Investigating the “Fetal Side” in Recurrent Pregnancy Loss: Reliability of Cell-Free DNA Testing in Detecting Chromosomal Abnormalities of Miscarriage Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Biological Samples Collection
2.3. Spontaneous Miscarriage Tissue Processing: Pathological Examination and Chromosomal Microarray Analysis
2.4. Cell-Free DNA (cfDNA) Analysis
2.5. Statistical Analysis (Sample Size and Data Analysis)
2.6. Data Collection
3. Results
3.1. Patients
3.2. Chromosomal Microarray Analysis of the Product of Conception
3.3. Cell-Free DNA Analysis
3.4. Comparison of the Diagnostic Yield of cfDNA Analysis and Chromosomal Microarray Testing of Miscarriage Tissues
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S.; et al. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Schilit, S.L.P.; Studwell, C.; Flatley, P.; Listewnik, M.; Mertens, L.; Ligon, A.H.; Mason-Suares, H. Chromosomal Microarray Analysis in Pregnancy Loss: Is it Time for a Consensus Approach? Prenat. Diagn. 2022, 42, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Shin, S.Y.; Kim, G.W.; Kim, W.J.; Wie, J.H.; Hong, S.; Kang, D.; Choi, H.; Yim, J.; Kim, Y.; et al. Optimizing the Diagnostic Strategy to Identify Genetic Abnormalities in Miscarriage. Mol. Diagn. Ther. 2021, 25, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Soler, A.; Morales, C.; Mademont-Soler, I.; Margarit, E.; Borrell, A.; Borobio, V.; Muñoz, M.; Sánchez, A. Overview of Chromosome Abnormalities in First Trimester Miscarriages: A Series of 1,011 Consecutive Chorionic Villi Sample Karyotypes. Cytogenet. Genome Res. 2017, 152, 81–89. [Google Scholar] [CrossRef]
- Van Dijk, M.M.; Kolte, A.M.; Limpens, J.; Kirk, E.; Quenby, S.; van Wely, M.; Goddijn, M. Recurrent pregnancy loss: Diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis. Hum. Reprod. Updat. 2020, 26, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Lei, D.; Zhang, X.-Y.; Zheng, P.-S. Recurrent pregnancy loss: Fewer chromosomal abnormalities in products of conception? a meta-analysis. J. Assist. Reprod. Genet. 2022, 39, 559–572. [Google Scholar] [CrossRef]
- Christiansen, O.B.; Andersen, A.-M.N.; Bosch, E.; Daya, S.; Delves, P.J.; Hviid, T.V.; Kutteh, W.H.; Laird, S.M.; Li, T.-C.; van der Ven, K. Evidence-based investigations and treatments of recurrent pregnancy loss. Fertil. Steril. 2005, 83, 821–839. [Google Scholar] [CrossRef]
- Franssen, M.T.M.; Korevaar, J.C.; Leschot, N.J.; Bossuyt, P.M.M.; Knegt, A.C.; Gerssen-Schoorl, K.B.J.; Wouters, C.; Hansson, K.B.M.; Hochstenbach, R.; Madan, K.; et al. Selective chromosome analysis in couples with two or more miscarriages: Case-control study. BMJ 2005, 331, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, M.; Aoki, K.; Okada, S.; Suzumori, K. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil. Steril. 2000, 73, 300–304. [Google Scholar] [CrossRef]
- Bardos, J.; Hercz, D.; Friedenthal, J.; Missmer, S.A.; Williams, Z. A National Survey on Public Perceptions of Miscarriage. Obstet. Gynecol. 2015, 125, 1313–1320. [Google Scholar] [CrossRef]
- ESHRE Guideline on the Management of Recurrent Pregnancy Loss. 2023. Available online: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss (accessed on 24 April 2023).
