Circulating Syndecan-1 Levels Are Associated with Chronological Coagulofibrinolytic Responses and the Development of Disseminated Intravascular Coagulation (DIC) after Trauma: A Retrospective Observational Study
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Patient Selection and Criteria
2.3. Blood Sampling and Measurement
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Circulating SDC-1 Changes after Trauma and Relationship between Circulating SDC-1 Levels and Coagulofibrinolytic Responses on Admission
3.3. Association between Circulating SDC-1 Elevation and Chronological Changes in Coagulofibrinolytic Markers
3.4. Association of Circulating SDC-1 with Development of DIC, Prevalence of Shock, and In-Hospital Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Norton, R.; Kobusingye, O. Injuries. N. Engl. J. Med. 2013, 368, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Brohi, K.; Singh, J.; Heron, M.; Coats, T. Acute traumatic coagulopathy. J. Trauma 2003, 54, 1127–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, J.B.A.M.; Lynn, M.; McKenney, M.G.; Cohn, S.M.; Murtha, M.R. Early Coagulopathy Predicts Mortality in Trauma. J. Trauma Inj. Infect. Crit. Care 2003, 55, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; del Junco, J.L.; Brasel, K.J.; Bulger, E.M.; PROPPR Study Group; et al. Transfusion of plasma, platelets, and red cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma The PROPPR randomized clinical trial. JAMA 2015, 313, 471–482. [Google Scholar] [CrossRef]
- Gando, S.; Otomo, Y. Local hemostasis, immunothrombosis, and systemic disseminated intravascular coagulation in trauma and traumatic shock. Crit. Care 2015, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gando, S. Disseminated Intravascular Coagulation in Trauma Patients. Semin. Thromb. Hemost. 2001, 27, 585–592. [Google Scholar] [CrossRef]
- Moore, H.B.; Moore, E.E.; Neal, M.D.; Sheppard, F.R.; Kornblith, L.Z.; Draxler, D.F.; Sauaia, A. Fibrinolysis Shutdown in Trauma: Historical Review and Clinical Implications. Anesth. Analg. 2019, 129, 762–773. [Google Scholar] [CrossRef]
- Uchimido, R.; Schmidt, E.P.; Shapiro, N.I. The glycocalyx: A novel diagnostic and therapeutic target in sepsis. Crit. Care 2019, 23, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, J.; Bollmann, M. Soluble syndecans: Biomarkers for diseases and therapeutic options. Br. J. Pharmacol. 2019, 176, 67–81. [Google Scholar] [CrossRef]
- Teng, Y.H.-F.; Aquino, R.S.; Park, P.W. Molecular functions of syndecan-1 in disease. Matrix Biol. 2012, 31, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Okada, H.; Takemura, G.; Suzuki, K.; Oda, K.; Takada, C.; Hotta, Y.; Miyazaki, N.; Tsujimoto, A.; Muraki, I.; Ando, Y.; et al. Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Crit. Care 2017, 21, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, E.G.; Ostrowski, S.R.; Cardenas, J.C.; Baer, L.A.; Tomasek, J.S.; Henriksen, H.H.; Wade, C.E. Syndecan-1: A quantitative marker for the endotheliopathy of trauma. J. Am. Coll. Surg. 2017, 225, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.G.; Cardenas, J.C.; Lopez, E.; Cotton, B.A.; Tomasek, J.S.; Ostrowski, S.R.; Wade, C.E. Early Identification of the Patient with Endotheliopathy of Trauma by Arrival Serum Albumin. Shock 2018, 50, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P.I.; Stensballe, J.; Rasmussen, L.S.; Ostrowski, S.R. A High Admission Syndecan-1 Level, A Marker of Endothelial Glycocalyx Degradation, Is Associated with Inflammation, Protein C Depletion, Fibrinolysis, and Increased Mortality in Trauma Patients. Ann. Surg. 2011, 254, 194–200. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Sørensen, A.M.; Windeløv, N.A.; Perner, A.; Welling, K.L.; Wanscher, M.; Johansson, P.I. High levels of soluble VEGF receptor 1 early after trauma are associated with shock, sympathoadrenal activation, glycocalyx degradation and inflammation in severely injured patients: A prospective study. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, P.I.; Henriksen, H.H.; Stensballe, J.; Gybel-Brask, M.; Cardenas, J.C.; Baer, L.A.; Ostrowski, S.R. Traumatic endotheliopathy: A prospective observational study of 424 severely injured patients. Ann. Surg. 2017, 265, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Okada, H.; Sumi, K.; Tomita, H.; Kobayashi, R.; Ishihara, T.; Mizuno, Y.; Yamaji, F.; Kamidani, R.; Miura, T.; et al. Syndecan-1 as a severity biomarker for patients with trauma. Front. Med. 2022, 9, 985955. [Google Scholar] [CrossRef]
- Qi, F.; Zhou, H.; Gu, P.; Tang, Z.-H.; Zhu, B.-F.; Chen, J.-R.; Zhang, J.-S.; Li, F. Endothelial glycocalyx degradation is associated with early organ impairment in polytrauma patients. BMC Emerg. Med. 2021, 21, 52. [Google Scholar] [CrossRef]
- Gando, S.; Shiraishi, A.; Wada, T.; Yamakawa, K.; Fujishima, S.; Saitoh, D.; Kushimoto, S.; Ogura, H.; Abe, T.; Otomo, Y.; et al. A multicenter prospective validation study on disseminated intravascular coagulation in trauma-induced coagulopathy. J. Thromb. Haemost. 2020, 18, 2232–2244. [Google Scholar] [CrossRef]
- Hayakawa, M. Pathophysiology of trauma-induced coagulopathy: Disseminated intravascular coagulation with the fibrinolytic phenotype. J. Intensiv. Care 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Taylor, F.B., Jr.; Toh, C.H.; Hoots, W.K.; Wada, H.; Levi, M. Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar]
- Patel, P.; Walborn, A.; Rondina, M.; Fareed, J.; Hoppensteadt, D. Markers of Inflammation and Infection in Sepsis and Disseminated Intravascular Coagulation. Clin. Appl. Thromb. 2019, 25, 1076029619843338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iba, T.; Levy, J.H. Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost. 2019, 17, 283–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatanaka, K.; Ito, T.; Madokoro, Y.; Kamikokuryo, C.; Niiyama, S.; Yamada, S.; Maruyama, I.; Kakihana, Y. Circulating Syndecan-1 as a Predictor of Persistent Thrombocytopenia and Lethal Outcome: A Population Study of Patients with Suspected Sepsis Requiring Intensive Care. Front. Cardiovasc. Med. 2021, 8, 730553. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Haase, N.; Müller, R.B.; Møller, M.H.; Pott, F.C.; Perner, A.; Johansson, P.I. Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: A prospective study. Crit. Care 2015, 19, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, D.; Ray, S.; Srivastava, L.M.; Bhargava, S. Evolution of serum hyaluronan and syndecan levels in prognosis of sepsis patients. Clin. Biochem. 2016, 49, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Puskarich, M.A.; Cornelius, D.; Tharp, J.; Nandi, U.; Jones, A.E. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J. Crit. Care 2016, 36, 125–129. [Google Scholar] [CrossRef]
