Tranexamic Acid Use in Pediatric Craniotomies at a Large Tertiary Care Pediatric Hospital: A Five Year Retrospective Study
Abstract
:1. Introduction
2. Materials & Methods
3. Statistical Analysis
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goobie, S.M.; Haas, T. Perioperative bleeding management in pediatric patients. Curr. Opin. Anaesthesiol. 2016, 29, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, D.; Goobie, S.M. The efficacy of antifibrinolytic drugs in children undergoing noncardiac surgery: A systematic review of the literature. Anesth. Analg. 2014, 118, 628–636. [Google Scholar] [CrossRef]
- Tzortzopoulou, A.; Cepeda, M.S.; Schumann, R.; Carr, D.B. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst. Rev. 2008, 9, CD006883. [Google Scholar] [CrossRef]
- Patel, P.A.; Wyrobek, J.A.; Butwick, A.J.; Pivalizza, E.G.; Hare, G.M.T.; Mazer, C.D.; Goobie, S.M. Update on Applications and Limitations of Perioperative Tranexamic Acid. Anesth. Analg. 2022, 135, 460–473. [Google Scholar] [CrossRef]
- King, M.R.; Staffa, S.J.; Stricker, P.A.; Pérez-Pradilla, C.; Nelson, O.; Benzon, H.A.; Goobie, S.M.; Abruzzese, C.; Asmal, I.; Bailey, K.; et al. Safety of antifibrinolytics in 6583 pediatric patients having craniosynostosis surgery: A decade of data reported from the multicenter Pediatric Craniofacial Collaborative Group. Pediatr. Anesth. 2022, 32, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- de Faria, J.L.; da Silva Brito, J.; Costa e Silva, L.T.; Kilesse, C.T.S.M.; de Souza, N.B.; Pereira, C.U.; Figueiredo, E.G.; Rabelo, N.N. Tranexamic acid in Neurosurgery: A controversy indication-review. Neurosurg. Rev. 2021, 44, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Hooda, B.; Chouhan, R.S.; Rath, G.P.; Bithal, P.K.; Suri, A.; Lamsal, R. Effect of tranexamic acid on intraoperative blood loss and transfusion requirements in patients undergoing excision of intracranial meningioma. J. Clin. Neurosci. 2017, 41, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Mebel, D.; Akagami, R.; Flexman, A.M. Use of Tranexamic Acid Is Associated with Reduced Blood Product Transfusion in Complex Skull Base Neurosurgical Procedures: A Retrospective Cohort Study. Anesth. Analg. 2016, 122, 503–508. [Google Scholar] [CrossRef]
- Udupi, B.P.; Vel, R.; Satya Prakash, M.V.; Adinarayanan, S.; Mishra, S.; Babu, L. Effect of low dose tranexamic acid on intra-operative blood loss in neurosurgical patients. Saudi J. Anaesth. 2015, 9, 42–48. [Google Scholar] [CrossRef]
- Goobie, S.M.; Staffa, S.J.; Meara, J.G.; Proctor, M.R.; Tumolo, M.; Cangemi, G.; Disma, N. High-dose versus low-dose tranexamic acid for paediatric craniosynostosis surgery: A double-blind randomised controlled non-inferiority trial. Br. J. Anaesth. 2020, 125, 336–345. [Google Scholar] [CrossRef]