- Kowalczyk, K.; Smyk, M.; Bartnik-Głaska, M.; Plaskota, I.; Wiśniowiecka-Kowalnik, B.; Bernaciak, J.; Chojnacka, M.; Paczkowska, M.; Niemiec, M.; Dutkiewicz, D.; et al. Application of array comparative genomic hybridization (aCGH) for identification of chromosomal aberrations in the recurrent pregnancy loss. J. Assist. Reprod. Genet. 2022, 39, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, L.A.; Plunkett, B.A.; Stephenson, M.D. Is chromosome testing of the second miscarriage cost saving? A decision analysis of selective versus universal recurrent pregnancy loss evaluation. Fertil. Steril. 2012, 98, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Foyouzi, N.; Cedars, M.I.; Huddleston, H.G. Cost-effectiveness of cytogenetic evaluation of products of conception in the patient with a second pregnancy loss. Fertil. Steril. 2012, 98, 151–155.e3. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.M.; Sutherland, G.R.; Shaffer, L.G. Chromosome Abnormalities and Genetic Counseling, 3rd ed.; Oxford University Press (OUP): New York, NY, USA, 2011. [Google Scholar]
- Jaslow, C.R.; Carney, J.L.; Kutteh, W.H. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil. Steril. 2010, 93, 1234–1243. [Google Scholar] [CrossRef]
- Konečná, B.; Tóthová, Ľ.; Repiská, G. Exosomes-Associated DNA-New Marker in Pregnancy Complications? Int. J. Mol. Sci. 2019, 20, 2890. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, M.; Awartani, K.; Robinson, W. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: A case-control study. Hum. Reprod. 2002, 17, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Carp, H.; Toder, V.; Aviram, A.; Daniely, M.; Mashiach, S.; Barkai, G. Karyotype of the abortus in recurrent miscarriage. Fertil. Steril. 2001, 75, 678–682. [Google Scholar] [CrossRef]
- Bell, K.A.; Van Deerin, P.G.; Haddad, B.R.; Feinberg, R.F. Cytogenetic diagnosis of “normal 46XX” karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril. 1999, 72, 334–341. [Google Scholar] [CrossRef]
- Jarrett, K.L.; Michaelis, R.C.; Phelan, M.C.; Vincent, V.A.; Best, R.G. Microsatellite analysis reveals a high incidence of maternal cell contamination in 46,XX products of conception consisting of villi or a combination of villi and membranous material. Am. J. Obstet. Gynecol. 2001, 185, 198–203. [Google Scholar] [CrossRef]
- Murugappan, G.; Gustin, S.; Lathi, R.B. Separation of miscarriage tissue from maternal decidua for chromosome analysis. Fertil. Steril. 2014, 102, e9–e10. [Google Scholar] [CrossRef]
- Reddy, U.M.; Page, G.P.; Saade, G.R.; Silver, R.M.; Thorsten, V.R.; Parker, C.B.; Pinar, H.; Willinger, M.; Stoll, B.J.; Heim-Hall, J.; et al. Karyotype versus Microarray Testing for Genetic Abnormalities after Stillbirth. N. Engl. J. Med. 2012, 367, 2185–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, B.; Sigurjonsson, S.; Pettersen, B.; Maisenbacher, M.K.; Hall, M.P.; Demko, Z.; Lathi, R.B.; Tao, R.; Aggarwal, V.; Rabinowitz, M. Genomic imbalance in products of conception: Single-nucleotide polymorphism chromosomal microarray analysis. Obstet. Gynecol. 2014, 124, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.O.; Shaffer, B.L.; Feist, C.D.; Caughey, A.B. Chromosomal Microarray Analysis and Prenatal Diagnosis. Obstet. Gynecol. Surv. 2014, 69, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Mathur, N.; Triplett, L.; Stephenson, M.D. Miscarriage chromosome testing: Utility of comparative genomic hybridization with reflex microsatellite analysis in preserved miscarriage tissue. Fertil. Steril. 2014, 101, 1349–1352. [Google Scholar] [CrossRef]
