The Decline of Physical Activity with Age in School-Aged Children with Cerebral Palsy: A Single-Center Cross-Sectional Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Habitual Physical Activity
2.4. Cardiorespiratory Fitness
2.5. Motor Capacity
2.5.1. Gross Motor Function Measure 66
2.5.2. Timed Up-and-Go Test
2.5.3. Six min Walk Test
2.6. Statistical Analysis
2.7. Sample Size Calculation
3. Results
3.1. HPA, CRF, and Motor Capacity
3.2. Linear Regression Analysis
3.3. Partial Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The Definition and Classification of Cerebral Palsy April 2006. Dev. Med. Child. Neurol. 2007, 109, 8–14. [Google Scholar]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jette, N.; Pringsheim, T. An Update on the Prevalence of Cerebral Palsy: A Systematic review and meta-analysis. Dev. Med. Child. Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Kulinski, J.P.; Khera, A.; Ayers, C.R.; Das, S.R.; de Lemos, J.A.; Blair, S.N.; Berry, J.D. Association Between Cardiorespiratory Fitness and Accelerometer-Derived Physical Activity and Sedentary Time in the General Population. Mayo Clin. Proc. 2014, 89, 1063–1071. [Google Scholar] [CrossRef]
- Bielemann, R.M.; Martinez-Mesa, J.; Gigante, D.P. Physical Activity during Life Course and Bone Mass: A Systematic Review of Methods and Findings from Cohort Studies with Young Adults. BMC Musculoskelet. Disord. 2013, 14, 77. [Google Scholar] [CrossRef] [Green Version]
- Roque, F.R.; Hernanz, R.; Salaices, M.; Briones, A.M. Exercise Training and Cardiometabolic Diseases: Focus on the Vascular System. Curr. Hypertens. Rep. 2013, 15, 204–214. [Google Scholar] [CrossRef]
- Al-Mallah, M.H.; Sakr, S.; Al-Qunaibet, A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: An Update. Curr. Atheroscler. Rep. 2018, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Blair, E.; Langdon, K.; McIntyre, S.; Lawrence, D.; Watson, L. Survival and Mortality in Cerebral Palsy: Observations to the Sixth Decade from a Data Linkage Study of a Total Population Register and National Death Index. BMC Neurol. 2019, 19, 111. [Google Scholar] [CrossRef]
- Peterson, M.D.; Ryan, J.M.; Hurvitz, E.A.; Mahmoudi, E. Chronic Conditions in Adults with Cerebral Palsy. JAMA 2015, 314, 2303–2305. [Google Scholar] [CrossRef] [Green Version]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public. Health Rep. 1985, 100, 126–131. [Google Scholar]
- Keawutan, P.; Bell, K.; Davies, P.S.; Boyd, R.N. Systematic Review of the Relationship between Habitual Physical Activity and Motor Capacity in Children with Cerebral palsy. Res. Dev. Disabil. 2014, 35, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Suk, M.H.; Park, I.K.; Yoo, S.; Kwon, J.Y. The Association Between Motor Capacity and Motor Performance in School-Aged Children with Cerebral Palsy: An Observational Study. J. Exerc. Sci. Fit. 2021, 19, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; Mokhtar, N.; Byrne, N.M. Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Front. Nutr. 2014, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Gorman, E.; Hanson, H.M.; Yang, P.H.; Khan, K.M.; Liu-Ambrose, T.; Ashe, M.C. Accelerometry Analysis of Physical Activity and Sedentary Behavior in Older Adults: A Systematic Review and Data Analysis. Eur. Rev. Aging Phys. Act. 2014, 11, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Cudejko, T.; Button, K.; Al-Amri, M. Validity and Reliability of Accelerations and Orientations Measured Using Wearable Sensors during Functional Activities. Sci. Rep. 2022, 12, 14619. [Google Scholar] [CrossRef]
