Does Robot Assisted Laparoscopy (RAL) Have an Advantage in Preservation of Ovarian Reserve in Endometriosis Surgery? Comparison of Single-Port Access (SPA) RAL and SPA Laparoscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Data Collection and Definition
2.3. Surgical Methods
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Alimi, Y.; Iwanaga, J.; Oskouian, R.J.; Loukas, M.; Tubbs, R.S. The clinical anatomy of dyspareunia: A review. Clin. Anat. 2018, 31, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Matsumoto, K.; Kajimura, I.; Harada, A.; Miyashita, N.; Matsumura, A.; Kitajima, Y.; Miura, K. The Effects of Endometriosis on Ovarian Functions. Endocrines 2021, 2, 142–149. [Google Scholar] [CrossRef]
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Simoens, S.; Dunselman, G.; Dirksen, C.; Hummelshoj, L.; Bokor, A.; Brandes, I.; Brodszky, V.; Canis, M.; Colombo, G.L.; DeLeire, T.; et al. The burden of endometriosis: Costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 2012, 27, 1292–1299. [Google Scholar] [CrossRef] [Green Version]
- Yeung, P.P., Jr.; Shwayder, J.; Pasic, R.P. Laparoscopic management of endometriosis: Comprehensive review of best evidence. J. Minim. Invasive Gynecol. 2009, 16, 269–281. [Google Scholar] [CrossRef]
- Singh, S.S.; Suen, M.W. Surgery for endometriosis: Beyond medical therapies. Fertil. Steril. 2017, 107, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.K.; Mejia, R.B.; Lebovic, D.I. Effect of Surgery for Endometrioma on Ovarian Function. J. Minim. Invasive Gynecol. 2014, 21, 203–209. [Google Scholar] [CrossRef]
- Haueter, R.; Schutz, T.; Raptis, D.A.; Clavien, P.A.; Zuber, M. Meta-analysis of single-port versus conventional laparoscopic cholecystectomy comparing body image and cosmesis. Br. J. Surg. 2017, 104, 1141–1159. [Google Scholar] [CrossRef]
- Fagotti, A.; Bottoni, C.; Vizzielli, G.; Gueli Alletti, S.; Scambia, G.; Marana, E.; Fanfani, F. Postoperative pain after conventional laparoscopy and laparoendoscopic single site surgery (LESS) for benign adnexal disease: A randomized trial. Fertil. Steril. 2011, 96, 255–259.e2. [Google Scholar] [CrossRef]
- Angioni, S.; Pontis, A.; Cela, V.; Sedda, F.; Genazzani, A.D.; Nappi, L. Surgical technique of endometrioma excision impacts on the ovarian reserve. Single-port access laparoscopy versus multiport access laparoscopy: A case control study. Gynecol. Endocrinol. 2015, 31, 454–457. [Google Scholar] [CrossRef]
- Nezhat, C.; Modest, A.M.; King, L.P. The role of the robot in treating urinary tract endometriosis. Curr. Opin. Obstet. Gynecol. 2013, 25, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Morelli, L.; Perutelli, A.; Palmeri, M.; Guadagni, S.; Mariniello, M.D.; Di Franco, G.; Cela, V.; Brundu, B.; Salerno, M.G.; Di Candio, G.; et al. Robot-assisted surgery for the radical treatment of deep infiltrating endometriosis with colorectal involvement: Short- and mid-term surgical and functional outcomes. Int. J. Color. Dis. 2016, 31, 643–652. [Google Scholar] [CrossRef]
