Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation—A Machine Learning Approach
Abstract
:1. Introduction
2. Methods
2.1. Datasource
2.2. Study Population and Outcome
2.3. Potential Predictors and Statistical Analyses
3. Results
3.1. Characteristics of the Study Sample and Incidence of DM
3.2. Performance of the DM Prediction Models
3.3. Important Variables Predicting the Risk of DM
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, W.M.; Squires, R.H., Jr.; Nyberg, S.L.; Doo, E.; Hoofnagle, J.H. Acute liver failure: Summary of a workshop. Hepatology 2008, 47, 1401–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, R.; Karam, V.; Delvart, V.; O’Grady, J.; Mirza, D.; Klempnauer, J.; Castaing, D.; Neuhaus, P.; Jamieson, N.; Salizzoni, M.; et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J. Hepatol. 2012, 57, 675–688. [Google Scholar] [CrossRef] [Green Version]
- Dutkowski, P.; De Rougemont, O.; Müllhaupt, B.; Clavien, P.A. Current and future trends in liver transplantation in Europe. Gastroenterology 2010, 138, 802–809.e4. [Google Scholar] [CrossRef]
- Dutkowski, P.; Linecker, M.; DeOliveira, M.L.; Müllhaupt, B.; Clavien, P.A. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology 2015, 148, 307–323. [Google Scholar] [CrossRef]
- Noble, J.; Terrec, F.; Malvezzi, P.; Rostaing, L. Adverse effects of immunosuppression after liver transplantation. Best Pract. Res. Clin. Gastroenterol. 2021, 54–55, 101762. [Google Scholar] [CrossRef] [PubMed]
- Feltracco, P.; Barbieri, S.; Cillo, U.; Zanus, G.; Senzolo, M.; Ori, C. Perioperative thrombotic complications in liver transplantation. World J. Gastroenterol. 2015, 21, 8004–8013. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, B.; Mallett, S.V. Transfusion and coagulation management in liver transplantation. World J. Gastroenterol. 2014, 20, 6146–6158. [Google Scholar] [CrossRef]
- Fernandez, T.M.A.; Gardiner, P.J. Critical Care of the Liver Transplant Recipient. Curr. Anesthesiol. Rep. 2015, 5, 419–428. [Google Scholar] [CrossRef]
- Wan, P.; Yu, X.; Xia, Q. Operative outcomes of adult living donor liver transplantation and deceased donor liver transplantation: A systematic review and meta-analysis. Liver Transpl. 2014, 20, 425–436. [Google Scholar] [CrossRef]
- European Association for The Study of the Liver. EASL Clinical Practice Guidelines: Liver transplantation. J. Hepatol. 2016, 64, 433–485. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Tanner, J.; Mancero, J.M.P.; de Brito Poveda, V. Effects of Intensive Blood Glucose Control on Surgical Site Infection for Liver Transplant Recipients: A Randomized Controlled Trial. Transplant. Proc. 2023, 55, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lladó, L.; Xiol, X.; Figueras, J.; Ramos, E.; Memba, R.; Serrano, T.; Torras, J.; Garcia-Gil, A.; Gonzalez-Pinto, I.; Castellote, J.; et al. Immunosuppression without steroids in liver transplantation is safe and reduces infection and metabolic complications: Results from a prospective multicenter randomized study. J. Hepatol. 2006, 44, 710–716. [Google Scholar] [CrossRef]
- Fisher, R.A.; Stone, J.J.; Wolfe, L.G.; Rodgers, C.M.; Anderson, M.L.; Sterling, R.K.; Shiffman, M.L.; Luketic, V.A.; Contos, M.J.; Mills, A.S.; et al. Four-year follow-up of a prospective randomized trial of mycophenolate mofetil with cyclosporine microemulsion or tacrolimus following liver transplantation. Clin. Transplant. 2004, 18, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yong, J.N.; Ng, C.H.; Syn, N.; Lim, W.H.; Tan, D.J.H.; Tan, E.Y.; Huang, D.; Wong, R.C.; Chew, N.W.S.; et al. A Meta-Analysis and Systematic Review on the Global Prevalence, Risk Factors, and Outcomes of Coronary Artery Disease in Liver Transplantation Recipients. Liver Transpl. 2022, 28, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Azhie, A.; Sheth, P.; Hammad, A.; Woo, M.; Bhat, M. Metabolic Complications in Liver Transplantation Recipients: How We Can Optimize Long-Term Survival. Liver Transpl. 2021, 27, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Spann, A.; Yasodhara, A.; Kang, J.; Watt, K.; Wang, B.; Goldenberg, A.; Bhat, M. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review. Hepatology 2020, 71, 1093–1105. [Google Scholar] [CrossRef]
