Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Intervention and Study Procedures
2.3. Blood Samples and Analysis of Fatty Acids
2.4. Panel of Fatty Acids
2.5. Study Outcomes
2.6. Statistical Analysis
3. Results
3.1. Baseline Fatty Acid Profile
3.2. Changes of Fatty Acid Profile in the DHA and Placebo Groups
3.3. Safety and Adherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Hanssens, L.S.; Duchateau, J.; Casimir, G.J. CFTR Protein: Not just a chloride channel? Cells 2021, 10, 2844. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.d.C.e.; Petry, L.M.; Germani, P.A.V.D.S.; Xavier, L.F.; de Barros, P.B.; Meneses, A.D.S.; Prestes, L.M.; Bittencourt, L.B.; Pieta, M.P.; Friedrich, F.; et al. Translational research in cystic fibrosis: From bench to beside. Front. Pediatr. 2022, 10, 881470. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; Mischler, E.H.; Engle, M.J.; Brown, D.J.; Lau, S.M. Fatty acid abnormalities in cystic fibrosis. Pediatr. Res. 1985, 19, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Jumpsen, J.A.; Brown, N.E.; Thomson, A.B.; Man, S.P.; Goh, Y.K.; Ma, D.; Clandinin, M. Fatty acids in blood and intestine following docosahexaenoic acid supplementation in adults with cystic fibrosis. J. Cyst. Fibros. 2006, 5, 77–84. [Google Scholar] [CrossRef]
- Freedman, S.D.; Blanco, P.G.; Zaman, M.M.; Shea, J.C.; Ollero, M.; Hopper, I.K.; Weed, D.A.; Gelrud, A.; Regan, M.M.; Laposata, M.; et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 2004, 350, 560–569. [Google Scholar] [CrossRef]
- Roulet, M.; Frascarolo, P.; Rappaz, I.; Pilet, M. Essential fatty acid deficiency in well nourished young cystic fibrosis patients. Eur. J. Pediatr. 1997, 156, 952–956. [Google Scholar] [CrossRef]
- Strandvik, B. Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot. Essent. Fatty Acids 2010, 83, 121–129. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Van Biervliet, J.P.; Vande Velde, S.; Robberecht, E. Serum zinc concentrations in cystic fibrosis patients aged above 4 years: A cross-sectional evaluation. Biol. Trace Elem. Res. 2007, 119, 19–26. [Google Scholar] [CrossRef]
- Galabert, C.; Filliat, M.; Chazalette, J.P. Fatty-acid composition of serum-lecithins in cystic-fibrosis patients without steatorrhoea. Lancet 1978, 2, 903. [Google Scholar] [CrossRef]
- Hubbard, V.S.; Dunn, G.D.; di Sant’Agnese, P.A. Abnormal fatty-acid composition of plasma-lipids in cystic fibrosis. A primary or a secondary defect? Lancet 1977, 2, 1302–1304. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, V.; Dab, I.; Crokaert, R.; Vis, H.L. Long chain non-esterified fatty acid pattern in plasma of cystic fibrosis patients and their parents. Pediatr. Res. 1980, 14, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; McCarron, A.; Rout-Pitt, N.; Donnelley, M.; Parsons, D.W.; Hryciw, D.H. Essential fatty acid deficiency in cystic fibrosis disease progression: Role of genotype and sex. Nutrients 2022, 14, 4666. [Google Scholar] [CrossRef] [PubMed]
