Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Study Characteristics
3.2. Recording and Analysis of HRV
3.3. Functional Outcome
3.4. Cardiovascular Complications
3.5. Secondary Brain Injuries
3.6. Mortality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chattipakorn, N.; Incharoen, T.; Kanlop, N.; Chattipakorn, S. Heart rate variability in myocardial infarction and heart failure. Int. J. Cardiol. 2007, 120, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Mowery, N.T.; Norris, P.R.; Riordan, W.; Jenkins, J.M.; Williams, A.E.; Morris, J.A. Cardiac uncoupling and heart rate variability are associated with intracranial hypertension and mortality: A study of 145 trauma patients with continuous monitoring. J. Trauma Inj. Infect. Crit. Care 2008, 65, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Gang, Y.; Malik, M. Heart rate variability in critical care medicine. Curr. Opin. Crit. Care 2002, 8, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.H.; Huang, W.L.; Chang, C.H.; Yang, C.C.H.; Kuo, T.B.J.; Lin, S.L.; Chiang, W.C.; Chu, T.S. Heart rate variability as a predictor of rapid renal function deterioration in chronic kidney disease patients. Nephrology 2019, 24, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.C.; Kor, C.T.; Lin, C.H.; Kuo, J.; Tsai, J.Z.; Ko, W.J.; Kuo, C.D. High-frequency power of heart rate variability can predict the outcome of thoracic surgical patients with acute respiratory distress syndrome on admission to the intensive care unit: A prospective, single-centric, case-controlled study. BMC Anesthesiol. 2018, 18, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuckey, M.I.; Petrella, R.J. Heart rate variability in type 2 diabetes mellitus. Crit. Rev. Biomed. Eng. 2013, 41, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, A.T.; La Monaca, E.; Di Leo, R.; Vita, G.; Santamaria, L.B. Heart rate variability: A diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol. Scand. 2011, 55, 797–811. [Google Scholar] [CrossRef]
- Zöllei, E.; Avramov, K.; Gingl, Z.; Rudas, L. Severe cardiovascular autonomic dysfunction in a patient with Guillain-Barre syndrome: A case report. Auton. Neurosci. Basic Clin. 2000, 86, 94–98. [Google Scholar] [CrossRef]
- Aftyka, J.; Staszewski, J.; Dębiec, A.; Pogoda-Wesołowska, A.; Żebrowski, J. Heart rate variability as a predictor of stroke course, functional outcome, and medical complications: A systematic review. Front. Physiol. 2023, 14, 1115164. [Google Scholar] [CrossRef]
- Caplan, L.R. Intracerebral haemorrhage. Lancet 1992, 339, 656–658. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Pinho, J.; Costa, A.S.; Araújo, J.M.; Amorim, J.M.; Ferreira, C. Intracerebral hemorrhage outcome: A comprehensive update. J. Neurol. Sci. 2019, 398, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.R.; Fitzgerald, E.; Delaney, A.; Finfer, S. A Systematic Review of Outcome Measures Employed in Aneurysmal Subarachnoid Hemorrhage (aSAH) Clinical Research. Neurocrit. Care 2019, 30, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Hemphill, J.C.; Bonovich, D.C.; Besmertis, L.; Manley, G.T.; Johnston, S.C. The ICH Score. Stroke 2001, 32, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Witsch, J.; Siegerink, B.; Nolte, C.H.; Sprügel, M.; Steiner, T.; Endres, M.; Huttner, H.B. Prognostication after intracerebral hemorrhage: A review. Neurol. Res. Pract. 2021, 3, 22. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Cornforth, D.J.; Koenig, A.; Riener, R.; Karmakar, C.; Imam, M.H.; Khandoker, A.H.; Palaniswami, M.; Minichiello, M. Monitoring patients during neurorehabilitation following central or peripheral nervous system injury: Dynamic difficulty adaptation. In ECG Time Series Variability Analysis; CRC Press: Boca Raton, FL, USA, 2017; pp. 281–296. [Google Scholar] [CrossRef]
