Significance of Umbilical Cord Leptin Profile during Pregnancy in Gestational Diabetes Mellitus—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection Process
2.5. Data Extraction
2.6. Evaluation of Quality and Risk of Bias
2.7. Statistical Analysis
3. Results
3.1. Results of the Literature Search
3.2. Qualitative Evaluation
3.3. Quantitative Evaluation (Meta-Analysis)
3.4. Quantitative Evaluation (Secondary Analyses)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. Gestational Diabetes Mellitus. Diabetes Care 2004, 27, S88–S90. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S200–S210. [Google Scholar] [CrossRef]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, A.; Vilariño-García, T.; Guadix, P.; Dueñas, J.L.; Sánchez-Margalet, V. Leptin and Nutrition in Gestational Diabetes. Nutrients 2020, 12, 1970. [Google Scholar] [CrossRef] [PubMed]
- Alfadhli, E.M. Gestational diabetes mellitus. Saudi Med. J. 2015, 36, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Ehrenberg, H.M. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG 2006, 113, 1126–1133. [Google Scholar] [CrossRef]
- Metzger, B.E.; Buchanan, T.A.; Coustan, D.R.; de Leiva, A.; Dunger, D.B.; Hadden, D.R.; Hod, M.; Kitzmiller, J.L.; Kjos, S.L.; Oats, J.N.; et al. Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care 2007, 30, S251–S260. [Google Scholar] [CrossRef] [Green Version]
- Sirico, A.; Rossi, E.D.; Degennaro, V.A.; Arena, V.; Rizzi, A.; Tartaglione, L.; Di Leo, M.; Pitocco, D.; Lanzone, A. Placental diabesity: Placental VEGF and CD31 expression according to pregestational BMI and gestational weight gain in women with gestational diabetes. Arch. Gynecol. Obstet. 2023, 307, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Cromi, A.; Ghezzi, F.; Di Naro, E.; Siesto, G.; Bergamini, V.; Raio, L. Large cross-sectional area of the umbilical cord as a predictor of fetal macrosomia. Ultrasound Obs. Obstet. Gynecol. 2007, 30, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Sirico, A.; Rizzo, G.; Maruotti, G.M.; Aiello, E.; Morlando, M.; Arduini, D.; Martinelli, P. Does fetal macrosomia affect umbilical artery Doppler velocity waveforms in pregnancies complicated by gestational diabetes? J. Matern. Fetal Neonatal Med. 2016, 29, 3266–3270. [Google Scholar] [CrossRef] [Green Version]
- Karakosta, P.; Chatzi, L.; Plana, E.; Margioris, A.; Castanas, E.; Kogevinas, M. Leptin levels in cord blood and anthropometric measures at birth: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2011, 25, 150–163. [Google Scholar] [CrossRef]
- Tsai, P.J.; Yu, C.H.; Hsu, S.P.; Lee, Y.H.; Chiou, C.H.; Hsu, Y.W.; Ho, S.C.; Chu, C.H. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: Positive correlation with birthweight and neonatal adiposity. Clin. Endocrinol. 2004, 61, 88–93. [Google Scholar] [CrossRef]
