Circulating Profiles of Serum Proguanylin, S100A12 Protein and Pentraxin 3 as Diagnostic Markers of Ulcerative Colitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessing the Serum Proguanylin Concentration
2.3. Assessing the Serum S100A12 Concentration
2.4. Assessing the Serum Pentraxin 3 Concentration
2.5. Statistical Analysis
3. Results
3.1. Research Data
3.2. Serum Level of Pro-GN, S100A12 and PTX3 in Patients with Ulcerative Colitis and Healthy Individuals
3.3. The Relationship between Serum Pro-GN, S100A12, PTX3 and Inflammatory Process and Disease Activity
3.4. The Influence of One Year of Biological Treatment with Adalimumab on the Serum Profile of Pro-GN, S100A12 and PTX3
4. Discussion
4.1. Serum Profile of the Pro-GN, S100A12 and PTX3 in Patients Diagnosed with UC and Healthy Individuals
4.2. The Relationship between Disease Activity and Serum Profile of Pro-GN, S100A12 and PTX3 in Patients with UC
4.3. The Influence of Biological Treament with Adalimumab on the Circulating Profile of Pro-GN, S100A12 and PTX3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter, R.J.; Kalla, R.; Ho, G.T. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F100 Res. 2020, 9, 294. [Google Scholar] [CrossRef]
- Leone, S.; Samhan-Arias, A.; Ben-Shachar, I.; Derieppe, M.; Dinc, F.; Grosu, I.; Guinea, C.; Lignell, J.; Smailys, G.; Sturludóttir, S.; et al. ECCO EFCCA Patient Guidelines on Ulcerative Colitis Ulcerosa; European Chron’s and Colitis Organisation: Barcelona, Spain, 2017. [Google Scholar]
- Soubières, A.A.; Poullis, A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 41–50. [Google Scholar] [CrossRef]
- Khaki-Khatibi, F.; Qujeq, D.; Kashifard, M.; Moein, S.; Maniati, M.; Vaghari-Tabari, M. Calprotectin in inflammatory bowel disease. Clin. Chim. Acta 2020, 510, 556–565. [Google Scholar] [CrossRef]
- Uranga, J.A.; Castro, M.; Abalo, R. Guanylate Cyclase C: A Current Hot Target, from Physiology to Pathology. Curr. Med. Chem. 2018, 25, 1879–1908. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Wen, Y.; Dong, X.; Yang, Q.; Liu, Y.; Wang, K.; Li, H.; Miao, Y. The endogenous ligand for guanylate cyclase-C activation reliefs intestinal inflammation in the DSS colitis model. Acta Biochim. Pol. 2020, 67, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.E.; Li, P.; Snook, A.E.; Schulz, S.; Dasgupta, A.; Hyslop, T.M.; Gibbons, A.V.; Marszlowicz, G.; Pitari, G.M.; Waldman, S.A. The hormone receptor GUCY2C suppresses intestinal tumor formation by inhibiting AKT signaling. Gastroenterology 2010, 138, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.E.; Snook, A.E.; Li, P.; Stoecker, B.A.; Kim, G.W.; Magee, M.S.; Garcia, A.V.; Valentino, M.A.; Hyslop, T.; Schulz, S.; et al. GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity. PLoS ONE 2012, 7, e31686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oesterle, A.; Hofmann-Bowman, M.A. S100A12 and the S100/Calgranulins—Emerging biomarkers for atherosclerosis and possibly therapeutic targets. Arterioscler. Thromb. Vasc. Biol. 2015, 25, 2496–2507. [Google Scholar] [CrossRef] [Green Version]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 Proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef] [Green Version]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef]
- Kaur, A.; Goggolidou, P. Ulcerative colitis: Understanding its cellular pathology could provide insight into novel therapies. J. Inflamm. 2020, 17, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savchenko, A.S.; Inoue, A.; Ohashi, R.; Jiang, S.; Hasegawa, G.; Tanaka, T.; Hamakubo, T.; Kodama, T.; Aoyagi, Y.; Ushiki, T.; et al. Long pentraxin 3 (PTX3) expression and release by neutrophils in vitro and in ulcerative colitis. Pathol. Int. 2011, 61, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Cao, F.; Tao, J.; Li, X.; Zheng, S.G.; Pan, H.F. Pentraxin 3: A promising therapeutic target for autoimmune diseases. Autoimmun. Rev. 2020, 19, 102584. [Google Scholar] [CrossRef]