- Van Stralen, M.M.; Yıldırım, M.; Wulp, A.; te Velde, S.J.; Verloigne, M.; Doessegger, A.; Androutsos, O.; Kovács, É.; Brug, J.; Chinapaw, M.J.M. Measured Sedentary Time and Physical Activity During the School Day of European 10- to 12-year-old Children: The ENERGY Project. J. Sci. Med. Sport 2014, 17, 201–206. [Google Scholar] [CrossRef]
- Carlon, S.L.; Taylor, N.F.; Dodd, K.J.; Shields, N. Differences in Habitual Physical Activity Levels of Young People with Cerebral Palsy and Their Typically Developing Peers: A Systematic Review. Disabil. Rehabil. 2013, 35, 647–655. [Google Scholar] [CrossRef]
- de Andrade Gonçalves, E.C.; Augusto Santos Silva, D.; Gimenes Nunes, H.E. Prevalence and Factors Associated with Low Aerobic Performance Levels in Adolescents: A Systematic Review. Curr. Pediatr. Rev. 2015, 11, 56–70. [Google Scholar] [CrossRef]
- Silva, D.A.S.; de Andrade Gonçalves, E.C.; Coelho, E.F.; Cerqueira, M.S.; Werneck, F.Z. Cardiorespiratory Fitness and Physical Activity Among Children and Adolescents: 3-year Longitudinal Study in Brazil. Int. J. Environ. Res. Public. Health 2022, 19, 11431. [Google Scholar] [CrossRef]
- Ryan, J.M.; Hensey, O.; McLoughlin, B.; Lyons, A.; Gormley, J. Associations of Sedentary Behaviour, Physical Activity, Blood Pressure and Anthropometric Measures with Cardiorespiratory Fitness in Children with Cerebral Palsy. PLoS ONE 2015, 10, e0123267. [Google Scholar] [CrossRef]
- Corder, K.; Sharp, S.J.; Atkin, A.J.; Andersen, L.B.; Cardon, G.; Page, A.; Davey, R.; Grøntved, A.; Hallal, P.C.; Janz, K.F.; et al. Age-Related Patterns of Vigorous-Intensity Physical Activity in Youth: The International Children’s Accelerometry Database. Prev. Med. Rep. 2016, 4, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wely, L.; Becher, J.G.; Balemans, A.C.; Dallmeijer, A.J. Ambulatory Activity of Children with Cerebral Palsy: Which Char-acteristics are Important? Dev. Med. Child. Neurol. 2012, 54, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Waltersson, L.; Rodby-Bousquet, E. Physical Activity in Adolescents and Young Adults with Cerebral Palsy. BioMed. Res. Int. 2017, 2017, 8080473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, C.; McDowell, B.C.; Parkes, J.; Stevenson, M.; Cosgrove, A.P. Age-Related Changes in Energy Efficiency of Gait, Activity, and Participation in Children with Cerebral Palsy. Dev. Med. Child. Neurol. 2011, 53, 61–67. [Google Scholar] [CrossRef]
- O’Neil, M.E.; Fragala-Pinkham, M.A.; Forman, J.L.; Trost, S.G. Measuring Reliability and Validity of the ActiGraph GT3X Accelerometer for Children with Cerebral Palsy: A Feasibility Study. J. Pediatr. Rehabil. Med. 2014, 7, 233–240. [Google Scholar] [CrossRef]
- Clanchy, K.M.; Tweedy, S.; Boyd, R. Measurement of Habitual Physical Activity Performance in Adolescents with Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2011, 53, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Butte, N.F. Validation and Calibration of Physical Activity Monitors in Children. Obes. Res. 2002, 10, 150–157. [Google Scholar] [CrossRef]
- Clanchy, K.M.; Tweedy, S.M.; Boyd, R.N.; Trost, S.G. Validity of Accelerometry in Ambulatory Children and Adolescents with Cerebral Palsy. Eur. J. Appl. Physiol. 2011, 111, 2951–2959. [Google Scholar] [CrossRef]
- Bires, A.M.; Lawson, D.; Wasser, T.E.; Raber-Baer, D. Comparison of Bruce Treadmill Exercise Test Protocols: Is Ramped Bruce equal or Superior to Standard Bruce in Producing Clinically Valid Studies for Patients Presenting for Evaluation of Cardiac Ischemia or Arrhythmia with Body Mass Index Equal to or Greater than 30? J. Nucl. Med. Technol. 2013, 41, 274–278. [Google Scholar]
