The Role of Low-Dose Oral Methotrexate in Increasing Anti-TNF Drug Levels and Reducing Immunogenicity in IBD
Abstract
:1. Introduction
2. Pharmacokinetics of Anti-TNFs and the Role of Methotrexate in Increasing Drug Levels and Reducing Immunogenicity
2.1. Efficacy of Concomitant Immunomodulation in Improving Anti-TNF Levels
2.2. Mechanism of Action of Methotrexate in Improving Anti-TNF Pharmacokinetics
3. Efficacy of Methotrexate Compared to Thiopurines as Concomitant Immunomodulators
3.1. Efficacy of Methotrexate for Concomitant Immunomodulation with Anti-TNFs
3.2. Efficacy of Methotrexate Compared to Thiopurines at Augmenting Anti-TNF Pharmacokinetics
4. Optimal Methotrexate Dosing for Concomitant Immunomodulation
Role of Therapeutic Drug Monitoring in Guiding Methotrexate Dosing
5. Safety Profile of Methotrexate as a Concomitant Immunomodulator with Anti-TNF Agents
6. Recommendations for the Use of Low-Dose Oral Methotrexate in Combination with Anti-TNF Agents
- EBV-naïve patients, especially males (due to the risk of lymphoproliferative disorders);
- Young males (due to the rare but devastating risk of hepatosplenic T-cell lymphoma);
- Thiopurine-intolerant patients;
- Homozygous thiopurine methyltransferase (TMPT)- or Nudix hydrolase-15 (NUDT15)-deficient patients.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanauer, S.B.; Sandborn, W.J.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.; Panaccione, R.; Wolf, D.; Pollack, P. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: The CLASSIC-I trial. Gastroenterology 2006, 130, 323–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandborn, W.J.; Hanauer, S.B.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.G.; Panaccione, R.; Wolf, D.; Kent, J.D.; Bittle, B.; et al. Adalimumab for maintenance treatment of Crohn’s disease: Results of the CLASSIC II trial. Gut 2007, 56, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Colombel, J.F.; Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Panaccione, R.; Schreiber, S.; Byczkowski, D.; Li, J.; Kent, J.D.; et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: The CHARM trial. Gastroenterology 2007, 132, 52–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sands, B.E.; Anderson, F.H.; Bernstein, C.N.; Chey, W.Y.; Feagan, B.G.; Fedorak, R.N.; Kamm, M.A.; Korzenik, J.R.; Lashner, B.A.; Onken, J.E.; et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N. Engl. J. Med. 2004, 350, 876–885. [Google Scholar] [CrossRef]
- D’Haens, G.R.; van Deventer, S. 25 years of anti-TNF treatment for inflammatory bowel disease: Lessons from the past and a look to the future. Gut 2021, 70, 1396–1405. [Google Scholar] [CrossRef]
- Steenholdt, C.; Brynskov, J.; Thomsen, O.Ø.; Munck, L.K.; Fallingborg, J.; Christensen, L.A.; Pedersen, G.; Kjeldsen, J.; Jacobsen, B.A.; Oxholm, A.S.; et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: A randomised, controlled trial. Gut 2014, 63, 919–927. [Google Scholar] [CrossRef]
- Adedokun, O.J.; Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Xu, Z.; Marano, C.W.; Johanns, J.; Zhou, H.; Davis, H.M.; Cornillie, F.; et al. Association between serum concentration of infliximab and efficacy in adult patients with ulcerative colitis. Gastroenterology 2014, 147, 1296–1307.e5. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.J.; Ward, M.G.; Rentsch, C.; Friedman, A.B.; Taylor, K.M.; Sparrow, M.P.; Gibson, P.R. Review article: Determination of the therapeutic range for therapeutic drug monitoring of adalimumab and infliximab in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2020, 51, 612–628. [Google Scholar] [CrossRef]
- Mitrev, N.; Vande Casteele, N.; Seow, C.H.; Andrews, J.M.; Connor, S.J.; Moore, G.T.; Barclay, M.; Begun, J.; Bryant, R.; Chan, W.; et al. Review article: Consensus statements on therapeutic drug monitoring of anti-tumour necrosis factor therapy in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2017, 46, 1037–1053. [Google Scholar] [CrossRef] [Green Version]
