Heart Disease Characterization and Myocardial Strain Analysis in Patients with PACS1 Neurodevelopmental Disorder
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Clinical Characteristics and Cardiac Heart Disease Evaluation
3.2. Echocardiographic Findings and Speckle-Tracking-Echocardiographic Parameters
3.3. Systematic Review
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuurs-Hoeijmakers, J.H.; Oh, E.C.; Vissers, L.E.; Swinkels, M.E.; Gilissen, C.; Willemsen, M.A.; Holvoet, M.; Steehouwer, M.; Veltman, J.A.; de Vries, B.B.; et al. Recurrent de novo mutations in PACS1 cause defective cranial-neural-crest migration and define a recognizable intellectual-disability syndrome. Am. J. Hum. Genet. 2012, 91, 1122–1127. [Google Scholar] [CrossRef] [Green Version]
- Schuurs-Hoeijmakers, J.H.M.; Landsverk, M.L.; Foulds, N.; Kukolich, M.K.; Gavrilova, R.H.; Greville-Heygate, S.; Hanson-Kahn, A.; Bernstein, J.A.; Glass, J.; Chitayat, D.; et al. Clinical delineation of the PACS1-related syndrome—Report on 19 patients. Am. J. Med. Genet. Part A 2016, 170, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Seto, M.T.; Bertoli-Avella, A.M.; Cheung, K.W.; Chan, K.Y.; Yeung, K.S.; Fung, J.L.; Beetz, C.; Bauer, P.; Luk, H.M.; Lo, I.F.; et al. Prenatal and postnatal diagnosis of Schuurs-Hoeijmakers syndrome: Case series and review of the literature. Am. J. Med. Genet. Part A 2020, 185, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Tenorio-Castaño, J.; Morte, B.; Nevado, J.; Martinez-Glez, V.; Santos-Simarro, F.; García-Miñaúr, S.; Palomares-Bralo, M.; Pacio-Míguez, M.; Gómez, B.; Arias, P.; et al. Schuurs-Hoeijmakers Syndrome (PACS1 Neurodevelopmental Disorder): Seven Novel Patients and a Review. Genes 2021, 12, 738. [Google Scholar] [CrossRef]
- Van Nuland, A.; Reddy, T.; Quassem, F.; Vassalli, J.-D.; Berg, A.T. PACS1-Neurodevelopmental disorder: Clinical features and trial readiness. Orphanet J. Rare Dis. 2021, 16, 386. [Google Scholar] [CrossRef]
- Arnedo, M.; Ascaso, Á.; Latorre-Pellicer, A.; Lucia-Campos, C.; Gil-Salvador, M.; Ayerza-Casas, A.; Pablo, M.J.; Gómez-Puertas, P.; Ramos, F.J.; Bueno-Lozano, G.; et al. Molecular Basis of the Schuurs–Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 9649. [Google Scholar] [CrossRef]
- Sorokina, E.A.; Reis, L.M.; Thompson, S.; Agre, K.; Babovic-Vuksanovic, D.; Ellingson, M.S.; Hasadsri, L.; van Bever, Y.; Semina, E.V. WDR37 syndrome: Identification of a distinct new cluster of disease-associated variants and functional analyses of mutant proteins. Hum. Genet. 2021, 140, 1775–1789. [Google Scholar] [CrossRef]
- Stern, D.; Cho, M.; Chikarmane, R.; Willaert, R.; Retterer, K.; Kendall, F.; Deardorff, M.; Hopkins, S.; Bedoukian, E.; Slavotinek, A.; et al. Association of the missense variant p.Arg203Trp in PACS1 as a cause of intellectual disability and seizures. Clin. Genet. 2017, 92, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Lusk, L.; Smith, S.; Martin, C.; Taylor, C.; Chung, W. PACS1 Neurodevelopmental Disorder. In GeneReviews® [Internet]; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2020. [Google Scholar]
- Silva, M.W.; Martins, A.; de Medeiros, A.L.; de Vasconcelos, A.; Ventura, C.V. Ophthalmological manifestations of the Schuurs-Hoeijmakers syndrome: A case report. Arq. Bras. Oftalmol. 2022, 85, 85–87. [Google Scholar] [CrossRef]
