Investigation of Factors Affecting Shuttle Walking Performance at Increased Speed for Patients with Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Procedure
2.3. Measurement
2.3.1. Anthropometric Measurement
2.3.2. Heart Rate and SPO2 Level Measurements
2.3.3. Shuttle Walk Test
2.3.4. Pulmonary Function Test
2.3.5. Medical Research Council (MRC) Dyspnea Scale
2.3.6. Modified Borg Scale
2.4. Statistical Analszes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSe | Borg scale (perceived exercion) |
BSd | Borg scale (perceived dyspnea) |
COPD | Chronic obstructive pulmonary disease |
FEV1 | Forced expiratory volume in one second |
FVC | Forced vital capacity |
HG | Healty group |
HR | Heart rate |
MaxVO2 | Maximum oxygen consumption |
MRCD | Medical Research Council dyspnea |
PEF | Peak expiratory flow |
PFT | Pulmonary function test |
SPO2 | Oxygen saturation level |
SWT | Shuttle walking test |
WS | Walking speed |
SWT-L | Shuttle walking test level |
References
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Han, M.K.; Agusti, A.; Calverley, P.M.; Celli, B.R.; Criner, G.; Curtis, J.L.; Fabbri, L.M.; Goldin, J.G.; Jones, P.W.; MacNee, W. Chronic obstructive pulmonary disease phenotypes: The future of COPD. Am. J. Respir. Crit. Care Med. 2010, 182, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.A.; Jenkins, C.R.; Salvi, S.S. Chronic obstructive pulmonary disease in never-smokers: Risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir. Med. 2022, 10, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Kent, B.D.; Mitchell, P.D.; McNicholas, W.T. Hypoxemia in patients with COPD: Cause, effects, and disease progression. Int. J. Chron. Obstruct. Pulmon. Dis. 2011, 6, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Gosselink, R. Controlled breathing and dyspnea in patients with chronic obstructive pulmonary disease (COPD). J. Rehabil. Res. Dev. 2003, 40, 25–33. [Google Scholar] [CrossRef]
- Otis, A.B. The work of breathing. Physiol. Rev. 1954, 34, 449–458. [Google Scholar] [CrossRef]
- Katajisto, M.; Kupiainen, H.; Rantanen, P.; Lindqvist, A.; Kilpeläinen, M.; Tikkanen, H.; Laitinen, T. Physical inactivity in COPD and increased patient perception of dyspnea. Int. J. Chron. Obstruct. Pulmon. Dis. 2012, 7, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Anzueto, A.; Miravitlles, M. Pathophysiology of dyspnea in COPD. Postgrad. Med. 2017, 129, 366–374. [Google Scholar] [CrossRef]
- Mador, J.M.; Rodis, A.; Diaz, J. Diaphragmatic fatigue following voluntary hyperpnea. Am. J. Respir. Crit. Care Med. 1996, 154, 63–67. [Google Scholar] [CrossRef]
- Hasler, E.D.; Saxer, S.; Schneider, S.R.; Furian, M.; Lichtblau, M.; Schwarz, E.I.; Bloch, K.E.; Ulrich, S. Effect of Breathing Oxygen-Enriched Air on Exercise Performance in Patients with Chronic Obstructive Pulmonary Disease: Randomized, Placebo-Controlled, Cross-Over Trial. Respiration 2020, 99, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Renggli, A.S.; Verges, S.; Notter, D.A.; Spengler, C.M. Development of respiratory muscle contractile fatigue in the course of hyperpnoea. Respir. Physiol. Neurobiol. 2008, 164, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Hamnegard, C.H.; Wragg, S.; Kyroussis, D.; Mills, G.H.; Polkey, M.I.; Moran, J.; Road, J.; Bake, B.; Green, M.; Moxham, J. Diaphragm fatigue following maximal ventilation in man. Eur. Respir. J. 1996, 9, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesari, M.; Kritchevsky, S.B.; Penninx, B.W.; Nicklas, B.J.; Simonsick, E.M.; Newman, A.B.; Tylavsky, F.A.; Brach, J.S.; Satterfield, S.; Bauer, D.C. Prognostic value of usual gait speed in well-functioning older people—Results from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2005, 53, 1675–1680. [Google Scholar] [CrossRef] [Green Version]