- Ungar, B.; Levy, I.; Yavne, Y.; Yavzori, M.; Picard, O.; Fudim, E.; Loebstein, R.; Chowers, Y.; Eliakim, R.; Kopylov, U.; et al. Optimizing Anti-TNF-α Therapy: Serum Levels of Infliximab and Adalimumab Are Associated with Mucosal Healing in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2016, 14, 550–557.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarur, A.J.; Kanagala, V.; Stein, D.J.; Czul, F.; Quintero, M.A.; Agrawal, D.; Patel, A.; Best, K.; Fox, C.; Idstein, K.; et al. Higher infliximab trough levels are associated with perianal fistula healing in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2017, 45, 933–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitrev, N.; Kariyawasam, V.; Leong, R.W. Editorial: Infliximab trough cut-off for perianal Crohn’s disease—another piece of the therapeutic drug monitoring-guided infliximab dosing puzzle. Aliment. Pharmacol. Ther. 2017, 45, 1279–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papamichael, K.; Cheifetz, A.S.; Melmed, G.Y.; Irving, P.M.; Vande Casteele, N.; Kozuch, P.L.; Raffals, L.E.; Baidoo, L.; Bressler, B.; Devlin, S.M.; et al. Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 1655–1668.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheifetz, A.S.; Abreu, M.T.; Afif, W.; Cross, R.K.; Dubinsky, M.C.; Loftus, E.V.; Osterman, M.T.; Saroufim, A.; Siegel, C.A.; Yarur, A.J.; et al. A Comprehensive Literature Review and Expert Consensus Statement on Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease. Am. J. Gastroenterol. 2021, 116, 2014–2025. [Google Scholar] [CrossRef]
- Garcês, S.; Demengeot, J.; Benito-Garcia, E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: A systematic review of the literature with a meta-analysis. Ann. Rheum. Dis. 2013, 72, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.S.; Borazan, N.; Barroso, N.; Duan, L.; Taroumian, S.; Kretzmann, B.; Bardales, R.; Elashoff, D.; Vangala, S.; Furst, D.E. Comparative Immunogenicity of TNF Inhibitors: Impact on Clinical Efficacy and Tolerability in the Management of Autoimmune Diseases. A Systematic Review and Meta-Analysis. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2015, 29, 241–258. [Google Scholar] [CrossRef]
- Yarur, A.J.; McGovern, D.; Abreu, M.T.; Cheifetz, A.; Papamichail, K.; Deepak, P.; Bruss, A.; Beniwal-Patel, P.; Dubinsky, M.; Targan, S.R.; et al. Combination Therapy with Immunomodulators Improves the Pharmacokinetics of Infliximab But Not Vedolizumab or Ustekinumab. Clin. Gastroenterol. Hepatol. 2022, 22, S1542–S3565. [Google Scholar] [CrossRef]
- Karmiris, K.; Paintaud, G.; Noman, M.; Magdelaine-Beuzelin, C.; Ferrante, M.; Degenne, D.; Claes, K.; Coopman, T.; Van Schuerbeek, N.; Van Assche, G.; et al. Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn’s disease. Gastroenterology 2009, 137, 1628–1640. [Google Scholar] [CrossRef]
- Matar, M.; Shamir, R.; Turner, D.; Broide, E.; Weiss, B.; Ledder, O.; Guz-Mark, A.; Rinawi, F.; Cohen, S.; Topf-Olivestone, C.; et al. Combination Therapy of Adalimumab with an Immunomodulator Is Not More Effective Than Adalimumab Monotherapy in Children With Crohn’s Disease: A Post Hoc Analysis of the PAILOT Randomized Controlled Trial. Inflamm. Bowel Dis. 2020, 26, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Motoya, S.; Watanabe, K.; Hisamatsu, T.; Nakase, H.; Yoshimura, N.; Ishida, T.; Kato, S.; Nakagawa, T.; Esaki, M.; et al. Adalimumab Monotherapy and a Combination with Azathioprine for Crohn’s Disease: A Prospective, Randomized Trial. J. Crohn’s Colitis 2016, 10, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet. Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Kopylov, U.; Al-Taweel, T.; Yaghoobi, M.; Nauche, B.; Bitton, A.; Lakatos, P.L.; Ben-Horin, S.; Afif, W.; Seidman, E.G. Adalimumab monotherapy versus combination therapy with immunomodulators in patients with Crohn’s disease: A systematic review and meta-analysis. J. Crohn’s Colitis 2014, 8, 1632–1641. [Google Scholar] [CrossRef] [Green Version]
- Chalhoub, J.M.; Rimmani, H.H.; Gumaste, V.V.; Sharara, A.I. Systematic Review and Meta-analysis: Adalimumab Monotherapy Versus Combination Therapy with Immunomodulators for Induction and Maintenance of Remission and Response in Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 1316–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luber, R.P.; Honap, S.; Cunningham, G.; Irving, P.M. Can We Predict the Toxicity and Response to Thiopurines in Inflammatory Bowel Diseases? Front. Med. 2019, 6, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotlyar, D.S.; Osterman, M.T.; Diamond, R.H.; Porter, D.; Blonski, W.C.; Wasik, M.; Sampat, S.; Mendizabal, M.; Lin, M.V.; Lichtenstein, G.R. A systematic review of factors that contribute to hepatosplenic T-cell lymphoma in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2011, 9, 36–41.e1. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Noman, M.; Van Assche, G.; Baert, F.; D’Haens, G.; Rutgeerts, P. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut 2007, 56, 1226–1231. [Google Scholar] [CrossRef]
- Chi, L.Y.; Zitomersky, N.L.; Liu, E.; Tollefson, S.; Bender-Stern, J.; Naik, S.; Snapper, S.; Bousvaros, A. The Impact of Combination Therapy on Infliximab Levels and Antibodies in Children and Young Adults with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 1344–1351. [Google Scholar] [CrossRef]