- Matanes, E.; Lauterbach, R.; Boulus, S.; Amit, A.; Lowenstein, L. Robotic laparoendoscopic single-site surgery in gynecology: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 231, 1–7. [Google Scholar] [CrossRef]
- Ren, S.; Zheng, Y.; Hu, X.; Bao, Y.; Wang, D.; Chang, Y. Recent advances in single-site/incision robotic-assisted radical prostatectomy. Eur. J. Surg. Oncol. 2023; ahead of print. [Google Scholar] [CrossRef]
- Abrao, M.S.; Andres, M.P.; Miller, C.E.; Gingold, J.A.; Rius, M.; Neto, J.S.; Carmona, F. AAGL 2021 Endometriosis Classification: An Anatomy-based Surgical Complexity Score. J. Minim. Invasive Gynecol. 2021, 28, 1941–1950.e1. [Google Scholar] [CrossRef]
- La Marca, A.; Sighinolfi, G.; Radi, D.; Argento, C.; Baraldi, E.; Artenisio, A.C.; Stabile, G.; Volpe, A. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum. Reprod. Update 2010, 16, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Seifer, D.B.; Maclaughlin, D.T. Mullerian Inhibiting Substance is an ovarian growth factor of emerging clinical significance. Fertil. Steril. 2007, 88, 539–546. [Google Scholar] [CrossRef]
- Pais, A.S.; Flagothier, C.; Tebache, L.; Almeida Santos, T.; Nisolle, M. Impact of Surgical Management of Endometrioma on AMH Levels and Pregnancy Rates: A Review of Recent Literature. J. Clin. Med. 2021, 10, 414. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Wilczyński, J.R.; Głowacka, E.; Żyła, M.; Szyłło, K.; Stachowiak, G. One-year follow-up of ovarian reserve by three methods in women after laparoscopic cystectomy for endometrioma and benign ovarian cysts. Int. J. Gynecol. Obstet. 2019, 146, 350–356. [Google Scholar] [CrossRef]
- Kovačević, V.M.; Anđelić, L.M.; Mitrović Jovanović, A. Changes in serum antimüllerian hormone levels in patients 6 and 12 months after endometrioma stripping surgery. Fertil. Steril. 2018, 110, 1173–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nankali, A.; Kazeminia, M.; Jamshidi, P.K.; Shohaimi, S.; Salari, N.; Mohammadi, M.; Hosseinian-Far, A. The effect of unilateral and bilateral laparoscopic surgery for endometriosis on Anti-Mullerian Hormone (AMH) level after 3 and 6 months: A systematic review and meta-analysis. Health Qual. Life Outcomes 2020, 18, 314. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Kim, T.J.; Lee, Y.Y.; Choi, C.H.; Lee, J.W.; Kim, B.G.; Bae, D.S. Learning curves for single-site laparoscopic ovarian surgery. J. Minim. Invasive Gynecol. 2012, 19, 344–349. [Google Scholar] [CrossRef]
- Nirgianakis, K.; Ma, L.; McKinnon, B.; Mueller, M.D. Recurrence Patterns after Surgery in Patients with Different Endometriosis Subtypes: A Long-Term Hospital-Based Cohort Study. J. Clin. Med. 2020, 9, 496. [Google Scholar] [CrossRef] [Green Version]
- Abesadze, E.; Sehouli, J.; Mechsner, S.; Chiantera, V. Possible Role of the Posterior Compartment Peritonectomy, as a Part of the Complex Surgery, Regarding Recurrence Rate, Improvement of Symptoms and Fertility Rate in Patients with Endometriosis, Long-Term Follow-Up. J. Minim. Invasive Gynecol. 2020, 27, 1103–1111. [Google Scholar] [CrossRef]