- Goobie, S.M.; Gallagher, T.; Gross, I.; Shander, A. Society for the advancement of blood management administrative and clinical standards for patient blood management programs. 4th edition (pediatric version). Pediatr. Anesth. 2019, 29, 231–236. [Google Scholar] [CrossRef]
- O’donnell, D.B.B.; Vazquez, S.M.; Greisman, J.D.B.; Uddin, A.M.; Graifman, G.B.; Dominguez, J.F.; Zellner, E.; Muh, C.R. Tranexamic Acid Dosing in Craniosynostosis Surgery: A Systematic Review with Meta-analysis. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4526. [Google Scholar] [CrossRef] [PubMed]
- Goobie, S.M.; Zurakowski, D.; Glotzbecker, M.P.; McCann, M.E.; Hedequist, D.; Brustowicz, R.M.; Sethna, N.F.; Karlin, L.I.; Emans, J.B.; Hresko, M.T. Tranexamic Acid Is Efficacious at Decreasing the Rate of Blood Loss in Adolescent Scoliosis Surgery: A Randomized Placebo-Controlled Trial. J. Bone Jt. Surg. Am. 2018, 100, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Wesley, M.C.; Pereira, L.M.; Scharp, L.A.; Emani, S.M.; McGowan, F.X.; DiNardo, J.A. Pharmacokinetics of tranexamic acid in neonates, infants, and children undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology 2015, 122, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, D.; Meier, J.; New, H.V.; Van der Linden, P.J.; Hunt, B.J. Patient Blood Management for Neonates and Children Undergoing Cardiac Surgery: 2019 NATA Guidelines. J. Cardiothorac. Vasc. Anesth. 2019, 33, 3249–3263. [Google Scholar] [CrossRef]
- Goobie, S.M.; Cladis, F.P.; Glover, C.D.; Huang, H.; Reddy, S.K.; Fernandez, A.M.; Zurakowski, D.; Gries, H.; Stricker, P.A.; Fiadjoe, J.; et al. Safety of antifibrinolytics in cranial vault reconstructive surgery: A report from the pediatric craniofacial collaborative group. Paediatr. Anaesth. 2017, 27, 271–281. [Google Scholar] [CrossRef]
- Goobie, S.M.; Faraoni, D. Tranexamic acid and perioperative bleeding in children: What do we still need to know? Curr. Opin. Anaesthesiol. 2019, 32, 343–352. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Vitamin and Mineral Nutrition Information System Geneva, World Health Organization 2011; (WHO/NMH/NHD/MNM/11.1). Available online: https://apps.who.int/iris/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf (accessed on 23 July 2022).
- Myers, S.P.; Kutcher, M.E.; Rosengart, M.R.; Sperry, J.L.; Peitzman, A.B.; Brown, J.B.; Neal, M.D. Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism. J. Trauma Acute Care Surg. 2019, 86, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Meier, P.M.; Zurakowski, D.; Goobie, S.M.; Proctor, M.R.; Meara, J.G.; Young, V.J.; Rogers, G.F.; DiNardo, J.A. Multivariable predictors of substantial blood loss in children undergoing craniosynostosis repair: Implications for risk stratification. Paediatr. Anaesth. 2016, 26, 960–969. [Google Scholar] [CrossRef]
- Devereaux, P.; Marcucci, M.; Painter, T.W.; Conen, D.; Lomivorotov, V.; Sessler, D.I.; Chan, M.T.; Borges, F.K.; Martínez-Zapata, M.J.; Wang, C.Y.; et al. Tranexamic Acid in Patients Undergoing Noncardiac Surgery. N. Engl. J. Med. 2022, 386, 1986–1997. [Google Scholar] [CrossRef]