- Okereke, N.C.; Uvena-Celebrezze, J.; Hutson-Presley, L.; Amini, S.B.; Catalano, P.M. The effect of gender and gestational diabetes mellitus on cord leptin concentration. Am. J. Obs. Obstet. Gynecol. 2002, 187, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Persson, B.; Westgren, M.; Celsi, G.; Nord, E.; Ortqvist, E. Leptin concentrations in cord blood in normal newborn infants and offspring of diabetic mothers. Horm. Metab. Res. 1999, 31, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Tint, M.T.; Michael, N.; Yap, F.; Chong, Y.S.; Tan, K.H.; Godfrey, K.M.; Larbi, A.; Lee, Y.S.; Chan, S.Y.; et al. Determinants of cord blood adipokines and association with neonatal abdominal adipose tissue distribution. Int. J. Obes. 2022, 46, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Roca-Rodríguez, M.D.M.; Ramos-García, P.; López-Tinoco, C.; Aguilar-Diosdado, M. Significance of Serum-Plasma Leptin Profile during Pregnancy in Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 2433. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; The Cochrane Collaboration: London, UK, 2008. [Google Scholar] [CrossRef]
- Booth, A.; Clarke, M.; Dooley, G.; Ghersi, D.; Moher, D.; Petticrew, M.; Stewart, L. The nuts and bolts of PROSPERO: An international prospective register of systematic reviews. Syst. Rev. 2012, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [Green Version]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.G.; Higgins, J.P. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002, 21, 1559–1573. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Palmer, T.M.; Sterne, J.A.C. Meta-Analysis in Stata: An Updated Collection from the Stata Journal, 2nd ed.; Stata Press: College Station, TX, USA, 2016. [Google Scholar]
- Silva, N.Y.; Tennekoon, K.H.; Senanayake, L.; Karunanayake, E.H. Cord blood leptin levels in normal pregnancies, pregnancy induced hypertension and gestational diabetes mellitus. Ceylon Med. J. 2008, 53, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Shang, M.; Dong, X.; Hou, L. Correlation of adipokines and markers of oxidative stress in women with gestational diabetes mellitus and their newborns. J. Obs. Obstet. Gynaecol. Res. 2018, 44, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, B.; Bobby, Z.; Dorairajan, G.; Vinayagam, V.; Packirisamy, R.M. Adipokine levels and their association with insulin resistance and fetal outcomes among the newborns of Indian gestational diabetic mothers. Saudi Med. J. 2019, 40, 353–359. [Google Scholar] [CrossRef]
- Vasilakos, L.K.; Steinbrekera, B.; Santillan, D.A.; Santillan, M.K.; Brandt, D.S.; Dagle, D.; Roghair, R.D. Umbilical Cord Blood Leptin and IL-6 in the Presence of Maternal Diabetes or Chorioamnionitis. Front. Endocrinol. 2022, 13, 836541. [Google Scholar] [CrossRef] [PubMed]
- Benhalima, K.; De Landtsheer, A.; Van Crombrugge, P.; Moyson, C.; Verhaeghe, J.; Verlaenen, H.; Vercammen, C.; Maes, T.; Dufraimont, E.; De Block, C.; et al. Predictors of neonatal adiposity and associations by fetal sex in women with gestational diabetes mellitus and normal glucose-tolerant women. Acta Diabetol. 2021, 58, 341–354. [Google Scholar] [CrossRef]
- Wang, W.J.; Huang, R.; Zheng, T.; Du, Q.; Yang, M.N.; Xu, Y.J.; Liu, X.; Tao, M.Y.; He, H.; Fang, F.; et al. Genome-Wide Placental Gene Methylations in Gestational Diabetes Mellitus, Fetal Growth and Metabolic Health Biomarkers in Cord Blood. Front. Endocrinol. 2022, 13, 875180. [Google Scholar] [CrossRef]