- Zago, M.; Sforza, C.; Bonardi, D.R.; Guffanti, E.E.; Galli, M. Gait analysis in patients with chronic obstructive pulmonary disease: A systematic review. Gait Posture 2018, 61, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.; Wallace, L.; Dickson, R.; Ayres, J.; Lehman, R.; Searle, Y.; Sherwood Burge, P. The most effective psychologically-based treatments to reduce anxiety and panic in patients with chronic obstructive pulmonary disease (COPD): A systematic review. Patient Educ. Couns. 2002, 47, 311–318. [Google Scholar] [CrossRef]
- McNarry, M.A.; Wilson, R.P.; Holton, M.D.; Griffiths, I.W.; Mackintosh, K.A. Investigating the relationship between energy expenditure, walking speed and angle of turning in humans. PLoS ONE 2017, 12, e0182333. [Google Scholar] [CrossRef] [Green Version]
- Karpman, C.; Benzo, R. Gait speed as a measure of functional status in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 1315–1320. [Google Scholar]
- Revill, S.M.; Morgan, M.D.L.; Singh, S.J.; Williams, J.; Hardman, A.E. The endurance shuttle walk: A new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax 1999, 54, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Parreira, V.F.; Janaudis-Ferreira, T.; Evans, R.A.; Mathur, S.; Goldstein, R.S.; Brooks, D. Measurement properties of the incremental shuttle walk test: A systematic review. Chest 2014, 145, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.D.; Wise, R.A. Field tests of exercise in COPD: The six-minute walk test and the shuttle walk test. COPD J. Chronic Obstr. Pulm. Dis. 2007, 4, 217–223. [Google Scholar] [CrossRef]
- Awotidebe, T.O.; Awopeju, O.F.; Bisiriyu, L.A.; Ativie, R.N.; Oke, K.I.; Adedoyin, R.A.; Olusola, O.D.; Erhabor, G.E. Relationships between respiratory parameters, exercise capacity and psychosocial factors in people with chronic obstructive pulmonary disease. Ann. Phys. Rehabil. Med. 2017, 60, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Kerti, M.; Balogh, Z.; Kelemen, K.; Varga, J. The relationship between exercise capacity and different functional markers in pulmonary rehabilitation for COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaron, S.D.; Tan, W.C.; Bourbeau, J.; Sin, D.D.; Loves, R.H.; MacNeil, J.; Whitmore, G.A. Diagnostic Instability and Reversals of Chronic Obstructive Pulmonary Disease Diagnosis in Individuals with Mild to Moderate Airflow Obstruction. Am. J. Respir. Crit. Care Med. 2017, 196, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Toy, Ş.; Çiftçi, R.; Şenol, D.; Kizilay, F.; Ermiş, H. Comparison of the Effects of the Somatotype on the Physical Activity, Kinesiophobia, and Fatigue Levels of Obstructive Sleep Apnea Syndrome Patients and Healthy Individuals. Iran. J. Public Health 2021, 50, 919–926. [Google Scholar] [CrossRef]
- Plana, M.N.; Zamora, J.; Suresh, G.; Fernandez-Pineda, L.; Thangaratinam, S.; Ewer, A.K. Pulse oximetry screening for critical congenital heart defects. Cochrane Database Syst. Rev. 2018, 2018, CD011912. [Google Scholar] [CrossRef]
- Eaton, T.; Young, P.; Milne, D.; Wells, A.U. Six-Minute Walk, Maximal Exercise Tests. Am. J. Respir. Crit. Care Med. 2005, 171, 1150–1157. [Google Scholar] [CrossRef]
- Singh, S.J.; Morgan, M.D.; Hardman, A.E.; Rowe, C.; Bardsley, P.A. Comparison of oxygen uptake during a conventional treadmill test and the shuttle walking test in chronic airflow limitation. Eur. Respir. J. 1994, 7, 2016–2020. [Google Scholar] [CrossRef]
- Ozbulut, O.; Genc, A.; Bagcioglu, E.; Coskun, K.S.; Acar, T.; Alkoc, O.A.; Karabacak, H.; Sener, U.; Ucok, K. Evaluation of physical fitness parameters in patients with schizophrenia. Psychiatry Res. 2013, 210, 806–811. [Google Scholar] [CrossRef]
- Williams, N. The MRC breathlessness scale. Occup. Med. 2017, 67, 496–497. [Google Scholar] [CrossRef] [Green Version]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, K.R.; Baxi, S.C.; Smith, R.M. Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. J. Emerg. Nurs. 2000, 26, 216–222. [Google Scholar] [CrossRef]
