 g [16,67] | LCL-C: −5 to −10% [16] | GI symptoms, body odor, garlicy breath, aftertaste, and increased bleeding risk [16,68] Possibly unsafe when used in higher levels in patients who are pregnant or breastfeeding [22] | Anti-hypertensive drugs, anti-diabetic drugs, atazanavir, CYP2E1/CYP3A4 inducers and inhibitors, isoniazid, protease inhibitors, saquinavir, tacrolimus, and warfarin [22] |
Green Tea | IIa | A | Inhibits expression of nitric oxide synthase, [69] activates AMPK, inhibits HMG-CoA reductase, [16,69] inhibits the reabsorption of bile acids [16,70] | 100 mg to 20 g per day [16,69] | LCL-C: −5 [16] | GI discomfort, transitory blood pressure elevations, rashes thrombotic thrombocytopenic purpura, hepatotoxicity, hypokalemia, [16,22,69] Higher doses associated with iron and folate deficiency; use with precaution in pregnant patients [16,71] | 5-fluorouracil, adenosine, anti- coagulants, anti- platelets, antidiabetic drugs, statins, beta agonists, bortezomib, carbamazepine, cimetidine, clozapine, lisinopril, lithium, stimulants, verapamil, and valproate acid [22] |
Alpha Lipoic Acid | IIb | A | Modulates fat synthesis, mitochondrial β- oxidation of fat, clearance of TG-rich lipoproteins in the liver, and adipose TG accumulation [72] | 300 to 1800 mg [73] | LDL-C: −0.28 mmol/L; 95% CI, −0.50 to −0.06 [73] | GI discomfort, skin rash, and rarely insulin autoimmune syndrome Safe during pregnancy [74] Insufficient data in patients breastfeeding [22] | Alkylating agents, anticoagulants, anti- platelet drugs, antidiabetic drugs, antitumor antibiotics, and levothyroxine [22] |
Lupin Protein | IIa | A | Inhibits HMG-CoA receptor and PCSK9 activity. Refs. [75,76], upregulates SREBP-2 via phosphatidylinositol-3- kinase, alpha serine/threonine-protein kinase, and glycogen synthase kinase-3 beta kinase pathways [77] | ≤35 g [78] | LDL-C: −5 to −12% [16] | GI discomfort Likely safe to use in patients who are pregnant or breastfeeding [22] | No known interactions with drugs [22] |
Magnesium | III | A | Regulates HMG-CoA reductase expression, upregulates cholesterol 7α-hydroxylase and LCAT expression [79] | 35 to 500 mg [80] | LDL-C: −0.18 mmol/L; 95% CI, –0.30 to −0.05 [81] | GI discomfort, flushing, confusion, hypotension, hyperreflexia, respiratory depression, hyperkalemia, hypocalcemia, pulmonary edema, and cardiac arrest [82,83] Safe during pregnancy at appropriate doses [22,83] Appears safe to use during breastfeeding [22] | Aminoglycosides, antacids, bisphosphonates, calcium channel blockers, digoxin, ketamine, levodopa, carbidopa, potassium-sparing diuretics, quinolones, sulfonylurea, and tetracyclines [22] |
Niacin | IIb | A | Inhibits diacylglycerol acyltransferase-2, which decreases TG synthesis and LDL-C by increasing hepatic apoB degradation, raises HDL-C by stimulating hepatic apolipoprotein A-I production [84] | ≤2 g daily [85,86] | TG: −28.6%; LDL-C: −12.0% [86] | GI hemorrhage, peptic ulcers, myopathy, rhabdomyolysis, gout, flushing, skin lesions, skin infections, lower respiratory infections, and increased incidence of diabetes and hospitalizations for diabetes [85] No restrictions for pregnant or breast feeding patients [87] | Statins, isoniazid, and pyrazinamide [1,88] |
Nigella Sativa | IIb | A | Reduces GI cholesterol absorption, increases biliary excretion, reduces cholesterol synthesis, inhibits lipid oxidation, upregulates LDL receptors [89] | 200 mg to 3 g for powders, capsules, and extracts 1 to 5 mL for oil suspensio ns [90] | LDL-C: −0.48 mmol/L; 95% CI, –0.58 to −0.37 [90] | GI discomfort, elevated alkaline-phosphate, AST, ALT, gamma- glutamyl transferase [89] Safe to use during pregnancy [91] Insufficient data during breastfeeding [22] | anticoagulants, anti- platelets, antidiabetic drugs, antihypertensives, cyclosporine, diuretics, immunosuppressants, and serotonergic drugs [22] |
Olive Extract | IIb | B | Reduces lipid peroxidation, increases bile excretion, and inhibits HMG-CoA reductase and ACAT [92] | 136.2 mg oleuropei n and 6.4 mg hydroxyty rosol [93] | LDL-C: –0.19 ± SD 0.56 mmol/L [93] | No known adverse effects of olive extract No known data on about the levels consumed through olive extract in those who are pregnant or breastfeeding [94] | No known interactions [94] |