- Johnston, T.E.; Moore, S.E.; Quinn, L.T.; Smith, B.T. Energy Cost of Walking in Children with Cerebral Palsy: Relation to the Gross Motor Function Classification System. Dev. Med. Child. Neurol. 2004, 46, 34–38. [Google Scholar] [CrossRef]
- Kim, A.R.; Suk, M.H.; Kwon, J.Y. Safety and Feasibility of Symptom-Limited Cardiopulmonary Exercise Test Using the Modified Naughton Protocol in Children with Cerebral Palsy: An Observational Study. Medicine 2021, 100, e26269. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.L.; Walter, S.D.; Hanna, S.E.; Palisano, R.J.; Russell, D.J.; Raina, P.; Wood, E.; Bartlett, D.J.; Galuppi, B.E. Prognosis for Gross Motor Function in Cerebral Palsy: Creation of Motor De-velopment Curves. JAMA 2002, 288, 1357–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolini-Panisson, R.D.; Donadio, M.V. Timed “Up & Go” Test in Children and Adolescents. Rev. Paul. Pediatr. 2013, 31, 377–383. [Google Scholar] [PubMed]
- Kear, B.M.; Guck, T.P.; McGaha, A.L. Timed Up and Go (TUG) Test: Normative Reference Values for Ages 20 to 59 Years and Relationships with Physical and Mental Health Risk Factors. J. Prim. Care Community Health 2017, 8, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W. Reference Values for the Timed Up and Go Test: A Descriptive Meta-Analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Carey, H.; Martin, K.; Combs-Miller, S.; Heathcock, J.C. Reliability and Responsiveness of the Timed Up and Go Test in Chil-dren With Cerebral Palsy. Pediatr. Phys. Ther. 2016, 28, 401–408. [Google Scholar] [CrossRef]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Kotsia, A.; Michalis, L.K.; Naka, K.K. 6-Minute Walking Test: A Useful Tool in the Management of Heart Failure Patients. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719870084. [Google Scholar] [CrossRef] [Green Version]
- Solway, S.; Brooks, D.; Lacasse, Y.; Thomas, S. A Qualitative Systematic Overview of the Measurement Properties of Function-al Walk Tests used in the Cardiorespiratory Domain. Chest 2001, 119, 256–270. [Google Scholar] [CrossRef]
- Beriault, K.; Carpentier, A.C.; Gagnon, C.; Ménard, J.; Baillargeon, J.-P.; Ardilouze, J.-L.; Langlois, M. Reproducibility of the 6-Minute Walk Test in Obese Adults. Int. J. Sport. Med. 2009, 30, 725–727. [Google Scholar] [CrossRef]
- Nsenga Leunkeu, A.; Shephard, R.J.; Ahmaidi, S. Six-Minute Walk Test in Children with Cerebral Palsy Gross Motor Function Classification System Levels I and II: Reproducibility, Validity, and Training Effects. Arch. Phys. Med. Rehabil. 2012, 93, 2333–2339. [Google Scholar] [CrossRef]
- Suk, M.H.; Kwon, J.Y. Effect of Equine-Assisted Activities and Therapies on Cardiorespiratory Fitness in Children with Cerebral Palsy: A Randomized Controlled Trial. J. Integr. Complement. Med. 2022, 28, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.E.; Rosenbaum, P.L.; Bartlett, D.J.; Palisano, R.J.; Walter, S.D.; Avery, L.; Russell, D.J. Stability and Decline in Gross Motor Function Among Children and Youth with Cerebral Palsy aged 2 to 21 years. Dev. Med. Child. Neurol. 2009, 51, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.M.; Hensey, O.; McLoughlin, B.; Lyons, A.; Gormley, J. Reduced Moderate-to-Vigorous Physical Activity and Increased Sedentary Behavior Are Associated with Elevated Blood Pressure values in Children with Cerebral Palsy. Phys. Ther. 2014, 94, 1144–1153. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int. J. Environ. Res. Public Health 2021, 19, 207. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.; Benedetti, A.; Barnett, T.A.; Mathieu, M.E.; Deladoëy, J.; Gray-Donald, K. Influence of Adiposity, Physical Activity, Fitness, and Screen Time on Insulin Dynamics Over 2 Years in Children. JAMA Pediatr. 