- Gorostidi, M.; Gijón-Conde, T.; de la Sierra, A.; Rodilla, E.; Rubio, E.; Vinyoles, E.; Oliveras, A.; Santamaría, R.; Segura, J.; Molinero, A.; et al. Practice guidelines for the management of arterial hypertension of the Spanish Society of Hypertension. Hipertens. Riesgo. Vasc. 2022, 39, 174–194. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Trujillano, L.; Ayerza-Casas, A.; Puisac, B.; García, G.G.; Ascaso, Á.; Latorre-Pellicer, A.; Arnedo, M.; Lucia-Campos, C.; Gil-Salvador, M.; Kaiser, F.J.; et al. Subclinical myocardial dysfunction is revealed by speckle tracking echocardiography in patients with Cornelia de Lange syndrome. Int. J. Cardiovasc. Imaging 2022, 38, 2291–2302. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gil, I.J.; Rubio, M.D.; Cartón, A.J.; López-Romero, P.; Deiros, L.; García-Guereta, L.; Labrandero, C.; Gutierrez-Larraya, F. Determination of normalized values of the tricuspid annular plane systolic excursion (TAPSE) in 405 Spanish children and adolescents. Rev. Esp. Cardiol. 2011, 64, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.; Marwick, T. Normal ranges of left ventricular strain: A meta-analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Kocabay, G.; Muraru, D.; Peluso, D.; Cucchini, U.; Mihaila, S.; Padayattil-Jose, S.; Gentian, D.; Iliceto, S.; Vinereanu, D.; Badano, L.P. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev. Esp. Cardiol. 2014, 67, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Pathan, F.; D’Elia, N.; Nolan, M.T.; Marwick, T.H.; Negishi, K. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017, 30, 59–70.e8. [Google Scholar] [CrossRef] [PubMed]
- Dalen, H.; Thorstensen, A.; Aase, S.A.; Ingul, C.B.; Torp, H.; Vatten, L.J.; Stoylen, A. Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: The HUNT study in Norway. Eur. J. Echocardiogr. 2010, 11, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Jashari, H.; Rydberg, A.; Ibrahimi, P.; Bajraktari, G.; Kryeziu, L.; Jashari, F.; Henein, M.Y. Normal ranges of left ventricular strain in children: A meta-analysis. Cardiovasc. Ultrasound 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallaire, F.; Slorach, C.; Bradley, T.; Hui, W.; Sarkola, T.; Friedberg, M.K.; Jaeggi, E.; Dragulescu, A.; Mahmud, F.H.; Daneman, D.; et al. Pediatric Reference Values and Z Score Equations for Left Ventricular Systolic Strain Measured by Two-Dimensional Speckle-Tracking Echocardiography. J. Am. Soc. Echocardiogr. 2016, 29, 786–793.e8. [Google Scholar] [CrossRef] [PubMed]
- Levy, P.T.; Machefsky, A.; Sanchez, A.A.; Patel, M.D.; Rogal, S.; Fowler, S.; Yaeger, L.; Hardi, A.; Holland, M.R.; Hamvas, A.; et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 209–225.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadzicki, D.; Döcker, D.; Schubach, M.; Menzel, M.; Schmorl, B.; Stellmer, F.; Biskup, S.; Bartholdi, D. Expanding the phenotype of a recurrent de novo variant in PACS1 causing intellectual disability. Clin. Genet. 2015, 88, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.K. Schuurs-Hoeijmakers syndrome in a patient from India. Am. J. Med. Genet. Part A 2019, 179, 522–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Monseny, A.; Bolasell, M.; Arjona, C.; Martorell, L.; Yubero, D.; Arsmtrong, J.; Maynou, J.; Fernandez, G.; Salgado, M.D.C.; Palau, F.; et al. Mutation of PACS1: The milder end of the spectrum. Clin. Dysmorphol. 2018, 27, 148–150. [Google Scholar] [CrossRef]