- Rosenfeld, J.A.; Tucker, M.E.; Escobar, L.F.; Neill, N.J.; Torchia, B.S.; McDaniel, L.D.; Schultz, R.A.; Chong, K.; Chitayat, D. Diagnostic utility of microarray testing in pregnancy loss. Ultrasound Obstet. Gynecol. 2015, 46, 478–486. [Google Scholar] [CrossRef]
- Sahoo, T.; Dzidic, N.; Strecker, M.N.; Commander, S.; Travis, M.K.; Doherty, C.; Tyson, R.W.; Mendoza, A.E.; Stephenson, M.; Dise, C.A.; et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: Outcomes, benefits, and challenges. Anesthesia Analg. 2017, 19, 83–89. [Google Scholar] [CrossRef]
- Bossano, C.; Schultz, P.; Das, S.; Stephenson, M. Accurate chromosome testing of miscarriages with manual vacuum aspiration (MVA) and DNA technologies: Overcoming culture failure and maternal cell contamination (MCC) from cultured decidua. Fertil. Steril. 2009, 92, S92. [Google Scholar] [CrossRef]
- Campos-Galindo, I.; García-Herrero, S.; Martínez-Conejero, J.A.; Ferro, J.; Simón, C.; Rubio, C. Molecular analysis of products of conception obtained by hysteroembryoscopy from infertile couples. J. Assist. Reprod. Genet. 2015, 32, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Chitty, L.S.; Wright, D.; Hill, M.; Verhoef, I.T.; Daley, R.; Lewis, C.; Mason, S.; McKay, F.; Jenkins, L.; Howarth, A.; et al. Uptake, outcomes, and costs of implementing non-invasive prenatal testing for Down’s syndrome into NHS maternity care: Prospective cohort study in eight diverse maternity units. BMJ 2016, 354, i3426. [Google Scholar] [CrossRef] [Green Version]
- Perrot, A.; Horn, R. Health professionals and scientists’ views on genome-wide NIPT in the French public health system: Critical analysis of the ethical issues raised by prenatal genomics. PLoS ONE 2022, 17, e0277010. [Google Scholar] [CrossRef]
- Preisler, J.; Kopeika, J.; Ismail, L.; Vathanan, V.; Farren, J.; Abdallah, Y.; Battacharjee, P.; Van Holsbeke, C.; Bottomley, C.; Gould, D.; et al. Defining safe criteria to diagnose miscarriage: Prospective observational multicentre study. BMJ 2015, 351, h4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, L.; Alfirevic, Z.; Da Silva Costa, F.; Deter, R.; Figueras, F.; Ghi, T.; Glanc, P.; Khalil, A.; Lee, W.; Napolitano, R.; et al. ISUOG Practice Guidelines: Ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 2019, 53, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shear, M.A.; Swanson, K.; Garg, R.; Jelin, A.C.; Boscardin, J.; Norton, M.E.; Sparks, T.N. A systematic review and meta-analysis of cell-free DNA testing for detection of fetal sex chromosome aneuploidy. Prenat. Diagn. 2023, 43, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Kim, M.H.; Han, Y.J.; Lee, D.E.; Park, S.Y.; Han, J.Y.; Kim, M.Y.; Ryu, H.M. Cell-free fetalDNAand cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy. PLoS ONE 2013, 8, e56787. [Google Scholar]
- Clark-Ganheart, C.A.; Fries, M.H.; Leifheit, K.; Jensen, T.J.; Moreno-Ruiz, N.L.; Ye, P.; Jennings, J.; Driggers, R.W. Use of Cell-Free DNA in the Investigation of Intrauterine Fetal Demise and Miscarriage. Obstet. Gynecol. 2015, 125, 1321–1329. [Google Scholar] [CrossRef]
- Qiao, L.; Bin Zhang, B.; Wu, X.; Zhang, C.; Xue, Y.; Tang, H.; Tang, H.; Shi, J.; Liang, Y.; Bin Yu, B.; et al. A fetal fraction enrichment method reduces false negatives and increases test success rate of fetal chromosome aneuploidy detection in early pregnancy loss. J. Transl. Med. 2022, 20, 345. [Google Scholar] [CrossRef]
- Straver, R.; Oudejans, C.B.M.; Sistermans, E.A.; Reinders, M.J.T. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat. Diagn. 2016, 36, 614–621. [Google Scholar] [CrossRef]