- Porte, R.; Davoudian, S.; Asgari, F.; Parente, R.; Mantovani, A.; Garlanda, C.; Bottazzi, B. The Long Pentraxin PTX3 as a Humoral Innate Immunity Functional Player and Biomarker of Infections and Sepsis. Front. Immunol. 2019, 10, 794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennike, T.B.; Carlsen, T.G.; Ellingsen, T.; Bonderup, O.K.; Glerup, H.; Bøgsted, M.; Christiansen, G.; Birkelund, S.; Stensballe, A.; Andersen, V. Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies. Inflamm. Bowel Dis. 2015, 21, 2052–2067. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Ochiai, M.; Sakurada, T.; Ohno, S.; Miyamoto, K.; Sagara, M.; Ito, M.; Takeuchi, K.; Imaki, J.; Itoh, K.; et al. Increased Expression of Long Pentraxin PTX3 in Inflammatory Bowel Diseases. Dig. Dis. Sci. 2008, 53, 1910–1916. [Google Scholar] [CrossRef]
- Doni, A.; Stravalaci, M.; Inforzato, A.; Magrini, E.; Mantovani, A.; Garlanda, C.; Bottazzi, B. The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer. Front. Immunol. 2019, 10, 712. [Google Scholar] [CrossRef] [Green Version]
- Komosinska-Vassev, K.; Kałużna, K.; Jura-Półtorak, A.; Derkacz, A.; Olczyk, K. Circulating Profile of ECM-Related Proteins as Diagnostic Markers in Inflammatory Bowel Diseases. J. Clin. Med. 2022, 11, 5618. [Google Scholar] [CrossRef]
- Lan, D.; Niu, J.; Miao, J.; Dong, X.; Wang, H.; Yang, G.; Wang, K.; Miao, Y. Expression of guanylate cyclase-C, guanylin, and uroguanylin is downregulated proportionally to the ulcerative colitis disease activity index. Sci. Rep. 2016, 6, 25034. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.E.V.; Sjövall, H.; Hansson, G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenetrol. Hepatol. 2013, 10, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Kmieć, Z.; Cyman, M.; Ślebioda, T.J. Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv. Med. Sci. 2017, 62, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Martini, E.; Krug, S.M.; Siegmund, B.; Neurath, M.F.; Becker, C. Mend your fence. The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Dinallo, V.; Marafini, I.; Di Fusco, D.; Laudisi, F.; Franze, E.; Di Grazia, A.; Figliuzzi, M.M.; Caprioli, F.; Stolfi, C.; Monteleone, I.; et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis. J. Crohn’s Colitis 2019, 13, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Foell, D.; Kucharzik, T.; Kraft, M.; Vogl, T.; Sorg, C.; Domschke, W.; Roth, J. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut 2003, 52, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, T.; Langhorst, J.; Wittkowski, H.; Becker, K.; Friedrich, A.W.; Rueffer, A.; Dobos, G.J.; Roth, J.; Foell, D. Fecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut 2007, 56, 1706–1713. [Google Scholar] [CrossRef] [Green Version]
- Ashour, D.S.; Othman, A.A.; Shareef, M.M.; Gaballah, H.H.; Mayah, W.W. Interactions between Trichinella spiralis infection and induced colitis in mice. J. Helminthol. 2014, 88, 210–218. [Google Scholar] [CrossRef]
- Foell, D.; Wittkowski, H.; Kessel, C.; Lüken, A.; Weinhage, T.; Varga, G.; Vogl, T.; Wirth, T.; Viemann, D.; Björk, P.; et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am. J. Respir. Crit. Care Med. 2013, 187, 1324–1334. [Google Scholar] [CrossRef]
- Brenna, Ø.; Bruland, T.; Furnes, M.W.; Granlund, A.; Drozdov, I.; Emgård, J.; Brønstad, G.; Kidd, M.; Sandvik, A.K.; Gustafsson, B.I. The guanylate cyclase-C signaling pathway is down-regulated in inflammatory bowel disease. Scand. J. Gastroenterol. 2015, 50, 1241–1252. [Google Scholar] [CrossRef]