- Roberts, I.; Shakur, H.; Coats, T.; Hunt, B.; Balogun, E.; Barnetson, L.; Cook, L.; Kawahara, T.; Perel, P.; Prieto-Merino, D.; et al. The CRASH-2 trial: A randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol. Assess. 2013, 17, 1–79. [Google Scholar] [CrossRef] [Green Version]
- CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): A randomised, placebo-controlled trial. Lancet 2019, 394, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Shakur, H.; Elbourne, D.; Gülmezoglu, M.; Alfirevic, Z.; Ronsmans, C.; Allen, E.; Roberts, I. The WOMAN Trial (World Maternal Antifibrinolytic Trial): Tranexamic acid for the treatment of postpartum haemorrhage: An international randomised, double blind placebo controlled trial. Trials 2010, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Pennington, Z.; Ehresman, J.; Schilling, A.; Feghali, J.; Hersh, A.M.; Hung, B.; Kalivas, E.N.; Lubelski, D.; Sciubba, D.M. Influence of tranexamic acid use on venous thromboembolism risk in patients undergoing surgery for spine tumors. J. Neurosurg. Spine 2021, 35, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Montroy, J.; Fergusson, N.A.; Hutton, B.; Lavallée, L.T.; Morash, C.; Cagiannos, I.; Cnossen, S.; Fergusson, D.; Breau, R.H. The Safety and Efficacy of Lysine Analogues in Cancer Patients: A Systematic Review and Meta-Analysis. Transfus. Med. Rev. 2017, 31, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.J.; Orenday-Barraza, J.M.; Cavagnaro, M.J.; Strouse, I.M.; Farhadi, D.S.; Khan, N.; Hussein, A.; Baaj, A.A. Antifibrinolytics use during surgery for oncological spine diseases: A systematic review. Surg. Neurol. Int. 2022, 13, 567. [Google Scholar] [CrossRef]
- Kurnik, N.M.; Pflibsen, L.R.; Bristol, R.E.; Singh, D.J. Tranexamic Acid Reduces Blood Loss in Craniosynostosis Surgery. J. Craniofacial Surg. 2017, 28, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Spinella, P.C.; Leonard, J.C.; Gaines, B.A.; Luther, J.F.; Wisniewski, S.R.; Josephson, C.D.; Leeper, C.M. Use of Antifibrinolytics in Pediatric Life-Threatening Hemorrhage: A Prospective Observational Multicenter Study. Crit. Care Med. 2022, 50, e382–e392. [Google Scholar] [CrossRef]
Variable | Entire Cohort | TXA Given | TXA Not Given |
---|---|---|---|
Number of Cases | 1171 | 404 | 767 |
Age (years) | 9.3 (4.2, 14.4) [0.01, 31.4] | 7.9 (2.6, 13.3) [0.01, 29.4] | 9.9 (5, 14.8) [0.01, 31.4] |
Age Category | |||
Neonatal | 11 (0.9%) | 4 (1%) | 7 (0.9%) |
Infant | 62 (5.3%) | 34 (8.4%) | 28 (3.7%) |
Preschool | 278 (23.7%) | 120 (29.7%) | 158 (20.6%) |
School-aged | 384 (32.8%) | 116 (28.7%) | 268 (34.9%) |
Adolescent Female | 169 (14.4%) | 57 (14.1%) | 112 (14.6%) |
Adolescent Male | 174 (14.9%) | 50 (12.4%) | 124 (16.2%) |
Adult | 93 (7.9%) | 23 (5.7%) | 70 (9.1%) |