- Colman, R.J.; Rubin, D.T. Optimal doses of methotrexate combined with anti-TNF therapy to maintain clinical remission in inflammatory bowel disease. J. Crohn’s Colitis 2015, 9, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Ungar, B.; Kopylov, U.; Engel, T.; Yavzori, M.; Fudim, E.; Picard, O.; Lang, A.; Williet, N.; Paul, S.; Chowers, Y.; et al. Addition of an immunomodulator can reverse antibody formation and loss of response in patients treated with adalimumab. Aliment. Pharmacol. Ther. 2017, 45, 276–282. [Google Scholar] [CrossRef]
- Vasudevan, A.; Raghunath, A.; Anthony, S.; Scanlon, C.; Sparrow, M.P.; Gibson, P.R.; van Langenberg, D.R. Higher Mucosal Healing with Tumor Necrosis Factor Inhibitors in Combination with Thiopurines Compared to Methotrexate in Crohn’s Disease. Dig. Dis. Sci. 2019, 64, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Borren, N.Z.; Luther, J.; Colizzo, F.P.; Garber, J.G.; Khalili, H.; Ananthakrishnan, A.N. Low-dose Methotrexate has Similar Outcomes to High-dose Methotrexate in Combination with Anti-TNF Therapy in Inflammatory Bowel Diseases. J. Crohn’s Colitis 2019, 13, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Maini, R.N.; Breedveld, F.C.; Kalden, J.R.; Smolen, J.S.; Davis, D.; Macfarlane, J.D.; Antoni, C.; Leeb, B.; Elliott, M.J.; Woody, J.N.; et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheumatol. 1998, 41, 1552–1563. [Google Scholar] [CrossRef]
- Burmester, G.R.; Kivitz, A.J.; Kupper, H.; Arulmani, U.; Florentinus, S.; Goss, S.L.; Rathmann, S.S.; Fleischmann, R.M. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: The randomised CONCERTO trial. Ann. Rheum. Dis. 2015, 74, 1037–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducourau, E.; Rispens, T.; Samain, M.; Dernis, E.; Le Guilchard, F.; Andras, L.; Perdriger, A.; Lespessailles, E.; Martin, A.; Cormier, G.; et al. Methotrexate effect on immunogenicity and long-term maintenance of adalimumab in axial spondyloarthritis: A multicentric randomised trial. RMD Open 2020, 6, e001047. [Google Scholar] [CrossRef]
- van der Kraaij, G.; Busard, C.; van den Reek, J.; Menting, S.; Musters, A.; Hutten, B.; de Rie, M.; Ouwerkerk, W.; van Bezooijen, S.J.; Prens, E.; et al. Adalimumab with Methotrexate vs. Adalimumab Monotherapy in Psoriasis: First-Year Results of a Single-Blind Randomized Controlled Trial. J. Investig. Dermatol. 2022, 142, 2375–2383.e6. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Chowers, Y. Review article: Loss of response to anti-TNF treatments in Crohn’s disease. Aliment. Pharmacol. Ther. 2011, 33, 987–995. [Google Scholar] [CrossRef]
- Brandse, J.F.; van den Brink, G.R.; Wildenberg, M.E.; van der Kleij, D.; Rispens, T.; Jansen, J.M.; Mathôt, R.A.; Ponsioen, C.Y.; Löwenberg, M.; D’Haens, G.R. Loss of Infliximab into Feces Is Associated with Lack of Response to Therapy in Patients with Severe Ulcerative Colitis. Gastroenterology 2015, 149, 350–355.e2. [Google Scholar] [CrossRef] [Green Version]
- Fasanmade, A.A.; Adedokun, O.J.; Ford, J.; Hernandez, D.; Johanns, J.; Hu, C.; Davis, H.M.; Zhou, H. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur. J. Clin. Pharmacol. 2009, 65, 1211–1228. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.T.; Aveson, V.G. Neonatal Fc receptor and IgG-based therapeutics. mAbs 2011, 3, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Roblin, X.; Marotte, H.; Leclerc, M.; Del Tedesco, E.; Phelip, J.M.; Peyrin-Biroulet, L.; Paul, S. Combination of C-reactive protein, infliximab trough levels, and stable but not transient antibodies to infliximab are associated with loss of response to infliximab in inflammatory bowel disease. J. Crohn’s Colitis 2015, 9, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandse, J.F.; Mathôt, R.A.; van der Kleij, D.; Rispens, T.; Ashruf, Y.; Jansen, J.M.; Rietdijk, S.; Löwenberg, M.; Ponsioen, C.Y.; Singh, S.; et al. Pharmacokinetic Features and Presence of Antidrug Antibodies Associate with Response to Infliximab Induction Therapy in Patients With Moderate to Severe Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2016, 14, 251–258.e2. [Google Scholar] [CrossRef] [PubMed]
- Ben-Horin, S.; Yavzori, M.; Katz, L.; Kopylov, U.; Picard, O.; Fudim, E.; Coscas, D.; Bar-Meir, S.; Goldstein, I.; Chowers, Y. The immunogenic part of infliximab is the F(ab′)2, but measuring antibodies to the intact infliximab molecule is more clinically useful. Gut 2011, 60, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ternant, D.; Aubourg, A.; Magdelaine-Beuzelin, C.; Degenne, D.; Watier, H.; Picon, L.; Paintaud, G. Infliximab pharmacokinetics in inflammatory bowel disease patients. Ther. Drug Monit. 2008, 30, 523–529. [Google Scholar] [CrossRef]