- Seegmiller, A.C. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: Biochemical mechanisms and clinical implications. Int. J. Mol. Sci. 2014, 15, 16083–16099. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C. Al-Turkmani MR, Savaille JE, Alturkmani R, Katrangi W, Cluette-Brown JE; et al. Cell culture models demonstrate that CFTR dysfunction leads to defective fatty acid composition and metabolism. J. Lipid. Res. 2008, 49, 1692–1700. [Google Scholar] [CrossRef]
- Rogiers, V.; Dab, I.; Michotte, Y.; Vercruysse, A.; Crokaert, R.; Vis, H.L. Abnormal fatty acid turnover in the phospholipids of the red blood cell membranes of cystic fibrosis patients (in vitro study). Pediatr. Res. 1984, 18, 704–709. [Google Scholar] [CrossRef]
- Lloyd-Still, J.D.; Johnson, S.B.; Holman, R.T. Essential fatty acid status and fluidity of plasma phospholipids in cystic fibrosis infants. Am. J. Clin. Nutr. 1991, 54, 1029–1035. [Google Scholar] [CrossRef]
- Rogiers, V.; Crokaert, R.; Vis, H.L. Altered phospholipid composition and changed fatty acid pattern of the various phospholipid fractions of red cell membranes of cystic fibrosis children with pancreatic insufficiency. Clin. Chim. Acta. 1980, 105, 105–115. [Google Scholar] [CrossRef]
- Strandvik, B. Relation between essential fatty acid metabolism and gastrointestinal symptoms in cystic fibrosis. Acta Paediatr. Scand. Suppl. 1989, 363, 58–63. [Google Scholar] [CrossRef]
- Strandvik, B.; Brönnegård, M.; Gilljam, H.; Carlstedt-Duke, J. Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis. Scand. J. Gastroenterol. 1988, 143, 1–4. [Google Scholar] [CrossRef]
- Freedman, S.D.; Katz, M.H.; Parker, E.M.; Laposata, M.; Urman, M.Y.; Alvarez, J.G. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(-/-) mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13995–14000. [Google Scholar] [CrossRef]
- Guilbault, C.; Wojewodka, G.; Saeed, Z.; Hajduch, M.; Matouk, E.; De Sanctis, J.B.; Radzioch, D. Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am. J. Respir. Cell. Mol. Biol. 2009, 41, 100–106. [Google Scholar] [CrossRef]
- Njoroge, S.W.; Laposata, M.; Boyd, K.L.; Seegmiller, A.C. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases. J. Nutr. Biochem. 2015, 26, 36–43. [Google Scholar] [CrossRef]
- Christophe, A.; Robberecht, E.; De Baets, F.; Franckx, H. Increase of long chain omega-3 fatty acids in the major serum lipid classes of patients with cystic fibrosis. Ann. Nutr. Metab. 1992, 36, 304–312. [Google Scholar] [CrossRef]
- Clandinin, M.T.; Zuberbuhler, P.; Brown, N.E.; Kielo, E.S.; Goh, Y.K. Fatty acid pool size in plasma lipoprotein fractions of cystic fibrosis patients. Am. J. Clin. Nutr. 1995, 62, 1268–1275. [Google Scholar] [CrossRef]
- Pastor, Ó.; Guzmán-Lafuente, P.; Serna, J.; Muñoz-Hernández, M.; López Neyra, A.; García-Rozas, P.; García-Seisdedos, D.; Alcázar, A.; Lasunción, M.A.; Busto, R.; et al. A comprehensive evaluation of omega-3 fatty acid supplementation in cystic fibrosis patients using lipidomics. J. Nutr. Biochem. 2019, 63, 197–205. [Google Scholar] [CrossRef]