2016, 170, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Mcphee, P.G.; Claridge, E.A.; Noorduyn, S.G.; Gorter, J.W. Cardiovascular Disease and Related Risk Factors in Adults with Cerebral Palsy: A Systematic Review. Dev. Med. Child. Neurol. 2019, 61, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.M.; Crowley, V.E.; Hensey, O.; Broderick, J.M.; McGahey, A.; Gormley, J. Habitual Physical Activity and Cardiometabolic Risk Factors in Adults with Cerebral Palsy. Res. Dev. Disabil. 2014, 35, 1995–2002. [Google Scholar] [CrossRef] [Green Version]
- Bania, T.; Dodd, K.J.; Taylor, N. Habitual Physical Activity can be Increased in People with Cerebral Palsy: A Systematic Re-view. Clin. Rehabil. 2011, 25, 303–315. [Google Scholar] [CrossRef]
- Butler, J.M.; Scianni, A.; Ada, L. Effect of Cardiorespiratory Training on Aerobic Fitness and Carryover to Activity in Children with Cerebral Palsy: A Systematic Review. Int. J. Rehabil. Res. 2010, 33, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Slaman, J.; Roebroeck, M.; Dallmijer, A.; Twisk, J.; Stam, H.; Van Den Berg-Emons, R. Learn 2 move research group. Can a Lifestyle Intervention Programme Improve Physical Behaviour Among Adolescents and Young Adults with Spastic Cerebral Palsy? A Randomized Controlled Trial. Dev. Med. Child. Neurol. 2015, 57, 159–166. [Google Scholar] [CrossRef]
- Van Wely, L.; Balemans, A.C.; Becher, J.G.; Dallmeijer, A.J. Physical Activity Stimulation Program for Children with Cerebral Palsy did not Improve Physical Activity: A Randomized Trial. J. Physiother. 2014, 60, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleary, S.L.; Taylor, N.F.; Dodd, K.J.; Shields, N. Barriers to and Facilitators of Physical Activity for Children with Cerebral Palsy in Dpecial Rducation. Dev. Med. Child. Neurol. 2019, 61, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Reyes, A.C.; Chaves, R.; Santos, C.; Vasconcelos, O.; Tani, G.O.; Katzmarzyk, P.T.; Baxter-Jones, A.; Maia, J. Correlates of the Physical Activity Decline During Childhood. Med. Sci. Sport. Exerc. 2022, 54, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value (n = 39) |
---|---|
Age (years) | 7.44 ± 1.60 |
Sex (girls/boys) | 18/21 |
Height (cm) | 124.06 ± 10.27 |
Weight (kg) | 24.76 ± 5.14 |
Body Mass Index (kg/m2) | 15.97 ± 2.02 |
Distribution (unilateral; hemiplegia/bilateral; diplegia) | 19/20 |
GMFCS distribution (level I/level II) | 21/18 |
Variables | Mean ± SD | Variables | Mean ± SD |
---|---|---|---|
exercise time (min) | 11.54 ± 3.40 | maximal DBP (mmHg) | 67.26 ± 5.91 |
VO2 peak (mL/kg/min) | 25.50 ± 3.58 | PAEE (kcal/kg/d) | 4.49 ± 1.33 |
MET (kcal/kg/h) | 7.29 ± 1.03 | %SPA | 71.31 ± 5.42 |
RER | 0.98 ± 0.05 | %LPA | 23.40 ± 4.40 |
resting HR (beats/min) | 89.92 ± 12.64 | %MVPA | 5.29 ± 2.21 |
resting SBP (mmHg) | 101.67 ± 9.39 | activity count (counts/min) | 923.86 ± 232.18 |
resting DBP (mmHg) | 67.46 ± 8.47 | TUG (s) | 8.11 ± 2.02 |
maximal HR (beats/min) | 167.41 ± 13.83 | 6 MWT (m) | 376.62 ± 76.21 |
maximal SBP (mmHg) | 122.56 ± 12.29 | GMFM-66 | 83.83 ± 10.74 |
HPA | ||||||
---|---|---|---|---|---|---|
PAEE (kcal/kg/d) | % SPA | % LPA | % MVPA | Activity Count (Counts/min) | ||
Age (years) | B | −0.412 | 1.566 | −1.223 | −0.343 | −74.694 |
95% CI | (−0.777, −0.048) | (0.159, 2.972) | (−2.448, 0.002) | (−0.953, 0.268) | (−138.314, −11.074) | |
β | −0.496 | 0.463 | −0.447 | −0.248 | −0.516 | |
p | 0.028 * | 0.030 * | 0.050 | 0.262 | 0.023 * | |
R2 | 0.441 | 0.498 | 0.416 | 0.431 | 0.439 | |
CRF | ||||||