- Buurman, D.J.; Maurer, J.M.; Keizer, R.J.; Kosterink, J.G.; Dijkstra, G. Population pharmacokinetics of infliximab in patients with inflammatory bowel disease: Potential implications for dosing in clinical practice. Aliment. Pharmacol. Ther. 2015, 42, 529–539. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 2010, 362, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Colombel, J.F.; Adedokun, O.J.; Gasink, C.; Gao, L.L.; Cornillie, F.J.; D’Haens, G.R.; Rutgeerts, P.J.; Reinisch, W.; Sandborn, W.J.; Hanauer, S.B. Combination Therapy with Infliximab and Azathioprine Improves Infliximab Pharmacokinetic Features and Efficacy: A Post Hoc Analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 1525–1532.e1. [Google Scholar] [CrossRef] [Green Version]
- Macaluso, F.S.; Sapienza, C.; Ventimiglia, M.; Renna, S.; Rizzuto, G.; Orlando, R.; Di Pisa, M.; Affronti, M.; Orlando, E.; Cottone, M.; et al. The addition of an immunosuppressant after loss of response to anti-tnfalpha monotherapy in inflammatory bowel disease: A 2-year study. Inflamm. Bowel Dis. 2018, 24, 394–401. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Coskun, M.; Steenholdt, C.; Rogler, G. The role and advances of immunomodulator therapy for inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 177–189. [Google Scholar] [CrossRef]
- Herfarth, H.; Barnes, E.L.; Valentine, J.F.; Hanson, J.; Higgins, P.D.R.; Isaacs, K.L.; Jackson, S.; Osterman, M.T.; Anton, K.; Ivanova, A.; et al. Methotrexate Is Not Superior to Placebo in Maintaining Steroid-Free Response or Remission in Ulcerative Colitis. Gastroenterology 2018, 155, 1098–1108.e9. [Google Scholar] [CrossRef] [PubMed]
- Chande, N.; Wang, Y.; MacDonald, J.K.; McDonald, J.W. Methotrexate for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2014, 2014, CD006618. [Google Scholar] [CrossRef] [PubMed]
- Bendtzen, K. Is there a need for immunopharmacologic guidance of anti-tumor necrosis factor therapies? Arthritis Rheumatol. 2011, 63, 867–870. [Google Scholar] [CrossRef]
- Garman, R.D.; Munroe, K.; Richards, S.M. Methotrexate reduces antibody responses to recombinant human alpha-galactosidase A therapy in a mouse model of Fabry disease. Clin. Exp. Immunol. 2004, 137, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Munroe, K.; Housman, M.; Garman, R.; Richards, S. Immune tolerance induction to enzyme-replacement therapy by co-administration of short-term, low-dose methotrexate in a murine Pompe disease model. Clin. Exp. Immunol. 2008, 152, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Sunseri, W.; Hyams, J.S.; Lerer, T.; Mack, D.R.; Griffiths, A.M.; Otley, A.R.; Rosh, J.R.; Carvalho, R.; Grossman, A.B.; Cabrera, J.; et al. Retrospective cohort study of methotrexate use in the treatment of pediatric Crohn’s disease. Inflamm. Bowel Dis. 2014, 20, 1341–1345. [Google Scholar] [CrossRef]
- Feagan, B.G.; McDonald, J.W.; Panaccione, R.; Enns, R.A.; Bernstein, C.N.; Ponich, T.P.; Bourdages, R.; Macintosh, D.G.; Dallaire, C.; Cohen, A.; et al. Methotrexate in combination with infliximab is no more effective than infliximab alone in patients with Crohn’s disease. Gastroenterology 2014, 146, 681–688.e1. [Google Scholar] [CrossRef]
- Kappelman, M.D.; Wohl, D.A.; Herfarth, H.H.; Firestine, A.M.; Adler, J.; Ammoury, R.F.; Aronow, J.E.; Bass, D.M.; Bass, J.A.; Benkov, K.; et al. Comparative Effectiveness of Anti-TNF in Combination with Low-Dose Methotrexate vs Anti-TNF Monotherapy in Pediatric Crohn’s Disease: A Pragmatic Randomized Trial. Gastroenterology 2023, 165, 149–161.e7. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Waterman, M.; Kopylov, U.; Yavzori, M.; Picard, O.; Fudim, E.; Awadie, H.; Weiss, B.; Chowers, Y. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2013, 11, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Stallhofer, J.; Guse, J.; Kesselmeier, M.; Grunert, P.C.; Lange, K.; Stalmann, R.; Eckardt, V.; Stallmach, A. Immunomodulator comedication promotes the reversal of anti-drug antibody-mediated loss of response to anti-TNF therapy in inflammatory bowel disease. Int. J. Color. Dis. 2023, 38, 54. [Google Scholar] [CrossRef]
- van Roon, E.N.; van de Laar, M.A. Methotrexate bioavailability. Clin. Exp. Rheumatol. 2010, 28, S27–S32. [Google Scholar]