- Lloyd-Still, J.D.; Powers, C.A.; Hoffman, D.R.; Boyd-Trull, K.; Lester, L.A.; Benisek, D.C.; Arterburn, L.M. Bioavailability and safety of a high dose of docosahexaenoic acid triacylglycerol of algal origin in cystic fibrosis patients: A randomized, controlled study. Nutrition 2006, 22, 36–46. [Google Scholar] [CrossRef]
- López-Neyra, A.; Suárez, L.; Muñoz, M.; de Blas, A.; de Valbuena, M.R.; Garriga, M.; Calvo, J.; Ribes, C.; Moreno, R.G.; Máiz, L.; et al. Long-term docosahexaenoic acid (DHA) supplementation in cystic fibrosis patients: A randomized, multi-center, double-blind, placebo-controlled trial. Prostaglandins Leukot. Essent. Fatty Acids 2020, 162, 102186. [Google Scholar] [CrossRef]
- Alicandro, G.; Faelli, N.; Gagliardini, R.; Santini, B.; Magazzù, G.; Biffi, A.; Risé, P.; Galli, C.; Tirelli, A.; Loi, S.; et al. A randomized placebo-controlled study on high-dose oral algal docosahexaenoic acid supplementation in children with cystic fibrosis. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 163–169. [Google Scholar] [CrossRef]
- Teopompi, E.; Risé, P.; Pisi, R.; Buccellati, C.; Aiello, M.; Pisi, G.; Tripodi, C.; Fainardi, V.; Clini, E.; Chetta, A.; et al. Arachidonic acid and docosahexaenoic acid metabolites in the airways of adults with cystic fibrosis: Effect of docosahexaenoic acid supplementation. Front. Pharmacol. 2019, 23, 10:938. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Van Biervliet, J.P.; Robberecht, E.; Christophe, A. Docosahexaenoic acid trials in cystic fibrosis: A review of the rationale behind the clinical trials. J. Cyst. Fibros 2005, 4, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.; Stackhouse, C. Omega-3 fatty acid supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2020, 4, CD002201. [Google Scholar] [CrossRef] [PubMed]
- Brudy Technology SL. Use of DHA for Treating a Pathology Associated with Cellular Oxidative Damage. European Patent EP 1962825 B1, 02 April 2014. [Google Scholar]
- Gasso, F.; Bogdanov, P.; Domingo, J.C. Docosahexaenoic acid improves endogenous antioxidant defense in ARPE-19 cells. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5932. [Google Scholar]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid. Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Parsons, H.G.; O’Loughlin, E.V.; Forbes, D.; Cooper, D.; Gall, D.G. Supplemental calories improve essential fatty acid deficiency in cystic fibrosis patients. Pediatr. Res. 1988, 24, 353–356. [Google Scholar] [CrossRef]
- Vandebrouck, C.; Ferreira, T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine 2020, 61, 103038. [Google Scholar] [CrossRef]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83 (Suppl. 6), 1467S–1476S. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Devos, M.; Delhaye, T.; Van Biervliet, J.P.; Robberecht, E.; Christophe, A. Oral DHA supplementation in DeltaF508 homozygous cystic fibrosis patients. Prostaglandins Leukot. Essent. Fatty Acids 2008, 78, 109–115. [Google Scholar] [CrossRef]