- Kamath, M.V.; Watanabe, M.A.; Upton, A.R.M. Heart Rate Variability (HRV) Signal Analysis: Clinical Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781466576056. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Miwa, K.; Koga, M.; Fukuda-Doi, M.; Yamamoto, H.; Tanaka, K.; Yoshimura, S.; Ihara, M.; Qureshi, A.I.; Toyoda, K. Effect of heart rate variabilities on outcome after acute intracerebral hemorrhage: A post hoc analysis of atach-2. J. Am. Heart Assoc. 2021, 10, e020364. [Google Scholar] [CrossRef]
- Cai, K.; Ni, Y.; Zhang, Y.; Shen, L.; Ji, Q.; Cao, M. Heart rate variability after endovascular coiling is associated with short-term outcomes in patients with subarachnoid hemorrhage. Neurol. Res. 2018, 40, 856–861. [Google Scholar] [CrossRef]
- Chen, C.H.; Tang, S.C.; Lee, D.Y.; Shieh, J.S.; Lai, D.M.; Wu, A.Y.; Jeng, J.S. Impact of Supratentorial Cerebral Hemorrhage on the Complexity of Heart Rate Variability in Acute Stroke. Sci. Rep. 2018, 8, 11473. [Google Scholar] [CrossRef] [Green Version]
- Rass, V.; Lindner, A.; Ianosi, B.A.; Schiefecker, A.J.; Loveys, S.; Kofler, M.; Rass, S.; Pfausler, B.; Beer, R.; Schmutzhard, E.; et al. Early alterations in heart rate are associated with poor outcome in patients with intracerebral hemorrhage. J. Crit. Care 2021, 61, 199–206. [Google Scholar] [CrossRef]
- Szabo, J.; Smielewski, P.; Czosnyka, M.; Jakubicek, S.; Krebs, S.; Siarnik, P.; Sykora, M. Heart rate variability is associated with outcome in spontaneous intracerebral hemorrhage. J. Crit. Care 2018, 48, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Megjhani, M.; Kaffashi, F.; Terilli, K.; Alkhachroum, A.; Esmaeili, B.; Doyle, K.W.; Murthy, S.; Velazquez, A.G.; Connolly, E.S.; Roh, D.J.; et al. Heart Rate Variability as a Biomarker of Neurocardiogenic Injury After Subarachnoid Hemorrhage. Neurocrit. Care 2020, 32, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Chang, S.H.; Chen, J.H.; Tai, H.C.H.; Chan, C.M.; Wang, Y.C. Heart Rate Variability Predicts Neurogenic Pulmonary Edema in Patients with Subarachnoid Hemorrhage. Neurocrit. Care 2016, 25, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, E.; Ikeda, S.; Miyahara, Y.; Kohno, S. Role of autonomic nervous dysfunction in electrocardiographic abnormalities and cardiac injury in patients with acute subarachnoid hemorrhage. Circ. J. 2003, 67, 753–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, I.C.; Li, C.H.; Wang, K.C.; Lai, D.M.; Huang, S.J.; Shieh, J.S.; Tu, Y.K. Prediction of early secondary complications in patients with spontaneous subarachnoid hemorrhage based on accelerated sympathovagal ratios. Acta Neurochir. 2009, 151, 1631–1637. [Google Scholar] [CrossRef]
- Svigelj, V.; Grad, A.; Kiuta, T. Heart rate variability, norepinephrine and ECG changes in subarachnoid hemorrhage patients. Acta Neurol. Scand. 1996, 94, 120–126. [Google Scholar] [CrossRef]