- Ortega-Senovilla, H.; Schaefer-Graf, U.; Herrera, E. Foetal hyperinsulinaemia and increased fat mass correlate negatively with circulating fatty acid concentrations in neonates of gestational diabetic mothers with dietary-controlled glycaemia. Pediatr. Obes. 2022, 17, e12860. [Google Scholar] [CrossRef] [PubMed]
- Mosavat, M.; Omar, S.Z.; Tan, P.C.; Razif, M.F.M.; Sthaneshwar, P. Leptin and soluble leptin receptor in association with gestational diabetes: A prospective case-control study. Arch. Gynecol. Obstet. 2018, 297, 797–803. [Google Scholar] [CrossRef]
- Johnson, A.W.; Snegovskikh, D.; Parikh, L.; DeAguiar, R.B.; Han, C.S.; Hwang, J.J. Characterizing the Effects of Diabetes and Obesity on Insulin and Leptin Levels amongst Pregnant Women. Am. J. Perinatol. 2020, 37, 1094–1101. [Google Scholar] [CrossRef]
- Shekhawat, P.S.; Garland, J.S.; Shivpuri, C.; Mick, G.J.; Sasidharan, P.; Pelz, C.J.; McCormick, K.L. Neonatal cord blood leptin: Its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr. Res. 1998, 43, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Ott, R.; Stupin, J.H.; Loui, A.; Eilers, E.; Melchior, K.; Rancourt, R.C.; Schellong, K.; Ziska, T.; Dudenhausen, J.W.; Henrich, W.; et al. Maternal overweight is not an independent risk factor for increased birth weight, leptin and insulin in newborns of gestational diabetic women: Observations from the prospective ‘EaCH’ cohort study. BMC Pregnancy Childbirth 2018, 18, 250. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xu, L.; Zhu, W.; Wu, Y.; Xu, M.; Wang, Z. Impact of Cord Blood Adiponectin and Leptin Levels and Maternal Obesity on Birth Weight of Infants Born to Women with Gestational Diabetes Mellitus. J. Reprod. Med. 2017, 62, 179–183. [Google Scholar] [PubMed]
- Fyfe, R.; Burton, A.; McLennan, A.; McCudden, L.; Gordon, A.; Hyett, J. Factors affecting cord blood leptin levels in a consecutive birth cohort. J. Matern. Fetal Neonatal Med. 2022, 35, 884–889. [Google Scholar] [CrossRef]
- Niknam, A.; Tehrani, F.R.; Behboudi-Gandevani, S.; Rahmati, M.; Hedayati, M.; Abedini, M.; Firouzi, F.; Torkestani, F.; Zokaee, M.; Azizi, F. Umbilical cord blood concentration of connecting peptide (C-peptide) and pregnancy outcomes. BMC Pregnancy Childbirth 2022, 22, 764. [Google Scholar] [CrossRef] [PubMed]
- Anık, A.; Çevik, Ö.; Öztürk, S.; Tuzcu, A.; Akcan, A.B.; Zafer, E.; Türkmen, M.K.; Anık, A. Association Between Umbilical Cord Levels of Glypican-1, Glypican-3, Syndecan-1, WISP1, Leptin and Birth Weight of Small, Appropriate, and Large for Gestational Age Infants. Turk. Arch. Pediatr. 2022, 57, 61–67. [Google Scholar] [CrossRef]
- Kang, S.J.; Bae, J.G.; Kim, S.; Park, J.H. Birth anthropometry and cord blood leptin in Korean appropriate-for-gestational-age infants born at ≥ 28 weeks gestation: A cross sectional study. Int. J. Pediatr. Endocrinol. 2020, 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhu, W.T.; Nuyt, A.M.; Marc, I.; Julien, P.; Huang, R.; Dubois, L.; Wei, S.Q.; Zhang, J.; Levy, E.; et al. Cord Blood IGF-I, Proinsulin, Leptin, HMW Adiponectin, and Ghrelin in Short or Skinny Small-for-Gestational-Age Infants. J. Clin. Endocrinol. Metab. 2021, 106, e3049–e3057. [Google Scholar] [CrossRef] [PubMed]