- Abesadze, E.; Chiantera, V.; Sehouli, J.; Mechsner, S. Post-operative management and follow-up of surgical treatment in the case of rectovaginal and retrocervical endometriosis. Arch. Gynecol. Obstet. 2020, 302, 957–967. [Google Scholar] [CrossRef]
- Schmitt, A.; Crochet, P.; Knight, S.; Tourette, C.; Loundou, A.; Agostini, A. Single-Port Laparoscopy vs Conventional Laparoscopy in Benign Adnexal Diseases: A Systematic Review and Meta-Analysis. J. Minim. Invasive Gynecol. 2017, 24, 1083–1095. [Google Scholar] [CrossRef]
- Kondo, W.; Bourdel, N.; Tamburro, S.; Cavoli, D.; Jardon, K.; Rabischong, B.; Botchorishvili, R.; Pouly, J.; Mage, G.; Canis, M. Complications after surgery for deeply infiltrating pelvic endometriosis. BJOG 2011, 118, 292–298. [Google Scholar] [CrossRef]
- Nezhat, C.; Lewis, M.; Kotikela, S.; Veeraswamy, A.; Saadat, L.; Hajhosseini, B.; Nezhat, C. Robotic versus standard laparoscopy for the treatment of endometriosis. Fertil. Steril. 2010, 94, 2758–2760. [Google Scholar] [CrossRef]
- Dulemba, J.F.; Pelzel, C.; Hubert, H.B. Retrospective analysis of robot-assisted versus standard laparoscopy in the treatment of pelvic pain indicative of endometriosis. J. Robot. Surg. 2013, 7, 163–169. [Google Scholar] [CrossRef]
- Nezhat, C.R.; Stevens, A.; Balassiano, E.; Soliemannjad, R. Robotic-assisted laparoscopy vs conventional laparoscopy for the treatment of advanced stage endometriosis. J. Minim. Invasive Gynecol. 2015, 22, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Magrina, J.F.; Espada, M.; Kho, R.M.; Cetta, R.; Chang, Y.H.; Magtibay, P.M. Surgical Excision of Advanced Endometriosis: Perioperative Outcomes and Impacting Factors. J. Minim. Invasive Gynecol. 2015, 22, 944–950. [Google Scholar] [CrossRef]
- Soto, E.; Luu, T.H.; Liu, X.; Magrina, J.F.; Wasson, M.N.; Einarsson, J.I.; Cohen, S.L.; Falcone, T. Laparoscopy vs. Robotic Surgery for Endometriosis (LAROSE): A multicenter, randomized, controlled trial. Fertil. Steril. 2017, 107, 996–1002 e1003. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-H.; Kim, T.-J. The role of robotic surgery for endometriosis. Gynecol. Robot. Surg. 2020, 1, 36–49. [Google Scholar] [CrossRef]
- Iwase, A.; Hirokawa, W.; Goto, M.; Takikawa, S.; Nagatomo, Y.; Nakahara, T.; Manabe, S.; Kikkawa, F. Serum anti-Müllerian hormone level is a useful marker for evaluating the impact of laparoscopic cystectomy on ovarian reserve. Fertil. Steril. 2010, 94, 2846–2849. [Google Scholar] [CrossRef]
- Song, T.; Kim, W.Y.; Lee, K.W.; Kim, K.H. Effect on ovarian reserve of hemostasis by bipolar coagulation versus suture during laparoendoscopic single-site cystectomy for ovarian endometriomas. J. Minim. Invasive Gynecol. 2015, 22, 415–420. [Google Scholar] [CrossRef]