- Rathmann, W.; Bongaerts, B.; Carius, H.J.; Kruppert, S.; Kostev, K. Basic characteristics and representativeness of the German Disease Analyzer database. Int. J. Clin. Pharmacol. Ther. 2018, 56, 459–466. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rigatti, S.J. Random Forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Ling, Q.; Xu, X.; Wang, B.; Li, L.; Zheng, S. The Origin of New-Onset Diabetes after Liver Transplantation: Liver, Islets, or Gut? Transplantation 2016, 100, 808–813. [Google Scholar] [CrossRef]
- Stockmann, M.; Konrad, T.; Nolting, S.; Hünerbein, D.; Wernecke, K.D.; Döbling, H.; Steinmüller, T.; Neuhaus, P. Major influence of liver function itself but not of immunosuppression determines glucose tolerance after living-donor liver transplantation. Liver Transpl. 2006, 12, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Bhat, V.; Tazari, M.; Watt, K.D.; Bhat, M. New-Onset Diabetes and Preexisting Diabetes Are Associated with Comparable Reduction in Long-Term Survival After Liver Transplant: A Machine Learning Approach. Mayo Clin. Proc. 2018, 93, 1794–1802. [Google Scholar] [CrossRef]
- Rostambeigi, N.; Lanza, I.R.; Dzeja, P.P.; Deeds, M.C.; Irving, B.A.; Reddi, H.V.; Madde, P.; Zhang, S.; Asmann, Y.W.; Anderson, J.M.; et al. Unique cellular and mitochondrial defects mediate FK506-induced islet β-cell dysfunction. Transplantation 2011, 91, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakkera, H.A.; Mandarino, L.J. Calcineurin inhibition and new-onset diabetes mellitus after transplantation. Transplantation 2013, 95, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, A.E.; Triñanes, J.; Velazquez-Garcia, S.; Porrini, E.; Vega Prieto, M.J.; Diez Fuentes, M.L.; Arevalo, M.; Salido Ruiz, E.; Torres, A. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am. J. Transplant. 2013, 13, 1665–1675. [Google Scholar] [CrossRef]
- Peddi, V.R.; Wiseman, A.; Chavin, K.; Slakey, D. Review of combination therapy with mTOR inhibitors and tacrolimus minimization after transplantation. Transplant. Rev. 2013, 27, 97–107. [Google Scholar] [CrossRef]
- Hernández-Fisac, I.; Pizarro-Delgado, J.; Calle, C.; Marques, M.; Sánchez, A.; Barrientos, A.; Tamarit-Rodriguez, J. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. Am. J. Transplant. 2007, 7, 2455–2462. [Google Scholar] [CrossRef]
- Sgourakis, G.; Dedemadi, G. Corticosteroid-free immunosuppression in liver transplantation: An evidence-based review. World J. Gastroenterol. 2014, 20, 10703–10714. [Google Scholar] [CrossRef]
- Sonnenburg, E.D.; Zheng, H.; Joglekar, P.; Higginbottom, S.K.; Firbank, S.J.; Bolam, D.N.; Sonnenburg, J.L. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 2010, 141, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Ling, Q.; Xie, H.; Lu, D.; Wei, X.; Gao, F.; Zhou, L.; Xu, X.; Zheng, S. Association between donor and recipient TCF7L2 gene polymorphisms and the risk of new-onset diabetes mellitus after liver transplantation in a Han Chinese population. J. Hepatol. 2013, 58, 271–277. [Google Scholar] [CrossRef]
- Jackson, M.A.; Goodrich, J.K.; Maxan, M.E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Welter, D.; Ley, R.E.; Bell, J.T.; et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2016, 65, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.W.; Ling, Z.X.; Lu, H.F.; Zuo, J.; Sheng, J.F.; Zheng, S.S.; Li, L.J. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat. Dis. Int. 2012, 11, 40–50. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef] [PubMed]
- Aron-Wisnewsky, J.; Gaborit, B.; Dutour, A.; Clement, K. Gut microbiota and non-alcoholic fatty liver disease: New insights. Clin. Microbiol. Infect. 2013, 19, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Liu, A.; Dirsch, O.; Dahmen, U. Liver transplantation and inflammation: Is lipopolysaccharide binding protein the link? Cytokine 2013, 64, 71–78. [Google Scholar] [CrossRef]