- Hahn, R.G.; Patel, V.; Dull, R.O. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol. Scand. 2021, 65, 590–606. [Google Scholar] [CrossRef]
- Filho, I.P.T.; Torres, L.N.; Salgado, C.; Dubick, M.A. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am. J. Physiol. Circ. Physiol. 2016, 310, H1468–H1478. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, K.; Parks, W.C.; Park, P.W. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood 2009, 114, 3033–3043. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Liu, J.; Zhang, H.; Wang, X.; Liu, D. Elevated endothelial dysfunction-related biomarker levels indicate the severity and predict sepsis incidence. Sci. Rep. 2022, 12, 21935. [Google Scholar] [CrossRef]
- Connolly-Andersen, A.-M.; Thunberg, T.; Ahlm, C. Endothelial Activation and Repair During Hantavirus Infection: Association with Disease Outcome. Open Forum Infect. Dis. 2014, 1, ofu027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajita, Y.; Terashima, T.; Mori, H.; Islam, M.; Irahara, T.; Tsuda, M.; Kano, H.; Takeyama, N. A longitudinal change of syndecan-1 predicts risk of acute respiratory distress syndrome and cumulative fluid balance in patients with septic shock: A preliminary study. J. Intensiv. Care 2021, 9, 27. [Google Scholar] [CrossRef]
- Hahn, R.G.; Zdolsek, M.; Zdolsek, J. Plasma concentrations of syndecan-1 are dependent on kidney function. Acta Anaesthesiol. Scand. 2021, 65, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Prim. 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Gando, S.; Iba, T.; Kim, P.Y.; Yeh, C.H.; Brohi, K.; Hunt, B.J.; Levy, J.H.; Draxler, D.F.; Stanworth, S.; et al. Defining trauma-induced coagulopathy with respect to future implications for patient management: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2020, 18, 740–747. [Google Scholar] [CrossRef]
- Schenck, H.; Netti, E.; Teernstra, O.; De Ridder, I.; Dings, J.; Niemelä, M.; Temel, Y.; Hoogland, G.; Haeren, R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front. Cell Dev. Biol. 2021, 9, 731641. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Matsumoto, H.; Ogura, H.; Hirose, T.; Shimizu, K.; Yamamoto, K.; Maruyama, I.; Shimazu, T. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J. Crit. Care 2018, 43, 48–53. [Google Scholar] [CrossRef]
- Johansson, P.I.; Sørensen, A.M.; Perner, A.; Welling, K.L.; Wanscher, M.; Larsen, C.F.; Ostrowski, S.R. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit. Care 2011, 15, R272. [Google Scholar] [CrossRef] [Green Version]
- Chappell, D.; Bruegger, D.; Potzel, J.; Jacob, M.; Brettner, F.; Vogeser, M.; Conzen, P.; Becker, B.F.; Rehm, M. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit. Care 2014, 18, 538. [Google Scholar] [CrossRef] [Green Version]