- Hofer, O.J.; Alsweiler, J.; Tran, T.; Crowther, C.A. Glycemic control in gestational diabetes and impact on biomarkers in women and infants. Pediatr. Res. 2023. [Google Scholar] [CrossRef]
Total | 16 studies |
Year of publication | 1998–2022 |
Number of patients | |
Total | 1691 patients |
Cases with GDM | 573 patients |
Controls | 1118 patients |
Sample size, range | 6–327 patients |
Leptin determination | |
ELISA | 10 studies |
RIA | 6 studies |
Source of samples | |
Serum | 9 studies |
Plasma | 6 studies |
Serum or plasma not specified | 1 studies |
Geographical region | |
Europe | 10 studies |
Asia | 3 studies |
Europe–Asia | 1 study |
North America | 1 study |
South America | 1 study |
Study | Selection | Control | Outcomes | Total Score | Overall RoB | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Selection of GDM Patients | Selection of Non-GDM Subjects | Family/ Personal GDM Risk Factors | Control of Risk Factors during Pregnancy | Properly Leptin Quantification | Maternal Outcomes | Fetal Outcomes | Appropriate Follow-up Period | Adequacy of Follow-up | |||
Maffei et al., 1998 | 6 | ||||||||||
Persson et al., 1999 | 5 | ||||||||||
Tapainanen et al., 2001 | 5 | ||||||||||
Hytinantti et al., 2001 | 5 | ||||||||||
Vitoratos et al., 2002 | 8 | ||||||||||
Okereke et al., 2002 | 6 | ||||||||||
Aman et al., 2011 | 9 | ||||||||||
Jahan et al., 2011 | 4 | ||||||||||
Martino et al., 2016 | 9 | ||||||||||
Shang et al., 2018 | 8 | ||||||||||
Patro-Małysza et al., 2019 | 7 | ||||||||||
Manoharan et al., 2019 | 8 | ||||||||||
Benhalima et al., 2020 | 6 | ||||||||||
De Luccia et al., 2021 | 8 | ||||||||||
Ortega-Senovilla et al., 2022 | 7 | ||||||||||
Anık et al., 2022 | 6 |
Pooled Data | Heterogeneity | |||||||
---|---|---|---|---|---|---|---|---|
Meta-Analyses | No. of Studies | No. of Patients | Stat. Model | Wt | SMD (95% CI) | p-Value | Phet | I2 (%) |
All a | 16 | 1691 | REM | D-L | 0.59 (0.37 to 0.80) | <0.001 | <0.001 | 70.5 |
Subgroup analysis by continent b | ||||||||
Asia | 3 | 348 | REM | D-L | 0.91 (0.45 to 1.37) | <0.001 | 0.03 | 71.9 |
Europe | 11 | 1207 | REM | D-L | 0.38 (0.20 to 0.56) | <0.001 | 0.13 | 33.8 |
North America | 1 | 78 | — | — | 0.56 (0.10 to 1.02) | 0.02 | — | — |
South America | 1 | 58 | — | — | 1.19 (0.61 to 1.78) | <0.001 | — | — |
Subgroup analysis by analysis technique b | ||||||||
ELISA | 10 | 848 | REM | D-L | 0.70 (0.44 to 0.97) | <0.001 | 0.001 | 67.3 |
RIA | 6 | 843 | REM | D-L | 0.30 (0.11 to 0.49) | 0.002 | 0.30 | 17.0 |
Subgroup analysis by sample source b | ||||||||
Plasma | 6 | 577 | REM | D-L | 0.71 (0.33 to 1.09) | <0.001 | 0.008 | 67.7 |
Serum | 9 | 690 | REM | D-L | 0.55 (0.34 to 0.77) | <0.001 | 0.08 | 42.7 |
Not reported | 1 | 424 | — | — | 0.10 (−0.12 to 0.33) | 0.36 | — | — |
Subgroup analysis by study design b | ||||||||
Prospective | 16 | 1691 | REM | D-L | 0.59 (0.37 to 0.80) | <0.001 | <0.001 | 70.5 |
Retrospective | 0 | 0 | — | — | — | — | — | — |
Subgroup analysis by RoB b | ||||||||