- Hoshino, Y.; Enokizono, T.; Imagawa, K.; Tanaka, R.; Suzuki, H.; Fukushima, H.; Arai, J.; Sumazaki, R.; Uehara, T.; Takenouchi, T.; et al. Schuurs-Hoeijmakers syndrome in two patients from Japan. Am. J. Med. Genet. Part A 2018, 179, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Pefkianaki, M.; Schneider, A.; Capasso, J.E.; Wasserman, B.N.; Bardakjian, T.; Levin, A.V. Ocular manifestations of PACS1 mutation. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2018, 22, 323–325. [Google Scholar] [CrossRef]
- Gray, K.J.; Wilkins-Haug, L.E.; Herrig, N.J.; Vora, N.L. Fetal phenotypes emerge as genetic technologies become robust. Prenat. Diagn. 2019, 39, 811–817. [Google Scholar] [CrossRef]
- Colak, F.K.; Eyerci, N.; Aytekin, C.; Eksioglu, A.S. Renpenning Syndrome in a Turkish Patient: De novo Variant c.607C>T in PACS1 and Hypogammaglobulinemia Phenotype. Mol. Syndr. 2020, 11, 157–161. [Google Scholar] [CrossRef]
- Abdulqader, S.A.; Wli, W.A.; Qaryaqos, S.H. Schuurs-Hoeijmakers syndrome in a patient from Iraq-Kirkuk. Clin. Case Rep. 2021, 9, e04897. [Google Scholar] [CrossRef] [PubMed]
- Crawford, W.; Kelion, A.; Richens, T.; Orchard, E. Left main stem fistula masquerading as an atrial septal defect in a gentleman with Schuurs-Hoeijmakers syndrome. Eur. Heart J. Case Rep. 2020, 5, ytaa420. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Moreira, M.; Halbert, J.; Valloton, D.; Velten, B.; Chen, C.; Shao, Y.; Liechti, A.; Ascenção, K.; Rummel, C.; Ovchinnikova, S.; et al. Gene expression across mammalian organ development. Nature 2019, 571, 505–509. [Google Scholar] [CrossRef]
- Homma, S.; Sacco, R.L. Patent foramen ovale and stroke. Circulation 2005, 112, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Radio, F.C.; Pang, K.; Ciolfi, A.; Levy, M.A.; Hernández-García, A.; Pedace, L.; Pantaleoni, F.; Liu, Z.; de Boer, E.; Jackson, A.; et al. SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. Am. J. Hum. Genet. 2021, 108, 502–516. [Google Scholar] [CrossRef]
- Fernández-Hernández, L.; Reyna-Fabián, M.E.; Alcántara-Ortigoza, M.A.; Aláez-Verson, C.; Flores-Lagunes, L.L.; Carrillo-Sánchez, K.; Angel, A.G.-D. Unusual Clinical Manifestations in a Mexican Patient with Sanfilippo B Syndrome. Diagnostics 2022, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Alberio, A.M.Q.; Legitimo, A.; Bertini, V.; Baroncelli, G.I.; Costagliola, G.; Valetto, A.; Consolini, R. Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion. J. Clin. Med. 2022, 11, 2025. [Google Scholar] [CrossRef]
- Rosenhahn, E.; O’brien, T.J.; Zaki, M.S.; Sorge, I.; Wieczorek, D.; Rostasy, K.; Vitobello, A.; Nambot, S.; Alkuraya, F.S.; Hashem, M.O.; et al. Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications. Am. J. Hum. Genet. 2022, 109, 1421–1435. [Google Scholar] [CrossRef]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A.; et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement from the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef]
- Casas, A.A.; Uriol, B.P.; Rodrigo, M.E.T.; Marcos, M.H.; Fuentes, F.J.R.; Juste, J.P. Cornelia de Lange syndrome: Congenital heart disease in 149 patients. Med. Clin. 2017, 149, 300–302. (In Spanish) [Google Scholar] [CrossRef]
- Hay, E.; Henderson, R.H.; Mansour, S.; Deshpande, C.; Jones, R.; Nutan, S.; Mankad, K.; Young, R.M.; Moosajee, M.; Genomics England Research Consortium; et al. Expanding the phenotypic spectrum consequent upon de novo WDR37 missense variants. Clin. Genet. 2020, 98, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Ayerza-Casas, A.; Puisac-Uriol, B.; Pie-Juste, J. Cornelia de Lange syndrome: Ventricular size and function in six children without congenital heart defects. Med. Clin. 2020, 154, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Zhang, J.; Wang, X.; Zhang, X.; Sun, F.; Yu, X. Usefulness of speckle-tracking echocardiography for early detection in children with Duchenne muscular dystrophy: A meta-analysis and trial sequential analysis. Cardiovasc. Ultrasound 2020, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Balli, S.; Yucel, I.K.; Kibar, A.E.; Ece, I.; Dalkiran, E.S.; Candan, S. Assessment of cardiac function in absence of congenital and acquired heart disease in patients with Down syndrome. World J. Pediatr. 2016, 12, 463–469. [Google Scholar] [CrossRef]