- Swor, D.E.; Thomas, L.F.; Maas, M.B.; Grimaldi, D.; Manno, E.M.; Sorond, F.A.; Batra, A.; Kim, M.; Prabhakaran, S.; Naidech, A.M.; et al. Admission Heart Rate Variability is Associated with Fever Development in Patients with Intracerebral Hemorrhage. Neurocrit. Care 2019, 30, 244–250. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Sow, D.; Crimmins, M.; Albers, D.; Agarwal, S.; Claassen, J.; Connolly, E.S.; Elkind, M.S.V.; Hripcsak, G.; Mayer, S.A. Heart rate variability for preclinical detection of secondary complications after subarachnoid hemorrhage. Neurocrit. Care 2014, 20, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Odenstedt Hergès, H.; Vithal, R.; El-Merhi, A.; Naredi, S.; Staron, M.; Block, L. Machine learning analysis of heart rate variability to detect delayed cerebral ischemia in subarachnoid hemorrhage. Acta Neurol. Scand. 2022, 145, 151–159. [Google Scholar] [CrossRef]
- Bjerkne Wenneberg, S.; Löwhagen Hendén, P.M.; Oras, J.; Naredi, S.; Block, L.; Ljungqvist, J.; Odenstedt Hergès, H. Heart rate variability monitoring for the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Acta Anaesthesiol. Scand. 2020, 64, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Kox, M.; Vrouwenvelder, M.Q.; Pompe, J.C.; Van Der Hoeven, J.G.; Pickkers, P.; Hoedemaekers, C.W. The effects of brain injury on heart rate variability and the innate immune response in critically ill patients. J. Neurotrauma 2012, 29, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, T.F.; Huang, C.C.; Chen, J.H.; Chen, W.L. Depressed sympathovagal balance predicts mortality in patients with subarachnoid hemorrhage. Am. J. Emerg. Med. 2012, 30, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Uryga, A.; Burzyńska, M.; Tabakow, P.; Kasprowicz, M.; Budohoski, K.P.; Kazimierska, A.; Smielewski, P.; Czosnyka, M.; Goździk, W. Baroreflex sensitivity and heart rate variability are predictors of mortality in patients with aneurysmal subarachnoid haemorrhage. J. Neurol. Sci. 2018, 394, 112–119. [Google Scholar] [CrossRef]
- Sykora, M.; Szabo, J.; Siarnik, P.; Turcani, P.; Krebs, S.; Lang, W.; Czosnyka, M.; Smielewski, P. Heart rate entropy is associated with mortality after intracereberal hemorrhage. J. Neurol. Sci. 2020, 418, 117033. [Google Scholar] [CrossRef]
- Park, S.; Kaffashi, F.; Loparo, K.A.; Jacono, F.J. The use of heart rate variability for the early detection of treatable complications after aneurysmal subarachnoid hemorrhage. J. Clin. Monit. Comput. 2013, 27, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Buchman, T.G.; Stein, P.K.; Goldstein, B. Heart rate variability in critical illness and critical care. Curr. Opin. Crit. Care 2002, 8, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Chand, T.; Li, M.; Jamalabadi, H.; Wagner, G.; Lord, A.; Alizadeh, S.; Danyeli, L.V.; Herrmann, L.; Walter, M.; Sen, Z.D. Heart Rate Variability as an Index of Differential Brain Dynamics at Rest and After Acute Stress Induction. Front. Neurosci. 2020, 14, 645. [Google Scholar] [CrossRef]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Greer, D.M.; Funk, S.E.; Reaven, N.L.; Ouzounelli, M.; Uman, G.C. Impact of fever on outcome in patients with stroke and neurologic injury: A comprehensive meta-analysis. Stroke 2008, 39, 3029–3035. [Google Scholar] [CrossRef] [Green Version]
- Yperzeele, L.; van Hooff, R.J.; Nagels, G.; De Smedt, A.; De Keyser, J.; Brouns, R. Heart rate variability and baroreceptor sensitivity in acute stroke: A systematic review. Int. J. Stroke 2015, 10, 796–800. [Google Scholar] [CrossRef]