Gamma-oryzanol | IIb | A | Inhibits GI absorption, increases excretion of bile acids, inhibits HMG- CoA reductase, inhibits platelet aggregation, [95] alters the gut microbiome [96] | 100 to 300 mg [16,22] | LDL-C: −5 to −10% [16] | No reported side effects [10,97] No safety data on patients who are pregnant or breastfeeding [22] | No known drug interactions [22] |
Pantethine | IIb | B | Inhibits HMG-CoA reductase and acetyl- CoA carboxylase, which are involved in TG synthesis and lipoprotein metabolism [98] | 600 to 1200 mg [98] | LDL-C: −11% [98] | gastrointestinal symptom [98] Safe in children and in patients with chronic kidney disease, including dialysis [99,100] Insufficient data in patients who are pregnant or breastfeeding [22] | No known drug interactions [22] |
Polyunsaturated n-3 Fatty Acids | I | A | Reduces synthesis of hepatic VLDL, endogenous fatty acids, substrates available for TG synthesis, and activity of diacylglycerol acyltransferase or phosphatidic acid phosphohydrolase, which are involved in TG synthesis, promotes β- oxidation of fatty acids and increase phospholipid synthesis [101] | ≤4 g [102,103] | TG: −0.36 mmol/L [104] | GI discomfort, new- onset atrial fibrillation and atrial flutter, fishy aftertaste [103,105] Safe to use in pregnancy [106] Likely safe during breastfeeding [22] | Anticoagulants, anti- platelet drugs, antihypertensives, contraceptives, cyclosporine, and tacrolimus [22] |
Pectin | IIb | B | Decreases GI cholesterol absorption, increases bile acid excretion, [107,108] decreases HMG-CoA reductase, increases cholesterol 7-α- hydroxylase in the liver, modulates gut microbiome [108] | 6 g [107] | LDL-C: −5 to −10% [16] | GI discomfort [107] Precaution in patients who are pregnant (binds to vitamin B12) [109] Safe in patients who are breastfeeding [22] | Digoxin, lovastatin, and tetracyclines [22] |
Phytosterols | IIa | A | Inhibit cholesterol absorption in GI tract by competing with dietary cholesterol in the formation of dietary micelles, decreasing apoB secretion from enterocytes and hepatocytes, increases expression of ABCA1 and ABCG1 level [110,111,112] | 400 mg to 3 g [16,110] | LDL-C: −8 to −16% [16,69] | Well tolerated and safe [16,69] Safe to use in pregnancy [113] Insufficient data on their use in those breastfeeding [22] | No known drug interactions [22] |
Policosanol | IIb | A | Promotes bile acid production and lipolysis via inhibiting the expression of farnesoid X receptor-small heterodimer partner and activating the Takeda G- coupled protein receptor 5-AMPK signaling pathway, which inhibits HMG-CoA reductase activity [114,115] | 5 to 20 mg [116] | LDL-C: −0.71 mmol/L; 95% CI, –1.02 to −0.40 [116] | GI discomfort, tachycardia, myalgia, hypertension, headache, dizziness, somnolence, insomnia, polydipsia, nocturia, dry skin, rashes, and weight gain [116] Safe to use in pregnancy [117,118] Insufficient data in breastfeeding [22] | Antidiabetic drugs, beta-blockers, nitroprusside, and warfarin [22] |
Probiotics | IIb | A | Lactobacillus and Bifidobacterium increase bile acid excretion [119] Lacticaseibacillus decreases NPC1L1 cholesterol transporter expression and increase cholesterol efflux via increased expression of ABCA1 [120] Lactobacillus rhamnosus JL1 activates the AMPK pathway and inhibits PPAR-γ and SREBP-1C gene expression [121] | 1 to 6 g [16,122] | LDL-C: −5% [16] | GI discomfort, infections from yeast Saccharomyces cervisiae Safe in infants and patients who are pregnant or breastfeeding [123] | Insufficient data [16] |
Red Yeast Rice Extract | I | A | HMG-CoA reductase inhibitor [124] | <3 mg of monacolin K) [14] | LDL-C: −15% to −25% [16] | Gastrointestinal discomfort, rashes, and allergic reactions [17,20,21] Formulations with citrinin are nephrotoxic and hepatotoxic [14,20,21] No elevations in transaminases or kidney impairment [14,17,20,21] Precautions with pregnancy [125] Unknown if safe to use during breastfeeding [126] | CYPP450 inducers or inhibitors, antifungals, macrolides, cyclosporine, fibrates, niacin, nefazodone, protease inhibitors, statins, and verapamil [16,126] |