- Al Saikhan, L.; Park, C.; Hardy, R.; Hughes, A. Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: A meta-analysis. Vasc. Health Risk Manag. 2019, 15, 229–251. [Google Scholar] [CrossRef] [Green Version]
Variables | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | I10 | I11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gender | F | F | F | M | M | M | M | F | F | M | M |
Age (y) | 33 | 15 | 10 | 2.5 | 35 | 17 | 3.5 | 6 | 6 | 2.8 | 12.5 |
Weight (kg) | 66.4 | 52.2 (p37) | 35 (p46) | 12.6 (p15) | 70 | 52.4 (p9) | 10 (p < 1, −2.4SD) | 17.2 (p11) | 16.6 (p8) | 9.5 (p < 1, −2.5SD) | 33 (p8) |
Height (cm) | 151.5 | 166 (p70) | 140 (p53) | 89.5 (p13) | 170 | 175 (p50) | 81 (p < 1, −4.8SD) | 105 (p < 1, −2.5SD) | 106 (p < 1, −2.3SD) | 81 (p < 1, −2.9SD) | 144 (p9) |
First words (y) | 7 | 3 | 2 | na | 4 | 5 | 1.5 | 6 | - | 2 | 3 |
Age of sitting (m) | 8 | 10 | 9 | 20 | 12 | 12 | 11 | 7 | 7 | 14 | 9 |
Age of walking (m) | 16 | 16 | 19 | 30 | 24 | 20 | 26 | 36 | 48 | 2.5 | 24 |
SBP (mmHg) | 119 | na | 119 (p94) | 69 (p3) | 106 | 105 (p10) | 77 (p23) | na | na | na | na |
DBP (mmHg) | 69 | na | 79 (p94) | 38 (p31) | 78 | 58 (p20) | 52 (p63) | na | na | na | na |
HR (bpm) | 63 | 119 | 77 | 87 | 76 | 93 | 135 | na | na | na | na |
HD | no | yes | no | yes | no | yes | no | yes | yes | yes | yes |
HD type | - | VSD AAD | - | AAD (PFO) | (PFO) | ASD | - | PDA | PDA | AAD | MVP |
Intervention | no | no | yes | yes | yes | no | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latorre-Pellicer, A.; Trujillano, L.; del Rincón, J.; Peña-Marco, M.; Gil-Salvador, M.; Lucia-Campos, C.; Arnedo, M.; Puisac, B.; Ramos, F.J.; Ayerza-Casas, A.; et al. Heart Disease Characterization and Myocardial Strain Analysis in Patients with PACS1 Neurodevelopmental Disorder. J. Clin. Med. 2023, 12, 4052. https://doi.org/10.3390/jcm12124052
Latorre-Pellicer A, Trujillano L, del Rincón J, Peña-Marco M, Gil-Salvador M, Lucia-Campos C, Arnedo M, Puisac B, Ramos FJ, Ayerza-Casas A, et al. Heart Disease Characterization and Myocardial Strain Analysis in Patients with PACS1 Neurodevelopmental Disorder. Journal of Clinical Medicine. 2023; 12(12):4052. https://doi.org/10.3390/jcm12124052
Chicago/Turabian StyleLatorre-Pellicer, Ana, Laura Trujillano, Julia del Rincón, Mónica Peña-Marco, Marta Gil-Salvador, Cristina Lucia-Campos, María Arnedo, Beatriz Puisac, Feliciano J. Ramos, Ariadna Ayerza-Casas, and et al. 2023. "Heart Disease Characterization and Myocardial Strain Analysis in Patients with PACS1 Neurodevelopmental Disorder" Journal of Clinical Medicine 12, no. 12: 4052. https://doi.org/10.3390/jcm12124052
APA StyleLatorre-Pellicer, A., Trujillano, L., del Rincón, J., Peña-Marco, M., Gil-Salvador, M., Lucia-Campos, C., Arnedo, M., Puisac, B., Ramos, F. J., Ayerza-Casas, A., & Pié, J. (2023). Heart Disease Characterization and Myocardial Strain Analysis in Patients with PACS1 Neurodevelopmental Disorder. Journal of Clinical Medicine, 12(12), 4052. https://doi.org/10.3390/jcm12124052