- Risé, P.; Eligini, S.; Ghezzi, S.; Colli, S.; Galli, C. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot. Essent. Fatty Acids 2007, 76, 363–369. [Google Scholar] [CrossRef]
- Sun, Q.; Ma, J.; Campos, H.; Hankinson, S.E.; Hu, F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am. J. Clin. Nutr. 2007, 86, 74–81. [Google Scholar] [CrossRef]
- Gunes, O.; Tascilar, E.; Sertoglu, E.; Tas, A.; Serdar, M.A.; Kaya, G.; Kayadibi, H.; Ozcan, O. Associations between erythrocyte membrane fatty acid compositions and insulin resistance in obese adolescents. Chem. Phys. Lipids 2014, 184, 69–75. [Google Scholar] [CrossRef]
Variables | Patients with Cystic Fibrosis (n = 22) | Controls (n = 15) | p Value | |
---|---|---|---|---|
DHA Group (n = 11) | Placebo Group (n = 11) | |||
Gender, male, n (%) | 7 (63.6) | 3 (23.3) | 9 (60) | 0.160 |
Age, years, mean (SD) | 10.9 (3.2) | 12.5 (3.8) | 10.9 (2.7) | 0.381 |
Weight, kg, mean (SD) | 39.7 (17.4) | 43.4 (14.6) | 41.5 (17.5) | 0.803 |
Height, cm, mean (SD) | 145.2 (20.2) | 149.3 (19.0) | 143.6 (17.2) | 0.743 |
Body mass index, kg/m2, mean (SD) | 17.9 (2.9) | 19.3 (2.4) | 19.3 (3.8) | 0.501 |
Mutations, n (%) * | ||||
Severe/severe | 7 (63.6) | 5 (45.5) | 0.668 | |
Severe/mild | 3 (27.3) | 4 (36.4) | 1.0 | |
Mild/mild | 1 (9.1) | 2 (18.2) | 1.0 | |
Genotype, n (%) | ||||
ΔF508/ΔF508 | 3 (27.3) | 1 (9.1) | 0.580 | |
ΔF508del/other | 5 (45.5) | 7 (63.6) | 0.668 | |
Other/other | 3 (27.3) | 3 (27.3) | 1.0 | |
Pancreatic insufficiency, n (%) | 7 (63.6) | 5 (45.5) | 0.668 | |
Chronic S. aureus infection, n (%) | 3 (27.3) | 2 (18.2) | 1.0 | |
Chronic P. aeruginosa infection, n (%) | 0 | 1 (9.1) | 1.0 | |
FEV1, %, mean (SD) | 92.36 (9.8) | 97.39 (15.5) | 0.373 |
Fatty Acids | Patients with CF (n = 22) | Controls (n = 15) | p Value |
---|---|---|---|
SFAs, % | 46.78 (1.03) | 47.04 (0.5) | 0.380 |
PA | 20.63 (0.63) | 20.80 (0.80) | 0.477 |
SA | 17.85 (0.82) | 17.68 (0.55) | 0.395 |
MUFAs, % | 21.82 (1.8) | 19.90 (1.2) | 0.001 |
POA | 0.28 (0.11) | 0.22 (0.04) | 0.112 |
CVA | 1.65 (0.28) | 1.46 (0.15) | 0.024 |
OA | 14.03 (1.09) | 12.87 (0.86) | 0.002 |
n-6 PUFAs, % | 27.52 (1.3) | 28.51 (1.7) | 0.051 |
LA | 10.01 (0.85) | 10.64 (0.89) | 0.042 |
DHGLA | 1.81 (0.35) | 1.44 (0.25) | 0.002 |
ARA | 12.23 (0.67) | 12.79 (0.74) | 0.023 |
n-3 PUFAs, % | 3.86 (0.8) | 4.54 (1.1) | 0.033 |
ALA | 0.08 (0.02) | 0.07 (0.02) | 0.797 |
EPA | 0.31 (0.09) | 0.37 (0.20) | 0.232 |
DHA | 2.31 (0.02) | 3.01 (0.8) | 0.002 |
Omega-3 index | 2.71 (0.6) | 3.38 (0.9) | 0.013 |
EFASTI | 1.45 (0.2) | 1.67 (0.15) | <0.001 |
ARA/EPA | 45.1 (16.3) | 48.33 (29.5) | 0.67 |
ARA/DHA | 5.42 (1.5) | 5.02 (0.64) | 0.26 |
AIFAI | 0.37 (0.1) | 0.38 (0.1) | 0.715 |
n-3 PUFAs/LA | 51.46 (23.3) | 64.90 (23.5) | 0.095 |
n-6 PUFAs/LA | 1.75 (0.2) | 1.69 (0.2) | 0.267 |
SCD-18 | 0.79 (0.08) | 0.72 (0.07) | 0.011 |
D5D | 7.04 (1.60) | 9.09 (1.41) | 0.003 |
D6D | 0.18 (0.04) | 0.14 (0.03) | <0.001 |
Elongase 5 | 0.19 (0.08) | 0.21 (0.003) | 0.228 |
Elongase 6 | 0.85 (0.04) | 0.87 (0.05) | 0.278 |