- Wilson, A.; Patel, V.; Chande, N.; Ponich, T.; Urquhart, B.; Asher, L.; Choi, Y.; Tirona, R.; Kim, R.B.; Gregor, J.C. Pharmacokinetic profiles for oral and subcutaneous methotrexate in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2013, 37, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Kurnik, D.; Loebstein, R.; Fishbein, E.; Almog, S.; Halkin, H.; Bar-Meir, S.; Chowers, Y. Bioavailability of oral vs. subcutaneous low-dose methotrexate in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2003, 18, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Cassinotti, A.; Batticciotto, A.; Parravicini, M.; Lombardo, M.; Radice, P.; Cortelezzi, C.C.; Segato, S.; Zanzi, F.; Cappelli, A.; Segato, S. Evidence-based efficacy of methotrexate in adult Crohn’s disease in different intestinal and extraintestinal indications. Ther. Adv. Gastroenterol. 2022, 15. [Google Scholar] [CrossRef]
- Goss, S.L.; Klein, C.E.; Jin, Z.; Locke, C.S.; Rodila, R.C.; Kupper, H.; Burmester, G.R.; Awni, W.M. Methotrexate Dose in Patients With Early Rheumatoid Arthritis Impacts Methotrexate Polyglutamate Pharmacokinetics, Adalimumab Pharmacokinetics, and Efficacy: Pharmacokinetic and Exposure-response Analysis of the CONCERTO Trial. Clin. Ther. 2018, 40, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Morrow, R.; Funk, R.; Becker, M.; Sherman, A.; Van Haandel, L.; Hudson, T.; Casini, R.; Shakhnovich, V. Potential Role of Methotrexate Polyglutamates in Therapeutic Drug Monitoring for Pediatric Inflammatory Bowel Disease. Pharmaceuticals 2021, 14, 463. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.J.; Sorich, M.J.; Kowalski, S.M.; McKinnon, R.; Proudman, S.M.; Cleland, L.; Wiese, M.D. The role and utility of measuring red blood cell methotrexate polyglutamate concentrations in inflammatory arthropathies—A systematic review. Eur. J. Clin. Pharmacol. 2015, 71, 411–423. [Google Scholar] [CrossRef]
- Brooks, A.J.; Begg, E.J.; Zhang, M.; Frampton, C.M.; Barclay, M.L. Red blood cell methotrexate polyglutamate concentrations in inflammatory bowel disease. Ther. Drug Monit. 2007, 29, 619–625. [Google Scholar] [CrossRef]
- Vasudevan, A.; Parthasarathy, N.; Con, D.; Nicolaides, S.; Apostolov, R.; Chauhan, A.; Bishara, M.; Luber, R.P.; Joshi, N.; Wan, A.; et al. Thiopurines vs methotrexate: Comparing tolerability and discontinuation rates in the treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. 2020, 52, 1174–1184. [Google Scholar] [CrossRef]
- Singh, S.; Facciorusso, A.; Dulai, P.S.; Jairath, V.; Sandborn, W.J. Comparative Risk of Serious Infections with Biologic and/or Immunosuppressive Therapy in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2020, 18, 69–81.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchgesner, J.; Lemaitre, M.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Risk of Serious and Opportunistic Infections Associated with Treatment of Inflammatory Bowel Diseases. Gastroenterology 2018, 155, 337–346.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrin-Biroulet, L.; Khosrotehrani, K.; Carrat, F.; Bouvier, A.M.; Chevaux, J.B.; Simon, T.; Carbonnel, F.; Colombel, J.F.; Dupas, J.L.; Godeberge, P.; et al. Increased risk for nonmelanoma skin cancers in patients who receive thiopurines for inflammatory bowel disease. Gastroenterology 2011, 141, 1621–1628.e5. [Google Scholar] [CrossRef] [PubMed]
- Siegel, C.A.; Marden, S.M.; Persing, S.M.; Larson, R.J.; Sands, B.E. Risk of lymphoma associated with combination anti-tumor necrosis factor and immunomodulator therapy for the treatment of Crohn’s disease: A meta-analysis. Clin. Gastroenterol. Hepatol. 2009, 7, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Lemaitre, M.; Kirchgesner, J.; Rudnichi, A.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Association Between Use of Thiopurines or Tumor Necrosis Factor Antagonists Alone or in Combination and Risk of Lymphoma in Patients with Inflammatory Bowel Disease. JAMA 2017, 318, 1679–1686. [Google Scholar] [CrossRef]
- Shea, B.; Swinden, M.V.; Tanjong Ghogomu, E.; Ortiz, Z.; Katchamart, W.; Rader, T.; Bombardier, C.; Wells, G.A.; Tugwell, P. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst. Rev. 2013, 2013, CD000951. [Google Scholar] [CrossRef]
- Whittle, S.L.; Hughes, R.A. Folate supplementation and methotrexate treatment in rheumatoid arthritis: A review. Rheumatology 2004, 43, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Kremer, J.M.; Alarcón, G.S.; Weinblatt, M.E.; Kaymakcian, M.V.; Macaluso, M.; Cannon, G.W.; Palmer, W.R.; Sundy, J.S.; St Clair, E.W.; Alexander, R.W.; et al. Clinical, laboratory, radiographic, and histopathologic features of methotrexate-associated lung injury in patients with rheumatoid arthritis: A multicenter study with literature review. Arthritis Rheumatol. 1997, 40, 1829–1837. [Google Scholar] [CrossRef]
- Kremer, J. Major Side Effects of Low-Dose Methotrexate. Available online: https://www.uptodate.com/contents/major-side-effects-of-low-dose-methotrexate (accessed on 18 May 2023).