- Chen, Y.; Pei, H.; Chang, Y.; Chen, M.; Wang, H.; Xie, H.; Yao, S. The impact of endometrioma and laparoscopic cystectomy on ovarian reserve and the exploration of related factors assessed by serum anti-Mullerian hormone: A prospective cohort study. J. Ovarian Res. 2014, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.S.; Kim, Y.S.; Seong, S.J.; Song, T.; Kim, M.L.; Kim, M.K.; Paek, J.Y. Impact on ovarian reserve after laparoscopic ovarian cystectomy with reduced port number: A randomized controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 176, 34–38. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.S.; Lee, Y.S. Comparison of serum antimullerian hormone levels after robotic-assisted vs. laparoscopic approach for ovarian cystectomy in endometrioma. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 249, 9–13. [Google Scholar] [CrossRef]
- Hirokawa, W.; Iwase, A.; Goto, M.; Takikawa, S.; Nagatomo, Y.; Nakahara, T.; Bayasula, B.; Nakamura, T.; Manabe, S.; Kikkawa, F. The post-operative decline in serum anti-Mullerian hormone correlates with the bilaterality and severity of endometriosis. Hum. Reprod. 2011, 26, 904–910. [Google Scholar] [CrossRef] [Green Version]
Clinical Characteristics | Total | SPA | Robot | p-Value |
---|---|---|---|---|
(n = 165) | (n = 87) | (n = 78) | ||
Age (years) | 33.3 ± 6.9 | 33.1 ± 7.09 | 33.5 ± 6.92 | 0.666 |
BMI (kg/m2) | 21.3 ± 3.0 | 21.2 ± 2.92 | 21.4 ± 3.02 | 0.674 |
Abdominal surgical history | 28 (17.0%) | 12 (13.8%) | 16 (20.5%) | 0.301 |
Parity | 0.760 | |||
Nulliparous | 123 (74.5%) | 64 (73.6%) | 59 (75.6%) | |
Parous | 42 (25.5%) | 23 (26.4%) | 19 (24.4%) | |
Symptoms | ||||
Dysmenorrhea | 133 (80.6%) | 71 (81.6%) | 62 (79.5%) | 0.844 |
Dyschezia | 26 (15.8%) | 7 (8.0%) | 19 (24.4%) | 0.005 * |
Dyspareunia | 16 (9.7%) | 5 (5.7%) | 11 (14.1%) | 0.112 |
Pelvic pain | 53 (32.1%) | 24 (27.6%) | 29 (37.2%) | 0.242 |
Infertility | 7 (4.2%) | 1 (1.1%) | 6 (7.7%) | 0.037 * |
Location of ovarian cyst | 0.002 * | |||
Unilateral | 99 (60.0%) | 62 (71.3%) | 37 (47.4%) | |
Bilateral | 65 (40.0%) | 25 (28.7%) | 41 (52.6%) | |
CA-125 level (IU/mL) | 32.6 ± 30.5 | 30.3 ± 33.6 | 34.8 ± 27.1 | 0.397 |
Preoperative AMH level (ng/mL) | 3.02 ± 2.50 | 3.18 ± 2.63 | 2.85 ± 2.35 | 0.409 |
Ovarian cyst size (cm) | 7.6 ± 2.9 | 7.4 ± 2.5 | 7.9 ± 3.4 | 0.258 |
AAGL stage | <0.001 * | |||
stage I/II | 73 (44.2%) | 51 (58.6%) | 22 (28.2%) | |
stage III/IV | 92 (55.8%) | 36 (41.4%) | 56 (71.8%) |
Clinical Characteristics | Total | SPA | Robot | p-Value |
---|---|---|---|---|
(n = 165) | (n = 87) | (n = 78) | ||
Operative time (min) | 128.8 ± 60.6 | 93.7 ± 27.5 | 167.9 ± 63.5 | <0.001 * |
EBL (mL) | 100 (50–150) | 100 (50–125) | 100 (50–150) | 0.356 |
Hospital stay (days) | 2 (2–2) | 2 (2–2) | 2 (2–3) | 0.391 |
Hb decrease (g/dL) | 1.8 ± 1.0 | 1.7 ± 1.0 | 1.9 ± 1.0 | 0.369 |
Complexity of surgery | <0.001 * | |||
Non-complex surgery | 56 (33.9%) | 43 (49.4%) | 13 (16.7%) | |
Complex surgery | 109 (66.1%) | 44 (50.6%) | 65 (83.3%) | |
Major complication | 0 | 0 | 0 | n/a |
Conversion to laparotomy | 0 | 0 | 0 | n/a |
Serum AMH level (ng/mL) | ||||