Fatty Acids | Pancreatic Sufficient CF Patients (n = 10) | Pancreatic Insufficient CF Patients (n = 12) | p Value |
---|---|---|---|
SFAs, % | 47.42 (0.63) | 46.26 (1.03) | 0.009 |
PA | 20.62 (0.66) | 20.96 (0.91) | 0.282 |
SA | 18.09 (0.48) | 17.33 (0.34) | <0.001 |
MUFAs, % | 20.76 (1.15) | 22.72 (1.72) | 0.017 |
POA | 0.22 (0.04) | 0.33 (0.12) | 0.048 |
CVA | 1.60 (0.28) | 1.70 (0.29) | 0.496 |
OA | 13.40 (0.84) | 14.56 (1.0) | 0.014 |
n-6 PUFAs, % | 28.22 (0.97) | 26.95 (1.23) | 0.020 |
LA | 10.59 (0.71) | 9.55 (0.67) | 0.004 |
DHGLA | 1.75 (0.41) | 1.86 (0.31) | 0.418 |
ARA | 12.32 (0.70) | 12.16 (0.66) | 0.355 |
n-3 PUFAs, % | 3.60 (0.88) | 4.07 (0.70) | 0.159 |
ALA | 0.064 (0.014) | 0.089 (0.027) | 0.009 |
EPA | 0.26 (0.10) | 0.34 (0.08) | 0.014 |
DHA | 2.31 (0.56) | 2.49 (0.62) | 0.381 |
Omega-3 index | 2.57 (0.63) | 2.83 (0.66) | 0.346 |
EFASTI | 1.54 (0.12) | 1.37 (0.14) | 0.020 |
ARA/EPA | 53.49 (17.47) | 37.29 (9.85) | 0.020 |
ARA/DHA | 5.58 (1.21) | 5.23 (1.62) | 0.417 |
AIFAI | 0.35 (0.04) | 0.39 (0.06) | 0.159 |
n-3 PUFAs/LA | 60.12 (27.67) | 47.53 (14.43) | 0.346 |
n-6 PUFAs/LA | 1.67 (0.14) | 1.82 (0.18) | 0.042 |
SCD-18 | 0.74 (0.06) | 0.84 (0.06) | 0.003 |
D5D | 7.43 (1.95) | 6.72 (1.22) | 0.418 |
D6D | 0.16 (0.04) | 0.19 (0.03) | 0.072 |
Elongase 5 | 0.22 (0.03) | 0.21 (0.03) | 0.321 |
Elongase 6 | 0.88 (0.03) | 0.83 (0.04) | 0.006 |
Fatty Acids | Placebo Group | DHA Group | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline (n = 9) | 6 Months (n = 9) | 12 Months (n = 9) | Baseline (n = 7) | 6 Months (n = 7) | 12 Months (n = 7) | Time * | Treatment † | Interaction ‡ | |
SFAs, % | 47.19 (0.55) | 47.23 (0.85) | 48.51 (2.14) | 46.20 (1.09) | 48.42 (1.53) | 48.23 (1.26) | 0.012 | 0.672 | 0.237 |
PA | 20.87 (0.74) | 20.98 (0.83) | 22.06 (1.76) | 20.74 (0.90) | 21.92 (0.93) | 22.56 (0.61) | 0.001 | 0.164 | 0.364 |
SA | 17.76 (0.41) | 17.82 (0.63) | 17.99 (0.43) | 17.59 (0.68) | 18.01 (0.70) | 17.36 (0.61) | 0.419 | 0.239 | 0.151 |
MUFAs, % | 21.08 (1.23) | 21.80 (0.99) | 21.70 (1.19) | 22.63 (1.87) | 21.53 (2.42) | 21.67 (1.95) | 0.550 | 0.898 | 0.995 |
POA | 0.29 (0.11) | 0.27 (0.06) | 0.28 (0.07) | 0.26 (0.11) | 0.22 (0.07) | 0.25 (0.08) | 0.599 | 0.135 | 0.878 |
CVA | 1.58 (0.2) | 1.51 (0.25) | 1.37 (0.15) | 1.74 (0.34) | 1.41 (0.18) | 1.34 (0.15) | 0.001 | 0.876 | 0.239 |
OA | 13.79 (0.86) | 14.11 (0.83) | 14.18 (1.07) | 14.28 (1.28) | 13.89 (2.16) | 14.32 (1.1) | 0.785 | 0.592 | 0.327 |
n-6 PUFAs, % | 27.86 (1.27) | 27.00 (1.10) | 25.95 (2.71) | 27.21 (1.34) | 23.33 (1.41) | 22.42 (1.23) | <0.0001 | <0.0001 | 0.009 |
LA | 10.17 (0.86) | 9.98 (0.80) | 9.56 (1.23) | 9.60 (0.82) | 9.63 (0.93) | 9.45 (0.67) | 0.349 | 0.569 | 0.980 |
DHGLA | 1.99 (0.36) | 1.88 (0.41) | 1.84 (0.57) | 1.63 (0.26) | 1.39 (0.12) | 1.33 (0.11) | 0.269 | <0.0001 | 0.116 |
ARA | 12.14 (0.67) | 11.79 (0.82) | 11.35 (0.51) | 12.42 (0.77) | 10.20 (0.49) | 9.64 (0.66) | 0.001 | <0.0001 | 0.007 |
n-3 PUFAs, % | 3.85 (0.87) | 3.96 (0.61) | 3.83 (0.78) | 3.95 (0.83) | 6.71 (0.88) | 7.67 (0.99) | <0.001 | <0.001 | <0.001 |