- Wolfe, F.; Michaud, K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheumatol. 2007, 56, 1433–1439. [Google Scholar] [CrossRef]
- Greenberg, J.D.; Reed, G.; Kremer, J.M.; Tindall, E.; Kavanaugh, A.; Zheng, C.; Bishai, W.; Hochberg, M.C. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry. Ann. Rheum. Dis. 2010, 69, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Sammaritano, L.R.; Bermas, B.L.; Chakravarty, E.E.; Chambers, C.; Clowse, M.E.B.; Lockshin, M.D.; Marder, W.; Guyatt, G.; Branch, D.W.; Buyon, J.; et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol. 2020, 72, 529–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Design | Anti-TNFs | MTX Dosing, mg/Week | Characteristics | Drug Level, µg/mL | ADA Formation | Clinical Outcomes |
---|---|---|---|---|---|---|---|
Gastroenterology Studies | |||||||
Colman (2015) [30] | Retrospective review | IFX ADL CZP | 75% used PO MTX 25% used parenteral MTX 71% used LD-MTX (≤12.5 mg) 29% used HD-MTX (15–25 mg) | 73 adult patients with IBD - 74% with CD - Active disease All on anti-TNF therapy in combination with MTX - 49% on ADL - 40% on IFX - 11% on CZP Followed for 42 months Secondary outcomes: - Endoscopic inflammation - Steroid use - Therapy escalation - Addition or escalation of concomitant therapy - Surgery | - | - | No difference in relapse rate between methods of MTX administration - 37% PO vs. 27% parenteral; p = 0.56 HD-MTX more likely to maintain remission than LD-MTX; log-rank test p < 0.01 No difference in secondary outcomes indicating worsening disease between MTX doses (OR 1.14; 95% CI 0.61–2.13; p = 0.67) |
Ungar (2017) [31] | Retrospective multi-centre (3) review | ADL | Mix of PO and SC MTX (% not stated) SC dose: 15–25 mg PO dose: 10–15 mg | 23 adult patients with IBD - 91% with CD All developed ADAs with LOR in ADL monotherapy; immunomodulator was added as salvage combination therapy - 14 on thiopurines - 9 on MTX | - | 48% of patients had elimination of ADAs - No difference in type of immunomodulator; p = 0.5 | Patients who had reversal of ADA achieved clinical responses and normalisation of inflammatory markers |
Chi (2018) [29] | Cross-sectional analysis | IFX | “Primarily low dose oral MTX, mean dose 11.6 mg ± 5.1 mg/week” | 223 paediatric and young adult patients with IBD - 83.9% with CD All on IFX - 62.3% as monotherapy - 37.7% as combination therapy Of the combination therapy: - 84.5% used MTX - 15.5% used 6-MP | Higher TLs in combination therapy (15.59 ± 1.20) vs. monotherapy (12.35 ± 0.93); p = 0.01 Monotherapy (27.3%) more likely to have subtherapeutic TLs < 3.5 than combination therapy (8.3%): OR 0.13; 95% CI 0.04–0.39; p < 0.01 No difference in mean TL between the MTX (15.2) and MP (17.9) groups; p = 0.41 | Combination therapy (9.5%) was less likely to result in ADAs than monotherapy (20%) (OR 0.3; 95% CI 0.1–0.7; p < 0.01) Trend towards higher rates of ADAs in 6-MP (23.08%) vs. MTX (7.04%) use; p = 0.07 | No difference in clinical or biochemical disease activity between IFX monotherapy and combination therapy |
Vasudevan (2019) [32] | Retrospective multi-centre (2) observational study | IFX ADL | PO MTX - 29% used LD-MTX (≤12.5 mg) - 71% used HD-MTX (≥15 mg) | 269 adult patients with CD All on anti-TNF therapy and with ≥3 months of combination immunomodulator therapy - 58% on IFX - 42% on ADL - 71% used thiopurines - 29% used MTX | No difference in IFX TLs between thiopurines (5.3) and MTX (5.4); p = 0.63 Higher ADL TLs with thiopurines (7.2) vs. MTX (4.3) combination therapy; p = 0.03 The thiopurine combination achieved higher rates of therapeutic ADL levels (73%) vs. MTX (18%); p < 0.01 | - | Higher rates of endoscopic remission in the ADL group with thiopurine combinations (49%) vs. MTX (6%); p = 0.004 No differences in remission rate between immunomodulators when used in combination with IFX - 65% on thiopurines vs. 54% on MTX; p = 0.09 No differences in rate of endoscopic remission between low- and high-dose MTX |