- Sarrafzadeh, A.S.; Vajkoczy, P.; Bijlenga, P.; Schaller, K. Monitoring in neurointensive care—The challenge to detect delayed cerebral ischemia in high grade aneurysmal SAH. Front. Neurol. 2014, 5, 8–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castilho, F.M.; Ribeiro, A.L.P.; Da Silva, J.L.P.; Nobre, V.; De Sousa, M.R. Heart rate variability as predictor of mortality in sepsis: A prospective cohort study. PLoS ONE 2017, 12, e0180060. [Google Scholar] [CrossRef] [Green Version]
- Arshi, B.; Geurts, S.; Tilly, M.J.; Van Den Berg, M.; Kors, J.A.; Rizopoulos, D.; Ikram, M.A.; Kavousi, M. Heart rate variability is associated with left ventricular systolic, diastolic function and incident heart failure in the general population. BMC Med. 2022, 20, 91. [Google Scholar] [CrossRef]
- Camillo, C.A.; Pitta, F.; Possani, H.V.; Barbosa, M.V.R.A.; Marques, D.S.O.; Cavalheri, V.; Probst, V.S.; Brunetto, A.F. Heart Rate Variability and Disease Characteristics in Patients with COPD. Lung 2008, 186, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.A. Heart rate variability measurement in epilepsy: How can we move from research to clinical practice? Epilepsia 2018, 59, 2169–2178. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.Y.; Elliott, T.; Knowles, M.; Howard, R. Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101539. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Woo, H.G.; Kim, Y.J.; Kim, B.J. Blood pressure management in stroke patients. J. Neurocrit. Care 2020, 13, 69–79. [Google Scholar] [CrossRef]
- Etminan, N.; Chang, H.S.; Hackenberg, K.; De Rooij, N.K.; Vergouwen, M.D.I.; Rinkel, G.J.E.; Algra, A. Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population: A Systematic Review and Meta-analysis. JAMA Neurol. 2019, 76, 588–597. [Google Scholar] [CrossRef]
- Wang, S.; Zou, X.L.; Wu, L.X.; Zhou, H.F.; Xiao, L.; Yao, T.; Zhang, Y.; Ma, J.; Zeng, Y.; Zhang, L. Epidemiology of intracerebral hemorrhage: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Danière, F.; Gascou, G.; Menjot De Champfleur, N.; Machi, P.; Leboucq, N.; Riquelme, C.; Ruiz, C.; Bonafé, A.; Costalat, V. Complications and follow up of subarachnoid hemorrhages. Diagn. Interv. Imaging 2015, 96, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Balami, J.S.; Buchan, A.M. Complications of intracerebral haemorrhage. Lancet Neurol. 2012, 11, 101–118. [Google Scholar] [CrossRef]
- Salvadori, E.; Papi, G.; Insalata, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Comparison between ischemic and hemorrhagic strokes in functional outcome at discharge from an intensive rehabilitation hospital. Diagnostics 2021, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Ecker, S.; Lord, A.; Gurin, L.; Olivera, A.; Ishida, K.; Melmed, K.; Torres, J.; Zhang, C.; Frontera, J.; Lewis, A. Psychological Outcome after Hemorrhagic Stroke is Related to Functional Status. J. Stroke Cerebrovasc. Dis. 2022, 31, 106492. [Google Scholar] [CrossRef] [PubMed]
- Hilz, M.J.; Moeller, S.; Akhundova, A.; Marthol, H.; Pauli, E.; De Fina, P.; Schwab, S. High NIHSS Values Predict Impairment of Cardiovascular Autonomic Control. Stroke 2011, 42, 1528–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time-Domain Measures of HRV | |||
---|---|---|---|
Variable Symbol | Units | Description and Method to Calculate | Comments |