- Stecher, B.; Maier, L.; Hardt, W.D. ‘Blooming’ in the gut: How dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 2013, 11, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Motiei, A.; Brindefalk, B.; Ogonowski, M.; El-Shehawy, R.; Pastuszek, P.; Ek, K.; Liewenborg, B.; Udekwu, K.; Gorokhova, E. Disparate effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna. PLoS ONE 2020, 15, e0214833. [Google Scholar] [CrossRef] [Green Version]
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; He, Q.; Nguyen, L.H.; Wong, M.C.S.; Huang, J.; Yu, Y.; Xia, B.; Tang, Y.; He, Y.; Zhang, C. Regular use of proton pump inhibitors and risk of type 2 diabetes: Results from three prospective cohort studies. Gut 2021, 70, 1070–1077. [Google Scholar] [CrossRef]
- Abe, T.; Onoe, T.; Tahara, H.; Tashiro, H.; Ishiyama, K.; Ide, K.; Ohira, M.; Ohdan, H. Risk factors for development of new-onset diabetes mellitus and progressive impairment of glucose metabolism after living-donor liver transplantation. Transplant. Proc. 2014, 46, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Cosio, F.G.; Pesavento, T.E.; Kim, S.; Osei, K.; Henry, M.; Ferguson, R.M. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002, 62, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.; Senzolo, M.; Masier, A.; Prestele, H.; Jones, R.; Samuel, D.; Villamil, F. Factors influencing renal function after liver transplantation. Results from the MOST, an international observational study. Dig. Liver Dis. 2009, 41, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, J.; Guo, M.; Yuan, X. Progress of new-onset diabetes after liver and kidney transplantation. Front. Endocrinol. 2023, 14, 1091843. [Google Scholar] [CrossRef]
ICD-10 or ATC Code | Features | Patients (N, %) | Median Time between Documentation of LT and First Documentation of Diagnosis or Prescription after Index Date (Days). | |
---|---|---|---|---|
ATC features (based on the Anatomical Classification of Pharmaceutical Products by the European Pharmaceutical Market Research Association (EPHMRA) | A02B2 | Proton pump inhibitors | (25, 11.6%) | 85 |
A05A2 | Bilestone therapy | (18, 8.3%) | 51 | |
A11C2 | Vitamin D, plain | (13, 6.0%) | 134 | |
C03A2 | Loop diuretics, plain | (11, 5.1%) | 62 | |
C07A0 | Beta-blocking agents, plain | (15, 6.9%) | 98 | |
J01C1 | Oral broad-spectrum penicillins | (18, 8.3%) | 219 | |
J01G1 | Oral fluoroquinolones | (15, 6.9%) | 257 | |
L04X0 | Other immunsuppressants | (25, 11.6%) | 42 | |
M01A1 | Non-steroidal antirheumatic drugs | (9, 4.2%) | 109 | |
N02B1 | Other analgesics | (17, 7.9%) | 116 | |
X25A0 | Physical therapy | (13, 6.0%) | 117 | |
ICD-10 features | A09.9 | Gastroenteritis and colitis of unspecified origin | (4, 1.9%) | 261 |
I10.0 | Essential (primary) hypertension | (15, 6.9%) | 83 | |
J06.9 | Acute upper respiratory infection, unspecified | (17, 7.9%) | 224 | |
J20.9 | Acute bronchitis, unspecified | (9, 4.2%) | 187 | |
K74.6 | Other and unspecified cirrhosis of liver | (4, 1.9%) | 86 | |
M54.1 | Radiculopathy | (10, 4.6%) | 78 | |
Z25.1 | Need for immunization against influenza | (12, 5.6%) | 208 | |
Age | mean = 62.1 years, SD = 14.7 years | |||
Sex (Female) | (96, 44.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loosen, S.H.; Krieg, S.; Chaudhari, S.; Upadhyaya, S.; Krieg, A.; Luedde, T.; Kostev, K.; Roderburg, C. Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation—A Machine Learning Approach. J. Clin. Med. 2023, 12, 4877. https://doi.org/10.3390/jcm12144877
Loosen SH, Krieg S, Chaudhari S, Upadhyaya S, Krieg A, Luedde T, Kostev K, Roderburg C. Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation—A Machine Learning Approach. Journal of Clinical Medicine. 2023; 12(14):4877. https://doi.org/10.3390/jcm12144877
Chicago/Turabian StyleLoosen, Sven H., Sarah Krieg, Saket Chaudhari, Swati Upadhyaya, Andreas Krieg, Tom Luedde, Karel Kostev, and Christoph Roderburg. 2023. "Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation—A Machine Learning Approach" Journal of Clinical Medicine 12, no. 14: 4877. https://doi.org/10.3390/jcm12144877
APA StyleLoosen, S. H., Krieg, S., Chaudhari, S., Upadhyaya, S., Krieg, A., Luedde, T., Kostev, K., & Roderburg, C. (2023). Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation—A Machine Learning Approach. Journal of Clinical Medicine, 12(14), 4877. https://doi.org/10.3390/jcm12144877