High RoB | 4 | 363 | REM | D-L | 0.35 (0.12 to 0.59) | 0.003 | 0.61 | 0.0 |
Moderate RoB | 6 | 826 | REM | D-L | 0.31 (0.14 to 0.48) | <0.001 | 0.35 | 10.6 |
Low RoB | 6 | 502 | REM | D-L | 0.93 (0.57 to 1.30) | <0.001 | 0.02 | 64.6 |
Covariate | No. of Studies | No. of Patients | Stat. Model | Coef. (95% CI) | p-Value | Heterogeneity Explained |
---|---|---|---|---|---|---|
Maternal age in GDM (years) | 11 | 1250 | random-effects meta-regression | −0.046 (−0.145 to 0.054) a | 0.33 ± 0.005 b | 5.25% c |
Pregestational BMI in GDM (summary index score) | 9 | 742 | random-effects meta-regression | −0.073 (−0.257 to 0.110) a | 0.42 ± 0.005 b | −1.54% c |
Gestational BMI in GDM (summary index score) | 2 | 163 | — | — | — | — |
Maternal glycemia levels in GDM (mmol/L) | 5 | 902 | random-effects meta-regression | −0.099 (−1.202 to 1.399) a | 0.79 ± 0.004 b | −27.50% c |
Maternal insulin in GDM (pmol/L) | 3 | 351 | — | — | — | — |
Maternal HbA1c in GDM (%) | 4 | 763 | — | — | — | — |
Maternal HOMA in GDM summary index score) | 2 | 632 | — | — | — | — |
Cord blood glycemia levels in GDM (mmol/L) | 4 | 354 | — | — | — | — |
Cord blood Insulin in GDM (mcU/mL) | 6 | 539 | random-effects meta-regression | −0.023 (−0.065 to 0.019) a | 0.15 ± 0.004 b | 0.00% c |
Cord blood C peptide in GDM (nmol/L) | 5 | 701 | random-effects meta-regression | −0.421 (−0.803 to 1.644) a | 0.45 ± 0.005 b | 24.92% c |
Gestational age delivery in GDM (weeks) | 14 | 1522 | random-effects meta-regression | −0.251 (−0.615 to 0.112) a | 0.17 ± 0.004 b | 8.96% c |
Caesarian in GDM (%) | 7 | 611 | random-effects meta-regression | 0.005 (−0.012 to 0.021) a | 0.50 ± 0.005 b | −5.59% c |
Newborn weight in GDM (gr) | 16 | 1691 | random-effects meta-regression | −0.0004 (−0.0015 to 0.0006) a | 0.41 ± 0.005 b | −2.62% c |
Macrosomy in GDM (%) | 5 | 873 | random-effects meta-regression | 0.0001 (−0.0666 to 0.0670) a | 0.99 ± 0.005 b | −38.53% c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roca-Rodríguez, M.d.M.; Ramos-García, P.; López-Tinoco, C.; Aguilar-Diosdado, M. Significance of Umbilical Cord Leptin Profile during Pregnancy in Gestational Diabetes Mellitus—A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4756. https://doi.org/10.3390/jcm12144756
Roca-Rodríguez MdM, Ramos-García P, López-Tinoco C, Aguilar-Diosdado M. Significance of Umbilical Cord Leptin Profile during Pregnancy in Gestational Diabetes Mellitus—A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(14):4756. https://doi.org/10.3390/jcm12144756
Chicago/Turabian StyleRoca-Rodríguez, María del Mar, Pablo Ramos-García, Cristina López-Tinoco, and Manuel Aguilar-Diosdado. 2023. "Significance of Umbilical Cord Leptin Profile during Pregnancy in Gestational Diabetes Mellitus—A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 14: 4756. https://doi.org/10.3390/jcm12144756
APA StyleRoca-Rodríguez, M. d. M., Ramos-García, P., López-Tinoco, C., & Aguilar-Diosdado, M. (2023). Significance of Umbilical Cord Leptin Profile during Pregnancy in Gestational Diabetes Mellitus—A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(14), 4756. https://doi.org/10.3390/jcm12144756