- Bruegger, D.; Schwartz, L.; Chappell, D.; Jacob, M.; Rehm, M.; Vogeser, M.; Christ, F.; Reichart, B.; Becker, B.F. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res. Cardiol. 2011, 106, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Straat, M.; Müller, M.C.; Meijers, J.C.; Arbous, M.S.; de Man, A.M.S.; Beurskens, C.J.; Vroom, M.B.; Juffermans, N.P. Effect of transfusion of fresh frozen plasma on parameters of endothelial condition and inflammatory status in non-bleeding critically ill patients: A prospective substudy of a randomized trial. Crit. Care 2015, 19, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöchl, H.; Schlimp, C.J. Trauma bleeding management: The concept of goal-directed primary care. Anesth. Analg. 2014, 119, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
ALL (n = 48) | SDC-1 on day 0 | ||||
---|---|---|---|---|---|
>99.6 ng/mL (n = 24) | ≤99.6 ng/mL (n = 24) | p Value | |||
Patient characteristics | |||||
Age | years | 61.5 (42.0–72.6) | 67.0 (42.3–75.3) | 55.0 (41.3–71.0) | 0.672 |
Sex; male/female | n, (%) | 37 (77.1)/11 (22.9) | 16 (66.7)/8 (33.3) | 21 (87.5)/3 (12.5) | 0.227 |
Injury Severity Score (ISS) | 19 (13–29) | 27 (15–34) | 17 (9–24) | 0.007 | |
shock | n, (%) | 13 (27.1) | 11 (45.8) | 2 (8.3) | 0.003 |
ISTH-overt DIC (+) | n, (%) | 11 (22.9) | 10 (41.7) | 1 (4.2) | 0.002 |
Timing of DIC diagnosis n, (%) | |||||
OA | 2 (4.2) | 2 (8.3) | 0 (0.0) | 0.149 | |
OA–3H | 7 (14.6) | 6 (25.0) | 1 (4.2) | 0.041 | |
3H–24H | 2 (4.2) | 2 (8.3) | 0 (0.0) | 0.149 | |
24H– | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
Duration from injury to blood sampling | |||||
minutes | 60 (43–110) | 62 (36–118) | 58 (46–82) | 1.000 | |
Laboratory data [normal range] | |||||
HGB [11.3–15.2] | g/dL | 13.1 (11.6–14.0) | 13.0 (10.8–13.7) | 13.3 (11.9–15.0) | 0.095 |
HCT [34.3–45.2] | % | 38.2 (34.2–41.3) | 38.2 (31.7–40.1) | 38.7 (35.3–43.0) | 0.111 |
PLT [13.1–36.9] | ×104/μL | 21.8 (17.9–26.8) | 22.3 (18.2–26.8) | 21.4 (17.7–26.7) | 0.703 |
PT-INR [0.85–1.15] | 0.97 (0.92–1.08) | 1.03 (0.95–1.21) | 0.93 (0.92–1.00) | 0.018 | |
APTT [21.5–43.1] | sec | 23.9 (21.7–28.1) | 26.4 (21.9–30.5) | 23.0 (21.7–25.0) | 0.039 |
Fbg [200–400] | mg/dL | 223 (184–270) | 206 (178–246) | 246 (197–294) | 0.036 |
FDP [<5.0] | μg/mL | 89.4 (27.3–164.3) | 154.3 (64.2–226.1) | 39.9 (16.6–96.9) | <0.001 |
D-dimer [<1.0] | μg/mL | 46.1 (14.7–82.5) | 78.0 (33.9–122.2) | 20.5 (8.4–49.9) | <0.001 |
TAT [<3.0] | μg/L | 115.3 (49.3–200.0) | 194.2 (127.0–235.4) | 60.1 (41.4–114.1) | <0.001 |
PIC [0.0–0.8] | μg/mL | 10.4 (4.8–27.9) | 16.5 (8.8–37.8) | 5.2 (3.3–10.8) | 0.001 |
tPA [1270–8840] | pg/mL | 6468 (4208–10,411) | 9696 (5638–15,685) | 5863 (3287–8075) | 0.006 |
tPAI-1 [<50] | ng/mL | 31 (15–63) | 46 (28–81) | 21 (11–57) | 0.010 |
AT [80.0–120.0] | % | 88.7 (77.4–97.1) | 82.4 (66.8–93.3) | 92.5 (87.9–100.5) | 0.003 |
PC [82.0–112.0] | % | 82.6 (71.3–108.4) | 75.0 (63.4–97.2) | 87.8 (74.5–111.6) | 0.039 |
α2PI [80.0–130.0] | % | 83.6 (67.6–100.3) | 74.3 (58.8–88.1) | 96.9 (80.3–106.8) | 0.001 |
PLG [80.0–130.0] | % | 91.2 (75.7–103.2) | 82.8 (68.9–96.5) | 98.5 (86.5–106.7) | 0.028 |