Pre-op | 3.02 ± 2.50 | 3.18 ± 2.63 | 2.85 ± 2.35 | 0.409 |
Post-op 2 weeks | 1.67 ± 1.59 | 1.83 ± 1.68 | 1.50 ± 1.48 | 0.191 |
Post-op 3 months | 1.96 ± 1.75 | 2.13 ± 1.86 | 1.78 ± 1.61 | 0.195 |
AMH reduction rate (%) | ||||
Pre-op–Post-op 2 weeks | 48.6 ± 18.4 | 47.8 ± 19.3 | 49.3 ± 17.6 | 0.613 |
Pre-op–Post-op 3 months | 37.4 ± 20.1 | 37.3 ± 20.4 | 37.5 ± 19.8 | 0.938 |
AMH Reduction Rate at 2 Weeks | ||||||||
Clinical factors | Simple regression analysis | Multiple regression analysis | ||||||
R2 | Β | SE | p | R2 | β | SE | p | |
Age | 0.072 | 0.708 | 0.199 | <0.001 * | 0.117 | 0.696 | 0.191 | <0.001 * |
BMI | 0.010 | 0.617 | 0.485 | 0.205 | - | - | - | - |
Size | 0.034 | 1.162 | 0.483 | 0.017 * | 0.117 | 1.047 | 0.459 | 0.024 * |
Bilaterality a | 0.041 | 7.633 | 2.884 | 0.009 * | - | - | - | - |
Stage b | 0.038 | 7.228 | 2.850 | <0.001 * | 0.117 | 9.176 | 2.711 | 0.001 * |
Surgical method c | 0.002 | 1.462 | 2.888 | 0.613 | - | - | - | - |
Complexity d | 0.024 | 6.084 | 3.010 | 0.045 * | - | - | - | - |
AMH Reduction Rate at 3 Months | ||||||||
Clinical factors | Simple regression analysis | Multiple regression analysis | ||||||
R2 | β | SE | p | R2 | β | SE | p | |
Age | 0.057 | 0.686 | 0.219 | 0.002 * | 0.126 | 0.686 | 0.207 | 0.001 * |
BMI | 0.005 | 0.465 | 0.529 | 0.381 | - | - | - | - |
Size | 0.057 | 1.622 | 0.519 | 0.002 * | 0.126 | 1.483 | 0.496 | 0.003 * |
Bilaterality a | 0.039 | 8.059 | 3.141 | 0.011 * | - | - | - | - |
Stage b | 0.043 | 8.326 | 3.093 | <0.001 * | 0.126 | 9.953 | 2.934 | 0.001 * |
Surgical method c | 0.005 | 5.947 | 4.156 | 0.154 | - | - | - | - |
Complexity d | 0.012 | 4.670 | 3.295 | 0.158 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-H.; Chang, C.-S.; Noh, J.J.; Kim, T.-J. Does Robot Assisted Laparoscopy (RAL) Have an Advantage in Preservation of Ovarian Reserve in Endometriosis Surgery? Comparison of Single-Port Access (SPA) RAL and SPA Laparoscopy. J. Clin. Med. 2023, 12, 4673. https://doi.org/10.3390/jcm12144673
Kang J-H, Chang C-S, Noh JJ, Kim T-J. Does Robot Assisted Laparoscopy (RAL) Have an Advantage in Preservation of Ovarian Reserve in Endometriosis Surgery? Comparison of Single-Port Access (SPA) RAL and SPA Laparoscopy. Journal of Clinical Medicine. 2023; 12(14):4673. https://doi.org/10.3390/jcm12144673
Chicago/Turabian StyleKang, Jun-Hyeok, Chi-Son Chang, Joseph J. Noh, and Tae-Joong Kim. 2023. "Does Robot Assisted Laparoscopy (RAL) Have an Advantage in Preservation of Ovarian Reserve in Endometriosis Surgery? Comparison of Single-Port Access (SPA) RAL and SPA Laparoscopy" Journal of Clinical Medicine 12, no. 14: 4673. https://doi.org/10.3390/jcm12144673
APA StyleKang, J. -H., Chang, C. -S., Noh, J. J., & Kim, T. -J. (2023). Does Robot Assisted Laparoscopy (RAL) Have an Advantage in Preservation of Ovarian Reserve in Endometriosis Surgery? Comparison of Single-Port Access (SPA) RAL and SPA Laparoscopy. Journal of Clinical Medicine, 12(14), 4673. https://doi.org/10.3390/jcm12144673