Borren (2019) [33] | Retrospective review | IFX ADL CZP GOL | PO and SC MTX, 7.5–25 mg 28% used LD-MTX (≤12.5 mg) - 96.8% used PO 72% used HD-MTX (>12.5 mg) - 39% used PO | 222 adult patients with IBD - 73.4% with CD All on anti-TNF therapy with varying doses of MTX IFX - 38.1% LD-MTX users - 37.7% HD-MTX users ADL - 44.4% LD-MTX users - 40.9% HD-MTX users CZP - 9.5% LD-MTX users - 7.0% HD-MTX users GOL - 7.9% LD-MTX users - 4.4% HD-MTX users | - | - | No difference in primary composite outcome (IBD-related hospitalisation or surgery, biological change, or steroid initiation) between the LD-MTX (37%) and HD-MTX (47%) groups; p = 0.15 Multi-variable analysis showed no difference in individual outcomes for either group |
Yarur (2022) COMBO-IBD [19] | Prospective cohort study | IFX | PO MTX - 65.4% used LD-MTX (12.5 mg) - 34.6% used HD-MTX (25 mg) | 113 adult patients with IBD - 73% with CD All on IFX - 23% on IFX monotherapy - 23% on MTX in combination - 54% on thiopurines in combination | Higher TLs in the combination MTX group (17.1 [IQR 9.7–23.7]) and thiopurine group (14.5 [IQR 4.5–18.8]) vs. monotherapy (3.8 [IQR 1.8–9.2]); p = 0.0001 - Only those on thiopurines combined with 6-TGNs > 145 had higher TLs than in monotherapy Trend towards higher TL in MTX combination therapy than with thiopurines p = 0.07 | Higher rates of ADAs in monotherapy than in combination therapy (OR8.6; 95% CI 2.58–29.16) * Not stratified by type of combination therapy | Higher rates of steroid-free deep remission in combination therapy (71.3) vs. monotherapy (46.2); p = 0.02 - Use of MTX and thiopurines with 6-TGNs > 145 as combination therapy were both associated with remission |
Rheumatology Studies | |||||||
Maini (1998) [34] | Multi-centre randomised, double-blind placebo-controlled trial | IFX | PO MTX, 7.5 mg | 101 adult patients with active RA Randomised into seven groups - IFX 1 mg/kg ± MTX - IFX 3 mg/kg ± MTX - IFX 10 mg/kg ± MTX - Placebo infusion + MTX Followed for 26 weeks | Combination with MTX showed consistently higher drug levels 6 weeks after the last infusion in those receiving IFX at 3 mg/kg and at 10 mg/kg IFX 1mg/kg monotherapy resulted in undetectable TLs from week 4 vs. stable, detectable TLs in those receiving combination MTX | Rate of ADA formation was inversely proportional to IFX dose MTX combination reduced ADA formation - 53% of IFX 1 mg/kg vs. 15% with MTX - 21% of IFX 3 mg/kg vs. 7% with MTX - 7% of IFX 10 mg/kg vs. 0% with MTX | IFX (1 mg/kg) monotherapy was no better than placebo - MTX combination achieved clinical responses in >60% of the group for a median of 16.5 weeks; p = 0.006 vs. IFX (1 mg/kg) monotherapy |
Burmester (2013) CONCERTO [35] | Randomised, double blind parallel-armed study | ADL | PO MTX: 2.5 mg 5 mg 10 mg 20 mg | 395 adult patients with RA All on ADL Randomised 1:1:1:1 to combination therapy with different MTX doses Followed for 26 weeks | Higher TLs with increasing MTX doses of up to 10 mg/week - Mean TLs of 4.4 (±5.2), 5.7 (±4.9), 6.5 (4.4), 6.9 (3.4) for MTX at 2.5 mg, 5 mg, 10 mg, and 20 mg, respectively | Lower rates of ADAs with increasing MTX doses of up to 10 mg/week - 21%, 13%, 6%, and 6% for MTX 2.5 mg, 5 mg, 10 mg, and 20 mg, respectively | Reduced disease activity with increasing MTX doses - Higher proportion of patients meeting the primary endpoint with increasing MTX doses; p = 0.005 |
Ducourau (2020) [36] | Multi-centre randomised trial | ADL | SC MTX, 10 mg | 107 adult patients with axial spondylarthritis All on ADL Randomised 1:1 to ADL monotherapy vs. combination with MTX - 51.4% monotherapy - 48.6% combination Followed for 26 weeks | MTX combination therapy was associated with higher TLs at all time points; p < 0.05 Those with ADAs had lower median TLs (1.43 [0.00–11.47]) compared to those without ADAs (8.66 [0.05–18.31]) at week 26; p < 0.05 | Lower rates of ADAs in MTX combination therapy (25%) vs. ADL monotherapy (47.3%); p = 0.03 - MTX combination therapy reduced risk of ADA formation; RR 0.53 (95% CI 0.31–0.91) | Similar rates of clinically inactive disease by week 26 for both groups (40% ADL monotherapy vs. 37%; p = 0.9) |
Dermatology Studies | |||||||