IL-6 [<4.0] | pg/mL | 122 (33–277) | 177 (87–395) | 63 (22–262) | 0.097 |
Lactate [3.3–14.9] | mg/dL | 22.0 (14.0–42.5) | 38.0 (20.0–52.8) | 14.0 (9.5–22.5) | <0.001 |
Alb [3.9–4.9] | g/dL | 3.9 (3.6–4.2) | 3.7 (3.3–4.0) | 4.1 (3.7–4.2) | 0.044 |
BUN [7–21] | mg/dL | 17 (15–21) | 18 (14–23) | 17 (15–21) | 0.535 |
Cre [0.65–1.07] | mg/dL | 0.88 (0.75–1.07) | 0.98 (0.78–1.12) | 0.87 (0.73–0.98) | 0.166 |
SDC-1 | ng/mL | 99.6 (61.1–214.3) | 213.3 (146.6–462.3) | 61.4 (38.5–86.5) | <0.001 |
Transfusion | |||||
PRBC | Units | 1 (0–10) | 5 (0–14) | 0 (0–6) | 0.033 |
FFP | Units | 0 (0–8) | 7 (0–16) | 0 (0–0) | 0.005 |
Platelets | Units | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.020 |
Intervention | |||||
Craniotomy | n, (%) | 2 (4.2) | 2 (8.3) | 0 (0.0) | 0.149 |
Thoracotomy | n, (%) | 2 (4.2) | 1 (4.2) | 1 (4.2) | 1.000 |
Laparotomy | n, (%) | 3 (7.1) | 2 (8.3) | 1 (4.2) | 0.551 |
IVR | n, (%) | 10 (23.8) | 8 (33.3) | 2 (8.3) | 0.033 |
ORIF | n, (%) | 20 (47.6) | 8 (33.3) | 12 (50.0) | 0.242 |
Outcome | |||||
In-hospital mortality | n, (%) | 5 (10.4) | 4 (16.7) | 1 (4.2) | 0.156 |
Cut-Off Value | Sensitivity (%) | Specificity (%) | AUC | Standard Error | p Value | 95%CI | ||
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||||
DIC | 130.38 ng/mL | 90.9 | 73.0 | 0.845 | 0.057 | 0.001 | 0.734 | 0.957 |
Shock | 116.48 ng/mL | 84.6 | 68.6 | 0.774 | 0.067 | 0.004 | 0.643 | 0.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, H.; Annen, S.; Mukai, N.; Ohshita, M.; Murata, S.; Harima, Y.; Ogawa, S.; Okita, M.; Nakabayashi, Y.; Kikuchi, S.; et al. Circulating Syndecan-1 Levels Are Associated with Chronological Coagulofibrinolytic Responses and the Development of Disseminated Intravascular Coagulation (DIC) after Trauma: A Retrospective Observational Study. J. Clin. Med. 2023, 12, 4386. https://doi.org/10.3390/jcm12134386
Matsumoto H, Annen S, Mukai N, Ohshita M, Murata S, Harima Y, Ogawa S, Okita M, Nakabayashi Y, Kikuchi S, et al. Circulating Syndecan-1 Levels Are Associated with Chronological Coagulofibrinolytic Responses and the Development of Disseminated Intravascular Coagulation (DIC) after Trauma: A Retrospective Observational Study. Journal of Clinical Medicine. 2023; 12(13):4386. https://doi.org/10.3390/jcm12134386
Chicago/Turabian StyleMatsumoto, Hironori, Suguru Annen, Naoki Mukai, Muneaki Ohshita, Satoru Murata, Yutaka Harima, Shirou Ogawa, Mitsuo Okita, Yuki Nakabayashi, Satoshi Kikuchi, and et al. 2023. "Circulating Syndecan-1 Levels Are Associated with Chronological Coagulofibrinolytic Responses and the Development of Disseminated Intravascular Coagulation (DIC) after Trauma: A Retrospective Observational Study" Journal of Clinical Medicine 12, no. 13: 4386. https://doi.org/10.3390/jcm12134386
APA StyleMatsumoto, H., Annen, S., Mukai, N., Ohshita, M., Murata, S., Harima, Y., Ogawa, S., Okita, M., Nakabayashi, Y., Kikuchi, S., Takeba, J., & Sato, N. (2023). Circulating Syndecan-1 Levels Are Associated with Chronological Coagulofibrinolytic Responses and the Development of Disseminated Intravascular Coagulation (DIC) after Trauma: A Retrospective Observational Study. Journal of Clinical Medicine, 12(13), 4386. https://doi.org/10.3390/jcm12134386