SDNN | ms | Normal-to-normal (NN) standard deviations. Measured between consecutive QRS complex sinus beats. | Returns all the cyclic components responsible for variability in the period of recording. Dependent on length of recording period. Accurate when recorded on 24 h period. |
RMSSD | ms | Root mean square of successive di differences between normal heartbeats. Measured as square root of the mean of the sum of the squares of differences between adjacent NN intervals. | Meaningful on short time recording. Reflects the beat-to-beat variance in heart rate, primary time-domain measure to estimate the vagally mediated changes existing in HRV |
HR-SD | bpm | Standard deviation of successive heart rate values. | Analogous to SDNN. Not standard measure. |
HR-ARV | bpm | Heart rate average real variability. Measured as absolute difference between consecutive values of heart rate | Not standard measure. |
Frequency-domain measures of HRV | |||
VLF | ms2 | Very low frequency range of power spectral density. Measured by Fast Fourier Transform of the time domain signal and filtered to very low frequencies (<0.04 Hz). | Associated to arrhythmia, But physiological interpretation not well defined. |
LF | ms2 | Low frequency range of power spectral density. Measured by Fast Fourier Transform of the time domain signal and filtered to low frequencies (0.04–0.15 Hz) | Associated to both sympathetic and parasympathetic activities. |
HF | ms2 | High frequency range of power spectral density. Measured by Fast Fourier Transform of the time domain signal and filtered to high frequencies (0.15–0.4 Hz) | Associated mainly to parasympathetic activity. |
LF/HF | Ratio of LF [ms2]/HF [ms2] | Interpretation dependent on length of recording period and measuring conditions. In a 24 h recording period, low LF/HF ratio measures parasympathetic dominance, while high LF/HF ratio implies sympathetic dominance | |
LF% | n.u. | 100 × LF/(Total power − VLF) | More sensible to the behavior of the two branches of the auto-nomic nervous system. |
HF% | n.u. | 100 × HF/(Total power − VLF) | |
Non-linear measures of HRV | |||
Entropy | Measure of time series complexity at multiple scales (MSE). | Multiple scale entropy measures the richness of fluctuations in each scale analyzed but the interpretation is difficult. |
First Author Year Reference | Number of Patients, Type of Patients, Study Design | Endpoints | Start of Monitoring | Monitoring Time | Domain Studied HRV Measures | Sampling Frequency | Follow Up Time |
---|---|---|---|---|---|---|---|
Miwa et al., 2021 [19] | n = 994, ICH, retrospective | Functional outcome | <2 h | 24 h | Time HR-SD, HR-ARV SDNN, RMSSD | N.A. | 90 d |
Cai et al., 2018 [20] | n = 345, SAH, Retrospective | Functional outcomes | <24 h | 24 h | Time HR-SD | N.A. | Discharge |
Chen et al., 2018 [21] | n = 93, ICH, Prospective | Functional outcome | <24 h | 1 h | Time, Frequency, MSE SDNN, RMSSD, LF, HF, LF/HF Entropy | 512 Hz | 3 months |
Rass et al., 2021 [22] | n = 88, ICH, prospective | Functional outcome | <24 h | 8 d | Time HR-SD | N.A. | 3 months |
Szabo et al., 2018 [23] | n = 47, ICH, prospective | Functional outcome Mortality | <24 h | 10 m | Frequency LF, HF, LF/HF | 200 Hz | 90 d |
Megjhani et al., 2020 [24] | n = 326, SAH, prospective | Neurocardiogenic injury | Admission | 48 h | Time, Frequency MNN, SDNN, RMSSD LF, HF, LF/HF | 240 Hz | 48 h |
Chen et al., 2016 [25] | n= 248, SAH, Prospective | NPE | At diagnosis | 10 min | Frequency LF, HF, LF/HF | 1000 Hz | 24 h |