van der Kraaij (2022) [37] | Randomised control trial | ADL | PO MTX, 10 mg | 61 adult patients with psoriasis All on ADL Randomised 1:1 to ADL monotherapy vs. combination with MTX - 49% monotherapy - 51% combination | No difference in median TL between groups; p = 0.26 - 5.9 [3.5–8.8] for monotherapy - 6.8 [5.5–9.2] for combination More monotherapy patients failed to reach therapeutic TLs > 3.2 at week 5 (6.5%) vs. with combination therapy (30%); p = 0.02 - This was not significant at week 49; 12.9 vs. 23.3%; p = 0.32 | Higher rates of ADA formation in monotherapy group (60%) vs. combination therapy group (22.6%); p < 0.01 ADAs appeared earlier in monotherapy group vs. combination therapy group - Week 5: 33.3 vs. 3.2%; p < 0.01 - Week 49: 46.7 vs. 38.7%; p = 0.31 | Combination therapy had faster clinical improvement, with 83.9% achieving treatment goals in week 13 vs. 56.7% of monotherapy patients; p = 0.03 |
Study | Design | Anti-TNFs | MTX Dosing, mg/Week | Characteristics | Drug Level, µg/mL | ADA Formation | Clinical Outcomes |
---|---|---|---|---|---|---|---|
Vermeire (2007) [28] | Multi-centre (3) prospective cohort study | IFX | SC MTX at 15 mg (12-week induction with 25 mg) | 174 adult patients with IBD All commenced IFX (episodic, on-demand regime) - 34% with IFX monotherapy - 37.3% with AZA combination - 28.7% with MTX combination | Higher median IFX levels in combination therapy (6.45) vs. monotherapy (2.42); p = 0.065 - No difference between MTX (5.65) and AZA (6.15); p = 0.27 | Lower rates of ADA formation in combination therapy (46%) vs. monotherapy (73%); p < 0.001 MTX (44%, p = 0.002) and AZA (48%, p = 0.004) had equal efficacies against ADA formation vs. monotherapy No difference in rate of ADA when immunomodulator started at time of IFX vs. preceding 3 months | - |
Feagan (2014) COMMIT [58] | Double-blind, placebo-controlled, randomised trial | IFX | SC MTX at 25 mg (escalated from 10 mg to 25 mg over 5 weeks) | 126 adult patients with CD All commenced IFX Randomised 1:1 - IFX monotherapy (placebo) - MTX combination | Trend towards higher TLs in MTX group (6.35) vs. monotherapy (3.75); p = 0.08 | Lower rates of ADA formation in MTX group (4%) vs. monotherapy (20%); p = 0.01 | No difference in rate of treatment failure at week 50 between MTX (30.6%) and monotherapy (29.8%) groups, (HR, 1.16; 95% CI 0.62–2.17) |
Kappelman (2023) [59] | Multi-centre (35), placebo-controlled, randomised trial | IFX ADL | Weight-based PO MTX - 15 mg if >40 kg - 12.5 mg if 30–40 kg - 10 mg if 20–30 kg | 297 paediatric (age < 21) patients with CD All commenced either IFX or ADL - 71% IFX - 29% ADL Randomised 1:1 and stratified by anti-TNF - IFX monotherapy (placebo) - MTX combination Followed for 1–3 years | - | No difference in ADA formation with MTX (34%) vs. placebo (47%) group for IFX (RR 0.72, 95% CI 0.49–1.07) No difference for ADL; 15% with MTX vs. 21% with placebo (RR, 0.71 95% CI 0.24–2.07) Those on ADL with ADAs were more likely to have treatment failure (64% vs. 36%, p = 0.03) * Serum available for only 70% of patients | MTX use in those on ADL reduced the risk of treatment failure vs. placebo; HR 0.40 (95% CI 0.19–0.81, p = 0.01) No significant differences between groups for those on IFX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demase, K.; Monitto, C.K.; Little, R.D.; Sparrow, M.P. The Role of Low-Dose Oral Methotrexate in Increasing Anti-TNF Drug Levels and Reducing Immunogenicity in IBD. J. Clin. Med. 2023, 12, 4382. https://doi.org/10.3390/jcm12134382
Demase K, Monitto CK, Little RD, Sparrow MP. The Role of Low-Dose Oral Methotrexate in Increasing Anti-TNF Drug Levels and Reducing Immunogenicity in IBD. Journal of Clinical Medicine. 2023; 12(13):4382. https://doi.org/10.3390/jcm12134382
Chicago/Turabian StyleDemase, Kathryn, Cassandra K. Monitto, Robert D. Little, and Miles P. Sparrow. 2023. "The Role of Low-Dose Oral Methotrexate in Increasing Anti-TNF Drug Levels and Reducing Immunogenicity in IBD" Journal of Clinical Medicine 12, no. 13: 4382. https://doi.org/10.3390/jcm12134382
APA StyleDemase, K., Monitto, C. K., Little, R. D., & Sparrow, M. P. (2023). The Role of Low-Dose Oral Methotrexate in Increasing Anti-TNF Drug Levels and Reducing Immunogenicity in IBD. Journal of Clinical Medicine, 12(13), 4382. https://doi.org/10.3390/jcm12134382