- Harmel-Laws, E.; Mann, E.A.; Cohen, M.B.; Steinbrecher, K.A. Guanylate cyclase C deficiency causes severe inflammation in a murine model of spontaneous colitis. PLoS ONE 2013, 8, e79180. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, G.; Garnero, P.; Moussata, D.; Cuerq, C.; Préaudat, C.; Duclaux-Loras, R.; Mialon, A.; Drai, J.; Flourié, B.; Nancey, S. Accuracies of serum and fecal S100 proteins (calprotectin and calgranulin C) to predict the response to TNF antagonists in patients with Crohn’s disease. Inflamm. Bowel Dis. 2015, 21, 331–336. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kosaki, A.; Kimura, T.; Matsubara, H.; Mori, Y.; Okigaki, M.; Masaki, H.; Toyoda, N.; Inoue-Shibata, M.; Kimura, Y.; et al. The regulation of EN-RAGE (S100A12) gene expression in human THP-1 macrophages. Atherosclerosis 2003, 171, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Goyette, J.; Geczy, C.L. Inflammation-associated S100 proteins: New mechanisms that regulate function. Amino Acids 2011, 41, 821–842. [Google Scholar] [CrossRef] [PubMed]
Parameter | UC0 | UC1 | p |
---|---|---|---|
Mayo score | 3 (2–3) | 2 (1–3) | 0.000 |
CRP [mg/L] | 3.4 (1.26–17.51) | 2.47 (1.51–7.68) | 0.160 |
Glucose [mmol/L] | 4.99 ± 0.70 | 4.81 ± 0.81 | 0.293 |
Cholesterol [mmol/L] | 4.98 ± 0.79 | 4.93 ± 0.91) | 0.724 |
Triglycerides [mmol/L] | 1.23 (1.01–1.49) | 1.0 (0.87–1.36) | 0.017 |
Indirect bilirubin [μmol/L] | 4.75 (1.80–7.70) | 8.3 (5.50–16.00) | 0.000 |
Direct bilirubin [μmol/L] | 3.45 (1.90–3.80) | 5.30 (3.50–8.20) | 0.000 |
ALT [U/L] | 15.00 (10.00–26.00) | 14.50 (10.00–23.00) | 0.591 |
AST [U/L] | 17.92 ± 4.81 | 19.42 ± 6.18 | 0.136 |
Creatnine [μmol/L] | 77.8 (68.50–87.90) | 74.70 (63.40–87.10) | 0.117 |
Total protein [g/L] | 73.48 ± 5.43 | 74.73 ± 5.63 | 0.231 |
Albumin [g/L] | 42.52 ± 4.73 | 43.34 ± 4.52 | 0.358 |
Sodium [mmol/L] | 140 (138.00–142.00) | 140.00 (138.00–141.00) | 0.381 |
Potassium [mmol/L] | 4.17 ± 0.40 | 3.97 ± 0.33 | 0.011 |
Calcium [mmol/L] | 2.36 ± 0.09 | 2.33 ± 0.12 | 0.660 |
Hemoglobin [g/dl] | 12.83 ± 2.28 | 13.49 ± 2.29 | 0.005 |
Neutrophils [%] | 66.65 ± 11.25 | 64.52 ± 10.92 | 0.282 |
Lymphocytes [%] | 24.27 ± 10.71 | 26.99 ± 11.74 | 0.259 |
Basophils [%] | 0.76 ± 0.43 | 0.71 ± 0.37 | 1.000 |
Eosinophils [%] | 2.6 (1.10–3.30) | 2.03 ± 1.43 | 0.063 |
Monocytes [%] | 5.72 ± 2.27 | 5.75 ± 1.79 | 0.859 |
PLT [×109/L] | 375.93 ± 108.79 | 342.04 ± 101.72 | 0.043 |
Parameter | UC0 | UC1 | C |
---|---|---|---|
Pro-GN [ng/mL] | 5.27 (3.80–6.65) # | 6.68 (5.51–9.36) # | 11.35 ± 2.59 * |
S100A12 [ng/mL] | 39.36 (25.15–70.99) # | 48.32 (16.84–89.99) # | 19.74 ± 8.07 * |
PTX3 [pg/mL] | 3197.05 (2148.20–4248.95) # | 1946.4 (1103.61–2334.93) # | 1608.37 ± 587.05 * |
Parameter | Mayo Score | |
Pro-GN | UC0 | p > 0.05 |
UC1 | p > 0.05 | |
S100A12 | UC0 | p < 0.0005 |
UC1 | p < 0.005 | |
PTX3 | UC0 | p < 0.05 |
UC1 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kałużna, A.; Jura-Półtorak, A.; Derkacz, A.; Jaruszowiec, J.; Olczyk, K.; Komosinska-Vassev, K. Circulating Profiles of Serum Proguanylin, S100A12 Protein and Pentraxin 3 as Diagnostic Markers of Ulcerative Colitis. J. Clin. Med. 2023, 12, 4339. https://doi.org/10.3390/jcm12134339
Kałużna A, Jura-Półtorak A, Derkacz A, Jaruszowiec J, Olczyk K, Komosinska-Vassev K. Circulating Profiles of Serum Proguanylin, S100A12 Protein and Pentraxin 3 as Diagnostic Markers of Ulcerative Colitis. Journal of Clinical Medicine. 2023; 12(13):4339. https://doi.org/10.3390/jcm12134339
Chicago/Turabian StyleKałużna, Aleksandra, Agnieszka Jura-Półtorak, Alicja Derkacz, Julia Jaruszowiec, Krystyna Olczyk, and Katarzyna Komosinska-Vassev. 2023. "Circulating Profiles of Serum Proguanylin, S100A12 Protein and Pentraxin 3 as Diagnostic Markers of Ulcerative Colitis" Journal of Clinical Medicine 12, no. 13: 4339. https://doi.org/10.3390/jcm12134339
APA StyleKałużna, A., Jura-Półtorak, A., Derkacz, A., Jaruszowiec, J., Olczyk, K., & Komosinska-Vassev, K. (2023). Circulating Profiles of Serum Proguanylin, S100A12 Protein and Pentraxin 3 as Diagnostic Markers of Ulcerative Colitis. Journal of Clinical Medicine, 12(13), 4339. https://doi.org/10.3390/jcm12134339