- Yaron, Y.; Pauta, M.; Badenas, C.; Soler, A.; Borobio, V.; Illanes, C.; Paz-Y-Miño, F.; Martinez-Portilla, R.; Borrell, A. Maternal plasma genome-wide cell-free DNA can detect fetal aneuploidy in early and recurrent pregnancy loss and can be used to direct further workup. Hum. Reprod. 2020, 35, 1222–1229. [Google Scholar] [CrossRef]
- Colley, E.; Devall, A.J.; Williams, H.; Hamilton, S.; Smith, P.; Morgan, N.V.; Quenby, S.; Coomarasamy, A.; Allen, S. Cell-Free DNA in the Investigation of Miscarriage. J. Clin. Med. 2020, 9, 3428. [Google Scholar] [CrossRef]
- Papas, R.S.; Kutteh, W.H. Genetic Testing for Aneuploidy in Patients Who Have Had Multiple Miscarriages: A Review of Current Literature. Appl. Clin. Genet. 2021, 14, 321–329. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Di Simone, N.; Orteschi, D.; Pomponi, M.G.; Genuardi, M.; Sisti, L.G.; Castellani, R.; Rossi, E.D.; Scambia, G.; Zollino, M. The chromosome analysis of the miscarriage tissue. Miscarried embryo/fetal crown rump length (CRL) measurement: A practical use. PLoS ONE 2017, 12, e0178113. [Google Scholar] [CrossRef] [Green Version]
- Di Simone, N.; D’Ippolito, S.; Marana, R.; Di Nicuolo, F.; Castellani, R.; Pierangeli, S.S.; Chen, P.; Tersigni, C.; Scambia, G.; Meroni, P.L. Antiphospholipid Antibodies Affect Human Endometrial Angiogenesis: Protective Effect of a Synthetic Peptide (TIFI) Mimicking the Phospholipid Binding Site of β2glycoprotein I. Am. J. Reprod. Immunol. 2013, 70, 299–308. [Google Scholar] [CrossRef]
- Di Simone, N.; De Spirito, M.; Di Nicuolo, F.; Tersigni, C.; Castellani, R.; Silano, M.; Maulucci, G.; Papi, M.; Marana, R.; Scambia, G.; et al. Potential New Mechanisms of Placental Damage in Celiac Disease: Anti-Transglutaminase Antibodies Impair Human Endometrial Angiogenesis1. Biol. Reprod. 2013, 89, 88. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Di Nicuolo, F.; Pontecorvi, A.; Gratta, M.; Scambia, G.; Di Simone, N. Endometrial microbes and microbiome: Recent insights on the inflammatory and immune “players” of the human endometrium. Am. J. Reprod. Immunol. 2018, 80, e13065. [Google Scholar] [CrossRef]
- Di Simone, N.; Castellani, R.; Raschi, E.; Borghi, M.O.; Meroni, P.L.; Caruso, A. Anti-Beta-2 Glycoprotein I Antibodies Affect Bcl-2 and Bax Trophoblast Expression without Evidence of Apoptosis. Ann. N. Y. Acad. Sci. 2006, 1069, 364–376. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Capozzi, A.; Scambia, G.; Sorge, R.; Lello, S.; Di Simone, N. Glucose/insulin metabolism and vitamin D in women with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2021, 87, e13505. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Di Nicuolo, F.; Papi, M.; Castellani, R.; Palmieri, V.; Masciullo, V.; Arena, V.; Tersigni, C.; Bernabei, M.; Pontecorvi, A.; et al. Expression of Pinopodes in the Endometrium from Recurrent Pregnancy Loss Women. Role of Thrombomodulin and Ezrin. J. Clin. Med. 2020, 9, 2634. [Google Scholar] [CrossRef]
- Tersigni, C.; D’Ippolito, S.; Di Nicuolo, F.; Marana, R.; Valenza, V.; Masciullo, V.; Scaldaferri, F.; Malatacca, F.; de Waure, C.; Gasbarrini, A.; et al. Recurrent pregnancy loss is associated to leaky gut: A novel pathogenic model of endometrium inflammation? J. Transl. Med. 2018, 16, 102. [Google Scholar] [CrossRef] [Green Version]
- D’Ippolito, S.; Tersigni, C.; Marana, R.; Di Nicuolo, F.; Gaglione, R.; Rossi, E.D.; Castellani, R.; Scambia, G.; Di Simone, N. Inflammosome in the human endometrium: Further step in the evaluation of the “maternal side”. Fertil. Steril. 2016, 105, 111–118.e4. [Google Scholar] [CrossRef] [Green Version]
Maternal age (years) + SD | 36.6 ± 3.43 |
BMI (Kg/m2) | 22.02 ± 2.03 (18–25) |
Number of previous losses | 4 (3–6) |