- Cohen, J. The effect size. Stat. Power Anal. Behav. Sci. 1988, 102, 77–83. [Google Scholar]
- Linder, S.M.; Davidson, S.; Rosenfeldt, A.; Lee, J.; Koop, M.M.; Bethoux, F.; Alberts, J.L. Forced and Voluntary Aerobic Cycling Interventions Improve Walking Capacity in Individuals With Chronic Stroke. Arch. Phys. Med. Rehabil. 2021, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Donaire-Gonzalez, D.; Gimeno-Santos, E.; Balcells, E.; Rodríguez, D.A.; Farrero, E.; de Batlle, J.; Benet, M.; Ferrer, A.; Barberà, J.A.; Gea, J.; et al. Physical activity in COPD patients: Patterns and bouts. Eur. Respir. J. 2013, 42, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.; Ioniţă, D.; Stroescu, C.; Pele, I.; Gologanu, D.; Dumitrescu, A.; Marinescu, L.; Anghelescu, D.; Alexandru, M.; Bogdan. Benefits of a 7-week outpatient pulmonary rehabilitation program in COPD patients. Pneumol. Buchar. Rom. 2013, 62, 94–98+101. [Google Scholar]
- Behnia, M.; Wheatley, C.; Avolio, A.; Johnson, B. Influence of resting lung diffusion on exercise capacity in patients with COPD. BMC Pulm. Med. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Nazir, A. Exercise Intolerance in COPD: A Review of the Pathophysiology and Clinical Assessment. Indones. J. Phys. Med. Rehabil. 2023, 12, 1–12. [Google Scholar]
- Elbehairy, A.F.; O’Donnell, C.D.; Abd Elhameed, A.; Vincent, S.G.; Milne, K.M.; James, M.D.; Webb, K.A.; Neder, J.A.; O’Donnell, D.E.; Network, C.R.R. Low resting diffusion capacity, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. J. Appl. Physiol. 2019, 127, 1107–1116. [Google Scholar] [CrossRef]
- Aldhahi, M.I.; Baattaiah, B.A.; Nazer, R.I.; Albarrati, A. Impact of Psychological Factors on Functional Performance among Patients with Chronic Obstructive Pulmonary Disease. Int. J. Environ. Res. Public. Health 2023, 20, 1285. [Google Scholar] [CrossRef] [PubMed]
- Pepin, V.; Saey, D.; Laviolette, L.; Maltais, F. Exercise capacity in chronic obstructive pulmonary disease: Mechanisms of limitation. COPD J. Chronic Obstr. Pulm. Dis. 2007, 4, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, P.; Cao, Y.; Liu, C.; Wang, J.; Wu, W. Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underlying Mechanisms and Physical Therapy Perspectives. Aging Dis. 2023, 14, 33. [Google Scholar] [CrossRef]
- Tabira, K.; Horie, J.; Fujii, H.; Aida, T.; Ito, K.; Fukumoto, T.; Imagita, H.; Ishihara, H. The relationship between skeletal muscle oxygenation and systemic oxygen uptake during exercise in subjects with COPD: A preliminary study. Respir. Care 2012, 57, 1602–1610. [Google Scholar] [CrossRef]
- Rosa, F.W.; Camelier, A.; Mayer, A.; Jardim, J.R. Avaliação da capacidade de exercício em portadores de doença pulmonar obstrutiva crônica: Comparação do teste de caminhada com carga progressiva com o teste de caminhada com acompanhamento. J. Bras. Pneumol. 2006, 32, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liang, B.-M.; Tang, Y.-J.; Xu, Z.-B.; Wang, K.; Yi, Q.; Ou, X.-M.; Feng, Y.-L. Relationship between 6-minute walk test and pulmonary function test in stable chronic obstructive pulmonary disease with different severities. Chin. Med. J. 2012, 125, 3053–3058. [Google Scholar] [PubMed]
- Mador, M.J.; Rodis, A.; Magalang, U.J. Reproducibility of Borg Scale Measurements of Dyspnea During Exercise in Patients with COPD. Chest 1995, 107, 1590–1597. [Google Scholar] [CrossRef] [Green Version]
- Spruit, M.A.; Pennings, H.-J.; Janssen, P.P.; Does, J.D.; Scroyen, S.; Akkermans, M.A.; Mostert, R.; Wouters, E.F.M. Extra-pulmonary features in COPD patients entering rehabilitation after stratification for MRC dyspnea grade. Respir. Med. 2007, 101, 2454–2463. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Garcia, M.; Barrero, M.; Maldonado, D. Exercise Capacity, Ventilatory Response, and Gas Exchange in COPD Patients With Mild to Severe Obstruction Residing at High Altitude. Front. Physiol. 2021, 12, 668144. [Google Scholar] [CrossRef]