Resveratrol | III | A | Activates silent information regulation 2 homolog 1, suppresses hepatic upregulation of genes associated in lipogenesis and prevent the downregulation of genes involved with lipolysis, [127] suppresses foam cell formation [128] | 250 to 3000 mg [129,130] | LDL-C: −0.147 mmol/L; 95% CI, –0.286 to −0.008 [131] | Increase bleeding Likely safe to consume during pregnancy and breastfeeding provided not consumed from alcohol. In patients with malignancies that grow in response to estrogen, such as breast cancer, uterine cancer, ovarian cancer, it is advised that patients should limit intake [129] | Garlic, ginger, ginkgo, nattokinase, anticoagulants, anti- platelet drugs and those involving the cytochrome P450 system, such as CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2E1, and CYP3A4 [129] |
Sea Buckthorn | IIb | A | Increases expression of PPAR-α, PPAR-γ, and ABCA1, decreases expression of SREBP-2, promotes expression of CPT1A, which is involved in increasing lipolysis and β-oxidation [132] | 0.75 mL [133] | LDL-C: −0.40 mmol/L; 95% CI, –0.76 to −0.04 [133] | Well tolerated Safe to use in pregnancy [134] Little data in patients who breastfeed [22] | Anticoagulants, anti- platelets, and antihypertensives [22] |
Silymarin | IIb | A | Increases lipolysis and β- oxidation via the upregulation of CPT1, [135] increases cholesterol efflux via increases expression of ABCA1 [136] | 140 to 700 mg [137] | LDL-C: −0.27 mmol/L; 95% CI, –0.49 to −0.05 [137] | GI discomfort, headache, ureteric calculi, and hemolytic anemia, transient ischemia attack, myocardial infarction, and cardiovascular death [137] Insufficient data in patients who are pregnant or breastfeeding [138] | Antidiabetic drugs, morphine, tamoxifen, sirolimus, and warfarin [22] |
Spirulina | IIa | A | Activates heme oxygenase-1 (atheroprotective enzyme involved in heme catabolic pathway in endothelial cells), [16,69] antioxidant, anti- inflammatory, and radical-scavenging properties, [16] alters gut microbiome [139] | 1 to 10 g [69] | LDL-C: −5 to −15% [16,69] | GI discomfort, bleeding, rashes, elevated transaminases, and cholestasis [22,140] Little safety data in patients who are pregnant or breastfeeding [22] | Anticoagulants, anti- platelets, antidiabetic drugs, and immunosuppressant drugs [22] |
Soybean Protein | IIa | A | Inhibits HMG-CoA reductase, reduces PCSK9 protein, [141] increases bile acid excretion, cholesterol synthesis inhibition, increases transcription of the LDL receptor, [142,143] increases apoB receptor activity, decreases hepatic synthesis of cholesterol and lipoprotein secretion, [143] alters the gut microbiome [144] | 25 to 120 mg [16,69] | LDL-C: −3 to −10% [16] | GI discomfort, menstrual complaints, headaches, dizziness, and rashes [22] Chronic use of higher doses of soy protein may affect fertility and thyroid function [16,69] Decreased absorption of divalent and trivalent metals, such as calcium, copper, iron, magnesium, and zinc [143] Avoid during pregnancy Use of soy is likely safe during breastfeeding [22] | Antidiabetic drugs, antihypertensive drugs, diuretics, estrogens, progesterone, tamoxifen, levothyroxine, monoamine oxidase inhibitors, and warfarin [22] |
Vitamin E | IIb | A | Inhibits HMG-CoA reductase, promotes scavenging for free radicals, and activates PPAR -α, -β, and -γ receptors [145,146,147] | 400 to 800 UI [16] | HDL-C: 0.15 mmol/L; 95% CI, 0.07 to 0.23 [148] | Bleeding, heart failure, hemorrhagic cerebral vascular accidents, prostate cancer, and all- cause mortality [147,149] Safe in pregnancy [106] Likely safe during breastfeeding [22] | Alkylating agents, anticoagulants, anti- platelets, cyclosporine, CYP3A4 substrates, niacin, and selumetinib [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, B.; Sikand, G.; Dineen, E.H.; Malik, S.; Barseghian El-Farra, A. Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia. J. Clin. Med. 2023, 12, 3414. https://doi.org/10.3390/jcm12103414
Cheung B, Sikand G, Dineen EH, Malik S, Barseghian El-Farra A. Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia. Journal of Clinical Medicine. 2023; 12(10):3414. https://doi.org/10.3390/jcm12103414
Chicago/Turabian StyleCheung, Brian, Geeta Sikand, Elizabeth H. Dineen, Shaista Malik, and Ailin Barseghian El-Farra. 2023. "Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia" Journal of Clinical Medicine 12, no. 10: 3414. https://doi.org/10.3390/jcm12103414
APA StyleCheung, B., Sikand, G., Dineen, E. H., Malik, S., & Barseghian El-Farra, A. (2023). Lipid-Lowering Nutraceuticals for an Integrative Approach to Dyslipidemia. Journal of Clinical Medicine, 12(10), 3414. https://doi.org/10.3390/jcm12103414