Kawahara et al. 2003 [26] | n = 43, SAH, Prospective | Neurocardiogenic injury | Admission | Series of 24 h | Frequency LF, HF, LF/HF | N.A. | 30 d or more |
Su et al., 2009 [27] | n = 30, SAH, prospective | mortality DCI NPE | <48 h | 3 d | Frequency LF, HF, LF/HF | 500 Hz | 1 w |
Svigelj et al. 1996 [28] | n = 28, SAH, prospective | Neurocardiogenic injury | Admission | 6 min | Frequency LF, HF | 500 Hz | |
Swor et al., 2019 [29] | n = 248, ICH, prospective | Secondary brain injury | <24 h | 10 s | Time SDNN, RMSSD | N.A. | 14 d |
Schmidt et al., 2014 [30] | n = 236, SAH prospective | Secondary brain injury | <48 h | 3 d | Time, Frequency, MSE SDNN, RMSSD LF, HF, LF/HF Entropy | 240 Hz | 5 d |
Odenstedt Herges et al., 2021 [31] | n = 55, SAH, Prospective | Secondary brain injury | <1 h | 10 d | Time SDNN | 1000 Hz | 10 d or discharge |
Wennenberg et al., 2020 [32] | n = 55, SAH, retrospective | Secondary brain injury Mortality | <24 h | 10 d | Time, Frequency SDNN, RMSSD LF, HF, LF/HF | 1000 Hz | 1 year |
Kox et al., 2012 [33] | N= 14 SAH (8), ICH (6), prospective | Secondary brain injury | <24 h | Series of 5 min (day 1,2,3,4) | Frequency LF, HF, LF/HF | 4096 Hz | 4 d |
Chiu et al., 2012 [34] | n = 132, SAH, Prospective | Mortality | <0.5 h | 10 min | Frequency LF, HF, LF/HF | 1000 Hz | 28 d |
Uryga et al., 2018 [35] | n = 57, SAH, retrospective | Mortality | <24 h | 6 d | Time, Frequency SDNN, RMSSD LF, HF, LF/HF | 200 Hz | 27 d |
Sycora et al., 2020 [36] | n = 47, ICH, prospective | Mortality | <24 h | 10 m | Frequency, MSE LF, HF, LF/HF Entropy | 200 Hz | 3 months |
Park et al., 2013 [37] | n = 24, SAH, prospective | Mortality | N.A. | 21 d | Time, Frequency SDNN, RMSSD LF, HF, LF/HF | 200 Hz | 21 d |
Study | Poor Functional Outcome | Results | Comments |
---|---|---|---|
Miwa et al., 2020 [19] | mRS > 4, at 90 days. | HR (mean value) adjOR = 1.31, 95% CI, 1.14–1.50 for 10 bpm increase. HR-ARV adjOR = 1.07, 95% CI, 1.01–1.3. | Increased mean HR and HR-ARV within the initial 24 h. |
Cai et al., 2018 [20] | GOS < 4 | HR-SD adjOR = 1.14; 95% CI, 1.02–1.29; p = 0.026 | Overactivation of sympathetic modulation related to faster HR and higher HRV-SD. |
Rass et al., 2021 [22] | mRS > 3, at 3 months | HR-SD adjOR = 1.29, 95% CI = 1.01–1.66, p = 0.045 | HR-SD early predictor in ICH. |
Szabo et al., 2018 [23] | mRS > 4 | Normalized HF adjOR 1.2, 95%CI 1.01–1.4, p = 0.04. LF/HF adjOR 0.07, 95%CI 0.01–0.4, p = 0.02 | Decreased autonomic modulation associated with poor outcome in ICH. |
Chen et al., 2018 [21] | mRS > 2, at 3 months | Lower complexity index in ICH than control group (adjOR 1.09, 95% CI 1.00–1.19) | Non-linear complexity of HRV related to stroke severity, size of hemorrhage and function outcome in patients with ICH. |
Study | Cardiovascular Complications | Results | Comments |
---|---|---|---|
Megjhani et al., 2020 [24] | NCI Heart wall motion abnormality with ventricular dysfunction on transthoracic echocardiogram or cardiac troponin-I > 0.3 ng/m | Decreased vagal activity in NCI with respect to control. LF/HF (β 3.42, SE 0.92, p = 0.0002). | HRV and machine learning approach associated with NCI development in SAH. |
Chen et al., 2016 [25] | NPE | Lower LF% (OR 0.933; 95% CI 0.910–0.958)) in NPE than non-NPE. | LF% associated with occurrence of NPE in SAH. |