Gestational age (days) + SD (weeks + days) | 70.3+ 9.51 (10 + 0) |
Amenorrhea age (days) + SD Amenorrhea age (weeks + days) | 84.8 + 6.4 (12 + 1) |
CRL (mm) + SD | 33.34 + 13.9 |
Time from embryo demise (days + SD) | 14.5 + 10 |
Patients | BMI (kg/m2) | Age (Years) | GA Wks + Days (Days) | AA Wks + Days (Days) | CRL (mm) | CMA Results | CfDNA Results | Overall | FF (%) | CMA Sex (M/F) | CfDNA Sex (M/F) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 23.15 | 36 | 10 + 2 (72) | 12 + 1 (85) | 34 | Trisomy 21 and dup 9: arr[GRCh37] 9q21.32q21.32q21.33 (86774450_87406657) × 3 (size 0.6 Mb) | Trisomy 21 | Partial | 5% | F | F |
2 | 21.26 | 37 | 12 + 0 (84) | 12 + 2 (86) | 54 | Trisomy 21 | Trisomy 21 | Yes | 12% | M | M |
3 | 21.23 | 38 | 10 + 3 (73) | 12 + 2 (86) | 36 | Trisomy 21 | Trisomy 21 | Yes | 14% | F | F |
4 | 20.70 | 34 | 9 + 1 (64) | 10 + 1 (71) | 24 | no anomaly detected | no anomaly detected | Yes | 3% | M | M |
5 | 21.63 | 41 | 9 + 3 (66) | 12 + 4 (88) | 26 | Trisomy 21 | Trisomy 21 | Yes | 11% | F | F |
6 | 22.04 | 33 | 12 + 0 (84) | 13 + 1 (92) | 54 | no anomaly detected | no anomaly detected | Yes | 12% | M | M |
7 | 23.8 | 40 | 9 + 1 (64) | 11 + 6 (83) | 24 | X monosomy | no anomaly detected | No | 4% | F | F |
8 | 17.6 | 31 | 9 + 1 (64) | 11 + 6 (83) | 24 | no anomaly detected | no anomaly detected | Yes | 14% | F | F |
9 | 22.8 | 33 | 9 + 6 (69) | 11 + 3 (80) | 30 | no anomaly detected | no anomaly detected | Yes | 7% | M | M |
10 | 24.7 | 39 | 9 + 6 (69) | 13 + 3 (94) | 30 | Trisomy 21 | Trisomy 21 and Del(7)(p14.1p12.2) (size > 10 Mb) | Partial | 9% | M | M |
Total | 22.02 ± 2.03 | 36.6 ±3.4 | 10 + 0 (71 ± 7.24) | 12 + 1 (84.8 ± 6.4) | 34 ± 11 | 9.1 ± 4.2 |
Statistic | Value | 95% CI |
---|---|---|
Sensitivity | 83% | 36% to 100% |
Specificity | 100% | 40% to 100% |
Positive Likelihood Ratio | // | // |
Negative Likelihood Ratio | 0.17 | 0.03 to 1.00 |
Disease prevalence | 60% | 26% to 88% |
Positive Predictive Value | 100% | |
Negative Predictive Value | 80% | 40% to 96% |
Accuracy | 90% | 56% to 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ippolito, S.; Longo, G.; Orteschi, D.; Busnelli, A.; Di Simone, N.; Pulcinelli, E.; Schettini, G.; Scambia, G.; Zollino, M. Investigating the “Fetal Side” in Recurrent Pregnancy Loss: Reliability of Cell-Free DNA Testing in Detecting Chromosomal Abnormalities of Miscarriage Tissue. J. Clin. Med. 2023, 12, 3898. https://doi.org/10.3390/jcm12123898
D’Ippolito S, Longo G, Orteschi D, Busnelli A, Di Simone N, Pulcinelli E, Schettini G, Scambia G, Zollino M. Investigating the “Fetal Side” in Recurrent Pregnancy Loss: Reliability of Cell-Free DNA Testing in Detecting Chromosomal Abnormalities of Miscarriage Tissue. Journal of Clinical Medicine. 2023; 12(12):3898. https://doi.org/10.3390/jcm12123898
Chicago/Turabian StyleD’Ippolito, Silvia, Giuliana Longo, Daniela Orteschi, Andrea Busnelli, Nicoletta Di Simone, Eleonora Pulcinelli, Giorgia Schettini, Giovanni Scambia, and Marcella Zollino. 2023. "Investigating the “Fetal Side” in Recurrent Pregnancy Loss: Reliability of Cell-Free DNA Testing in Detecting Chromosomal Abnormalities of Miscarriage Tissue" Journal of Clinical Medicine 12, no. 12: 3898. https://doi.org/10.3390/jcm12123898
APA StyleD’Ippolito, S., Longo, G., Orteschi, D., Busnelli, A., Di Simone, N., Pulcinelli, E., Schettini, G., Scambia, G., & Zollino, M. (2023). Investigating the “Fetal Side” in Recurrent Pregnancy Loss: Reliability of Cell-Free DNA Testing in Detecting Chromosomal Abnormalities of Miscarriage Tissue. Journal of Clinical Medicine, 12(12), 3898. https://doi.org/10.3390/jcm12123898