Exercise time (min) | VO2 peak (mL/kg/min) | MET (kcal/kg/h) | RER | HR_rest (beats/min) | ||
Age (years) | B | 0.129 | 0.615 | 0.171 | 0.007 | −2.035 |
95% CI | (−0.639, 0.896) | (−0.480, 1.710) | (−0.142, 0.483) | (−0.007, 0.021) | (−6.468, 2.398) | |
β | 0.061 | 0.275 | 0.267 | 0.236 | −0.258 | |
p | 0.735 | 0.261 | 0.274 | 0.317 | 0.357 | |
R2 | 0.619 | 0.302 | 0.309 | 0.350 | 0.081 | |
CRF | ||||||
SBP_rest (mmHg) | DBP_rest (mmHg) | HR_max (beats/min) | SBP_max (mmHg) | DBP_max (mmHg) | ||
Age (years) | B | 0.076 | 0.048 | 1.328 | 2.583 | 0.617 |
95% CI | (−3.004, 3.155) | (−2.484, 2.580) | (−3.141, 5.797) | (−0.151, 5.317) | (−0.923, 2.157) | |
β | 0.013 | 0.009 | 0.154 | 0.339 | 0.167 | |
p | 0.960 | 0.970 | 0.549 | 0.063 | 0.420 | |
R2 | 0.197 | 0.333 | 0.221 | 0.627 | 0.493 | |
Motor capacity TUG (s) | 6 MWT (m) | GMFM-66 | ||||
Age (years) | B | 0.004 | −6.519 | −0.089 | ||
95% CI | (−0.606, 0.615) | (−25.034, 11.997) | (−4.237, 0.058) | |||
β | 0.003 | −0.137 | 1.054 | |||
p | 0.989 | 0.478 | 0.056 | |||
R2 | 0.318 | 0.559 | 0.701 |
Exercise Time (min) | VO2 Peak (mL/kg/min) | MET (kcal/kg/h) | RER | HR_Rest (beats/min) | SBP_Rest (mmHg) | DBP_Rest (mmHg) | HR_Max (beats/min) | SBP_Max (mmHg) | DBP_Max (mmHg) | TUG (s) | 6MWT (m) | GMFM-66 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PAEE (kcal/kg/d) | ρ | 0.202 | −0.045 | −0.040 | −0.059 | −0.372 | −0.114 | −0.212 | −0.323 | −0.328 | −0.037 | −0.361 | 0.002 | 0.299 |
p | 0.261 | 0.802 | 0.823 | 0.744 | 0.033 * | 0.526 | 0.237 | 0.067 | 0.062 | 0.837 | 0.039 * | 0.993 | 0.091 | |
%SPA | ρ | −0.158 | −0.115 | −0.115 | 0.218 | 0.294 | 0.140 | 0.268 | 0.218 | 0.064 | −0.003 | 0.228 | 0.152 | −0.180 |
p | 0.379 | 0.524 | 0.523 | 0.222 | 0.097 | 0.437 | 0.132 | 0.223 | 0.724 | 0.986 | 0.202 | 0.397 | 0.316 | |
%LPA | ρ | 0.083 | 0.162 | 0.159 | −0.226 | −0.144 | −0.104 | −0.230 | −0.071 | 0.094 | 0.002 | −0.070 | −0.213 | 0.052 |
p | 0.644 | 0.368 | 0.378 | 0.206 | 0.423 | 0.566 | 0.198 | 0.696 | 0.603 | 0.993 | 0.699 | 0.233 | 0.774 | |
%MVPA | ρ | 0.197 | −0.060 | −0.053 | −0.050 | −0.388 | −0.114 | −0.156 | −0.360 | −0.335 | 0.004 | −0.385 | 0.077 | 0.311 |
p | 0.271 | 0.740 | 0.770 | 0.782 | 0.026 * | 0.526 | 0.386 | 0.039 * | 0.056 | 0.981 | 0.027 * | 0.670 | 0.078 | |
Activity count (counts/min) | ρ | 0.153 | 0.108 | 0.110 | −0.210 | −0.354 | −0.203 | −0.363 | −0.312 | −0.172 | −0.097 | −0.264 | −0.243 | 0.252 |
p | 0.396 | 0.548 | 0.543 | 0.242 | 0.043 * | 0.258 | 0.038 * | 0.077 | 0.339 | 0.591 | 0.138 | 0.173 | 0.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Suk, M.-H.; Yoo, S.; Kwon, J.-Y. The Decline of Physical Activity with Age in School-Aged Children with Cerebral Palsy: A Single-Center Cross-Sectional Observational Study. J. Clin. Med. 2023, 12, 4548. https://doi.org/10.3390/jcm12134548
Lee J, Suk M-H, Yoo S, Kwon J-Y. The Decline of Physical Activity with Age in School-Aged Children with Cerebral Palsy: A Single-Center Cross-Sectional Observational Study. Journal of Clinical Medicine. 2023; 12(13):4548. https://doi.org/10.3390/jcm12134548
Chicago/Turabian StyleLee, Jinuk, Min-Hwa Suk, Soojin Yoo, and Jeong-Yi Kwon. 2023. "The Decline of Physical Activity with Age in School-Aged Children with Cerebral Palsy: A Single-Center Cross-Sectional Observational Study" Journal of Clinical Medicine 12, no. 13: 4548. https://doi.org/10.3390/jcm12134548
APA StyleLee, J., Suk, M. -H., Yoo, S., & Kwon, J. -Y. (2023). The Decline of Physical Activity with Age in School-Aged Children with Cerebral Palsy: A Single-Center Cross-Sectional Observational Study. Journal of Clinical Medicine, 12(13), 4548. https://doi.org/10.3390/jcm12134548