- Wedzicha, J.; Bestall, J.; Garrod, R.; Garnham, R.; Paul, E.; Jones, P. Randomized controlled trial of pulmonary rehabilitation in severe chronic obstructive pulmonary disease patients, stratified with the MRC dyspnoea scale. Eur. Respir. J. 1998, 12, 363–369. [Google Scholar] [CrossRef] [Green Version]
Parameters | COPD N = 29 | HG N = 34 | p-Value |
---|---|---|---|
M ± SD | M ± SD | ||
Age (years) | 63.41 ± 4.76 | 63.52 ± 4.74 | 0.924 |
Weight (kg) | 69.78 ± 14.78 | 66.84 ± 8.63 | 0.329 |
Height (cm) | 167.20 ± 9.72 | 161 ± 5.99 | 0.006 |
BMI (kg/m2) | 24.80 ± 3.91 | 25.57 ± 4.30 | 0.462 |
FVC (L) | 1.68 ± 0.50 | 2.28 ± 0.32 | <0.001 |
FVC% predicted | 52.13 ± 14.40 | 79.02 ± 14.79 | <0.001 |
FEV1 (L) | 1.07 ± 0.42 | 2.05 ± 0.32 | <0.001 |
FEV1% predicted | 41.03 ± 10.53 | 87.88 ± 18.45 | <0.001 |
FEV1/FVC (L) | 63.37 ± 7.16 | 89.58 ± 6.62 | <0.001 |
PEF (L) | 2.13 ± 079 | 4.53 ± 1.35 | <0.001 |
PEF% predicted | 32.00 ± 9.61 | 77.32 ± 17.98 | <0.001 |
Shuttle Walking Test Parameters | COPD N = 29 M ± SD | HG N = 34 M ± SD | t-Value | Cohen’s d | p-Value |
---|---|---|---|---|---|
Distance (meter) | 208.62 ± 89.67 | 333.82 ± 56.67 | −6.494 | 1.66 | <0.001 |
Speed (m/s) | 3.17 ± 0.82 | 4.21 ± 0.37 | −6.331 | 1.63 | <0.001 |
SWT-Level | 5.75 ± 3.05 | 9.47 ± 1.52 | −5.944 | 1.54 | <0.001 |
Parameters | Group | Pretest | Posttest | t-Value | p-Value |
---|---|---|---|---|---|
HR (b/min) | COPD | 82.34 ± 16.20 | 106.10 ± 18.14 | −7.850 | <0.001 |
HG | 78.61 ± 13.09 | 100.20 ± 21.25 | −6.114 | <0.001 | |
SPO2 (%) | COPD | 90.68 ± 8.47 | 89.17 ± 6.17 | 1.306 | 0.202 |
HG | 96.94 ± 1.73 | 93.79 ± 3.82 | 4.454 | <0.001 | |
BSe | COPD | 1.20 ± 1.42 | 3.93 ± 1.98 | −8.102 | <0.001 |
HG | 0.17 ± 0.57 | 0.26 ± 0.75 | −1.000 | 0.325 | |
BSd | COPD | 2.51 ± 0.82 | 4.89 ± 1.69 | −6.168 | <0.001 |
HG | 0.23 ± 0.65 | 0.35 ± 0.73 | −0.643 | 0.524 |
Dependent Variables | Predictors | Coefficients | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | β | t | p-Value | 95% CI | ||||
Lower | Upper | ||||||||
MRC | COPD | ||||||||
CONSTANT | 5.132 | 2.043 | 2.512 | 0.019 * | 0.924 | 9.339 | 0.45 | ||
Walking Distance | −0.005 | 0.001 | −0.540 | −3.338 | 0.002 * | −0.007 | −0.002 | ||
Walking speed | −0.565 | 0.142 | −0.609 | −3.994 | <0.001 * | −0.856 | −0.275 | ||
SWT-L | −0.150 | 0.038 | −0.602 | −0.3917 | 0.001 * | −0.228 | −0.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çiftçi, R.; Kurtoğlu, A.; Eken, Ö.; Durmaz, D.; Eler, S.; Eler, N.; Aldhahi, M.I. Investigation of Factors Affecting Shuttle Walking Performance at Increased Speed for Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2023, 12, 4752. https://doi.org/10.3390/jcm12144752
Çiftçi R, Kurtoğlu A, Eken Ö, Durmaz D, Eler S, Eler N, Aldhahi MI. Investigation of Factors Affecting Shuttle Walking Performance at Increased Speed for Patients with Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine. 2023; 12(14):4752. https://doi.org/10.3390/jcm12144752
Chicago/Turabian StyleÇiftçi, Rukiye, Ahmet Kurtoğlu, Özgür Eken, Dilber Durmaz, Serdar Eler, Nebahat Eler, and Monira I. Aldhahi. 2023. "Investigation of Factors Affecting Shuttle Walking Performance at Increased Speed for Patients with Chronic Obstructive Pulmonary Disease" Journal of Clinical Medicine 12, no. 14: 4752. https://doi.org/10.3390/jcm12144752
APA StyleÇiftçi, R., Kurtoğlu, A., Eken, Ö., Durmaz, D., Eler, S., Eler, N., & Aldhahi, M. I. (2023). Investigation of Factors Affecting Shuttle Walking Performance at Increased Speed for Patients with Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 12(14), 4752. https://doi.org/10.3390/jcm12144752