Kawahara et al., 2003 [26] | NCI ECG abnormalities (prolongation of QTc, presence of U wave, and ST depression) | LF/HF lower in the acute phase than in the chronic phase, and in the control group. | Augmentation of vagal activity in acute phase of SAH. No differences between the chronic phase and the control group. |
Su et al., 2018 [27] | NPE | Increased LF/HF (2.7-fold, p = 0.03) | Complications in SAH associated to sympathetic overexcitation and vagal withdrawal |
Svigelj et al., 1996 [28] | NCI ECG abnormalities (prolongation of QTc, presence of U wave, and ST changes) | HF increase between days 4 and 6 in SAH patients compared to the control group (p < 0.04). No significant differences in LF were found. | Failure of HRV to confirm sympathetic hyperactivity in SAH patients. |
Study | Secondary Brain Injury | Results | Comments |
---|---|---|---|
Swor et al., 2019 [29] | Fever occurrence | Lower HRV associated with greater odds of fever occurrence (OR 0.92, 95% CI 0.87–0.97) | Early parasympathetic dysfunction (HRV) may improve ICH outcome. |
Schmidt et al., 2014 [30] | DCI | LR+ 3.0 (2.3–3.8), LR− 0.2 (0.1–0.5), PPV 42.4 (32.3–52.5), NPV 94.4 (90.7–98.2) | HRV changes reflect DCI complications in SAH. |
Odenstedt Herges et al., 2021 [31] | DCI | 71% of DCI cases identified by machine learning process, 57% of non- DCI identify as DCI. | Machine learning applied to HRV supports the prediction of DCI in SAH. |
Wennenberg et al., 2020 [32] | DCI | LF/HF increased in DCI patients β = −0.07, 95% CI 0.01–0.12 p = 0.012. | No correlation of HRV parameters in the first 48 h with DCI development. |
Kox et al., 2012 [33] | Inflammatory cytokines production | Higher HF% and lower LF/HF in ICH patients compared to control | No numerical data reported |
Study | Mortality | Results | Comments | |
---|---|---|---|---|
Chiu et al., 2012 [34] | 29% (In hospital) | LF/HF (OR 2.16; 95% C, 1.18–3.97; p = 0.013), LF% (OR 0.78; 95% CI 0.69–0.88; p < 0.001) | HRV analysis predictive of mortality | |
Uryga et al., 2018 [35] | 25% (In hospital) | HF% (OR 0.63; 95% CI 0.467–0.867; p < 0.001) | HRV analysis predictive of mortality | |
Wennenberg et al., 2020 [32] | Dead SDNN 8.17 (8.11–9.33) RMSSD 7.98 (6.61–11.59) | Alive 27.6 (20.7–41.6) 23.5 (13.5–40.3) | SDNN, RMSSD, lower in died patients (p < 0.05). LF%, HF%, LF/HF not different in died patients and alive. | |
Sycora et al., 2020 [36] | 25.5% (within 3 months) | Entropy (adjOR 0.09, 95% CI 0.1–0.8, p = 0.03) | Entropy analysis predictive of mortality in ICH. | |
Su et al., 2018 [27] | 13.3% (within 1 week) | Increased LF/HF (2.7-fold, p = 0.03) | Mortality in SAH associated to sympathetic overexcitation and vagal withdrawal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, L.; Badenes, R.; Bilotta, F. Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review. J. Clin. Med. 2023, 12, 4355. https://doi.org/10.3390/jcm12134355
Marino L, Badenes R, Bilotta F. Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review. Journal of Clinical Medicine. 2023; 12(13):4355. https://doi.org/10.3390/jcm12134355
Chicago/Turabian StyleMarino, Luca, Rafael Badenes, and Federico Bilotta. 2023. "Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review" Journal of Clinical Medicine 12, no. 13: 4355. https://doi.org/10.3390/jcm12134355
APA StyleMarino, L., Badenes, R., & Bilotta, F. (2023). Heart Rate Variability for Outcome Prediction in Intracerebral and Subarachnoid Hemorrhage: A Systematic Review. Journal of Clinical Medicine, 12(13), 4355. https://doi.org/10.3390/jcm12134355