Weight (kg) | 32.7 (16.8, 55.9) [2.3, 172] | 28.2 (14.1, 49.6) [2.3, 172] | 35 (19.3, 59.2) [2.9, 138] |
ASA * | |||
I | 21 (1.8%) | 4 (1%) | 17 (2.2%) |
II | 297 (25.4%) | 61 (15.1%) | 236 (30.8%) |
III | 695 (59.4%) | 269 (66.6%) | 426 (55.5%) |
IV | 144 (12.3%) | 62 (15.4%) | 82 (10.7%) |
V | 14 (1.2%) | 8 (2%) | 6 (0.8%) |
Gender | |||
Female | 540 (46.1%) | 172 (42.6%) | 368 (48%) |
Male | 631 (53.9%) | 232 (57.4%) | 399 (52%) |
Type of Procedure | |||
Brain Tumor Resection | 371 (31.7%) | 171 (42.3%) | 200 (26.1%) |
Moya Moya (Pial Synangiosis) | 151 (12.9%) | 0 (0%) | 151 (19.7%) |
Seizure ** | 127 (10.9%) | 87 (21.5%) | 40 (5.2%) |
Hemispherectomy (anatomical or functional) | 59 (5%) | 50 (12.4%) | 9 (1.2%) |
Aneurysm | 47 (4%) | 16 (4%) | 31 (4%) |
Encephalocele | 16 (1.4%) | 2 (0.5%) | 14 (1.8%) |
Posterior Fossa | 234 (20%) | 36 (8.9%) | 198 (25.8%) |
Trauma | 70 (6%) | 18 (4.5%) | 52 (6.8%) |
Other | 96 (8.2%) | 24 (5.9%) | 72 (9.4%) |
Length of Surgery (minutes) | 247 (157, 415) [22, 1951] | 406 (284, 512) [70, 1106] | 198 (136, 308) [22, 1951] |
Emergent | 254 (21.7%) | 108 (26.7%) | 146 (19%) |
Preoperative Anemia *** | |||
Not Anemic | 948 (81%) | 313 (77.5%) | 635 (82.8%) |
Mild Anemia | 125 (10.7%) | 53 (13.1%) | 72 (9.4%) |
Moderate Anemia | 93 (7.9%) | 34 (8.4%) | 59 (7.7%) |
Severe Anemia | 5 (0.4%) | 4 (1%) | 1 (0.1%) |
Type of Surgical Procedure | Tranexamic Acid Administered | Total Blood Products Transfused | Yellow Blood Products Transfused * | Red Blood Products Transfused ** |
---|---|---|---|---|
All Procedures (n = 1171) | 404 (34.5%) | 176 (15%) | 57 (4.9%) | 166 (14.2%) |
Brain Tumor (n = 371) | 171 (46.1%) | 50 (13.5%) | 17 (4.6%) | 48 (12.9%) |
Moya Moya (n = 151) | 0 (0%) | 7 (4.6%) | 0 (0%) | 6 (4%) |
Seizure (n = 127) | 87 (68.5%) | 22 (17.3%) | 6 (4.7%) | 21 (16.5%) |
Hemispherectomy (n = 59) | 50 (84.8%) | 22 (37.3%) | 9 (15.3%) | 20 (33.9%) |
Aneurysm (n = 47) | 16 (34%) | 4 (8.5%) | 0 (0%) | 6 (12.8%) |
Encephalocele (n = 16) | 2 (12.5%) | 3 (18.8%) | 1 (6.3%) | 3 (18.8%) |
Posterior Fossa (n = 234) | 36 (15.4%) | 22 (9.4%) | 8 (3.4%) | 23 (9.8%) |
Trauma (n = 70) | 18 (25.7%) | 26 (37.1%) | 11 (15.7%) | 25 (35.7%) |
Other (n = 96) | 24 (25%) | 20 (20.8%) | 5 (5.2%) | 14 (14.6%) |
Outcome | Entire Cohort (n = 1171) | TXA Given (n = 404) | TXA Not Given (n = 767) | p Value |
---|---|---|---|---|
Total Blood Products Transfused | 176 (15%) | 108 (26.7%) | 68 (8.9%) | <0.001 * |
Yellow Blood Products Transfused ** | 57 (4.9%) | 44 (10.9%) | 13 (1.7%) | <0.001 * |
Red Blood Products Transfused *** | 166 (14.2%) | 107 (26.5%) | 59 (7.7%) | <0.001 * |
Outcome | Full Cohort (n = 1171) | TXA Given (n = 404) | TXA Not Given (n = 767) | p Value |
---|---|---|---|---|
Length of hospital stay (days) | 5 (4, 9) [0, 161] | 7 (5, 13) [0, 115] | 5 (4, 7) [0, 161] | <0.001 * |