ALA | 0.07 (0.02) | 0.08 (0.04) | 0.09 (0.02) | 0.08 (0.03) | 0.09 (0.02) | 0.08 (0.03) | 0.673 | 0.768 | 0.416 |
EPA | 0.29 (097) | 0.27 (0.84) | 0.33 (0.16) | 0.33 (0.10) | 0.80 (0.24) | 0.66 (0.47) | 0.001 | <0.0001 | 0.002 |
DHA | 2.31 (0.01) | 2.61 (0.44) | 2.51 (0.51) | 2.48 (0.46) | 4.94 (0.59) | 6.10 (0.72) | <0.0001 | <0.0001 | <0.0001 |
Omega-3 index | 2.69 (0.66) | 2.89 (0.49) | 2.85 (0.65) | 2.73 (0.76) | 5.75 (0.82) | 6.75 (0.88) | <0.0001 | <0.0001 | <0.0001 |
ARA/EPA | 45.80 (18.05) | 46.49 (14.17) | 43.56 (23.53) | 41.18 (14.03) | 13.91 (4.77) | 17.68 (9.11) | 0.011 | 0.0008 | 0.017 |
ARA/DHA | 5.38 (1.37) | 4.64 (0.86) | 4.75 (1.11) | 5.64 (1.87) | 2.10 (0.31) | 1.6 (0.18) | <0.0001 | <0.0001 | <0.0001 |
AIFAI | 0.39 (0.04) | 0.41 (0.06) | 0.41 (0.10) | 0.36 (0.06) | 0.70 (0.09) | 0.84 (0.09) | <0.0001 | <0.0001 | <0.0001 |
EFASTI | 1.51 (0.13) | 1.42 (0.09) | 1.38 (0.16) | 1.39 (0.16) | 1.47 (0.34) | 1.40 (0.17) | 0.558 | 0.552 | 0.692 |
n-3 PUFAs/ALA | 61.44 (31.17) | 50.27 (13.7) | 43.12 (12.45) | 43.43 (50.28) | 79.55 (13.65) | 97.45 (34.72) | 0.022 | 0.0006 | 0.0003 |
n-6 PUFAs/LA | 1.74 (0.18) | 1.71 (0.16) | 1.70 (0.15) | 1.85 (0.15) | 1.42 (0.09) | 1.37 (0.10) | 0.002 | <0.0001 | 0.003 |
SCD-18 | 0.78 (0.05) | 0.79 (0.05) | 0.79 (0.07) | 0.81 (0.09) | 0.77 (0.13) | 0.082 (0.07) | 0.719 | 0.448 | 0.543 |
D5D | 6.30 (1.40) | 6.58 (1.99) | 6.73 (3.31) | 7.79 (1.47) | 7.48 (0.96) | 7.29 (0.63) | 0.999 | 0.064 | 0.761 |
D6D | 0.20 (0.04) | 0.19 (0.03) | 0.18 (0.04) | 0.17 (0.03) | 0.14 (0.02) | 0.14 (0.02) | 0.167 | 0.0006 | 0.899 |
Elongase 5 | 0.22 (0.03) | 0.21 (0.03) | 0.21 (0.03) | 0.21 (0.03) | 0.14 (0.03) | 0.15 (0.03) | 0.0006 | <0.0001 | 0.010 |
Elongase 6 | 0.85 (0.04) | 0.85 (0.05) | 0.82 (0.05) | 0.85 (0.05) | 0.82 (0.05) | 0.77 (0.03) | 0.005 | 0.064 | 0.388 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayats-Vidal, R.; Bosque-García, M.; Cordobilla, B.; Asensio-De la Cruz, O.; García-González, M.; Castro-Marrero, J.; López-Rico, I.; Domingo, J.C. Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. J. Clin. Med. 2023, 12, 3704. https://doi.org/10.3390/jcm12113704
Ayats-Vidal R, Bosque-García M, Cordobilla B, Asensio-De la Cruz O, García-González M, Castro-Marrero J, López-Rico I, Domingo JC. Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. Journal of Clinical Medicine. 2023; 12(11):3704. https://doi.org/10.3390/jcm12113704
Chicago/Turabian StyleAyats-Vidal, Roser, Montserrat Bosque-García, Begoña Cordobilla, Oscar Asensio-De la Cruz, Miguel García-González, Jesús Castro-Marrero, Irene López-Rico, and Joan Carles Domingo. 2023. "Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial" Journal of Clinical Medicine 12, no. 11: 3704. https://doi.org/10.3390/jcm12113704
APA StyleAyats-Vidal, R., Bosque-García, M., Cordobilla, B., Asensio-De la Cruz, O., García-González, M., Castro-Marrero, J., López-Rico, I., & Domingo, J. C. (2023). Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. Journal of Clinical Medicine, 12(11), 3704. https://doi.org/10.3390/jcm12113704