Length of stay in ICU (days) | 0.9 (0, 1.2) [0, 87.1] | 0.97 (0.76, 1.92) [0, 87.1] | 0.87 (0, 1.14) [0, 41.8] | <0.001 * |
Complications (any) | 187 (16%) | 90 (22.3%) | 97 (12.7%) | <0.001 * |
Allergic Reaction | 1 (0.09%) | 1 (0.25%) | 0 (0%) | 0.345 |
Cardiac Arrest | 6 (0.51%) | 4 (0.99%) | 2 (0.26%) | 0.19 |
Heart Failure | 8 (0.68%) | 3 (0.74%) | 5 (0.65%) | 0.999 |
Neonatal Cardiac Failure | 1 (0.09%) | 1 (0.25%) | 0 (0%) | 0.345 |
Pulmonary Infection | 30 (2.56%) | 10 (2.48%) | 20 (2.61%) | 0.999 |
Thrombosis / Embolism | 19 (1.62%) | 9 (2.23%) | 10 (1.3%) | 0.234 |
Respiratory Failure | 98 (8.37%) | 46 (11.39%) | 52 (6.78%) | 0.008 * |
Respiratory Arrest | 2 (0.17%) | 0 (0%) | 2 (0.26%) | 0.548 |
ARDS (Acute Respiratory Distress Syndrome) | 4 (0.34%) | 3 (0.74%) | 1 (0.13%) | 0.121 |
Pulmonary Edema | 24 (2.05%) | 14 (3.47%) | 10 (1.3%) | 0.017 * |
Fever | 106 (9.05%) | 57 (14.1%) | 49 (6.39%) | <0.001 * |
Renal Failure | 8 (0.68%) | 5 (1.24%) | 3 (0.39%) | 0.133 |
Sepsis | 14 (1.2%) | 4 (0.99%) | 10 (1.3%) | 0.782 |
Transfusion Associated Anaphylactic Reaction | 0 (0%) | 0 (0%) | 0 (0%) | 0.999 |
Other | 2 (0.17%) | 0 (0%) | 2 (0.26%) | 0.548 |
Outcome | Adjusted Coefficient or Odds Ratio for TXA | 95% CI | p Value |
---|---|---|---|
Length of hospital stay (days) | 0.99 | (0.25, 1.72) | 0.008 * |
Length of stay in ICU (days) | 0.07 | (−0.11, 0.25) | 0.472 |
Complications (any) | 0.99 | (0.66, 1.47) | 0.948 |
Thrombosis Embolism | 1.21 | (0.42, 3.49) | 0.731 |
Respiratory Failure | 0.98 | (0.59, 1.6) | 0.924 |
Pulmonary Edema | 1.31 | (0.53, 3.26) | 0.557 |
Fever | 1.28 | (0.81, 2.04) | 0.288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.T.; Seshadri, S.C.; Butler, C.G.; Staffa, S.J.; Kordun, A.S.; Lukovits, K.E.; Goobie, S.M. Tranexamic Acid Use in Pediatric Craniotomies at a Large Tertiary Care Pediatric Hospital: A Five Year Retrospective Study. J. Clin. Med. 2023, 12, 4403. https://doi.org/10.3390/jcm12134403
Wang JT, Seshadri SC, Butler CG, Staffa SJ, Kordun AS, Lukovits KE, Goobie SM. Tranexamic Acid Use in Pediatric Craniotomies at a Large Tertiary Care Pediatric Hospital: A Five Year Retrospective Study. Journal of Clinical Medicine. 2023; 12(13):4403. https://doi.org/10.3390/jcm12134403
Chicago/Turabian StyleWang, Jue T., Samir C. Seshadri, Carolyn G. Butler, Steven J. Staffa, Anna S. Kordun, Karina E. Lukovits, and Susan M. Goobie. 2023. "Tranexamic Acid Use in Pediatric Craniotomies at a Large Tertiary Care Pediatric Hospital: A Five Year Retrospective Study" Journal of Clinical Medicine 12, no. 13: 4403. https://doi.org/10.3390/jcm12134403
APA StyleWang, J. T., Seshadri, S. C., Butler, C. G., Staffa, S. J., Kordun, A. S., Lukovits, K. E., & Goobie, S. M. (2023). Tranexamic Acid Use in Pediatric Craniotomies at a Large Tertiary Care Pediatric Hospital: A Five Year Retrospective Study. Journal of Clinical Medicine, 12(13), 4403. https://doi.org/10.3390/jcm12134403