The Differences in the Pattern of OCT and OCTA Examinations between Early Normal- and High-Tension Pseudoexfoliative Glaucoma
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakazawa, T.; Fukuchi, T. What is glaucomatous optic neuropathy? Jpn. J. Ophthalmol. 2020, 64, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Killer, H.E.; Pircher, A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye 2018, 32, 924–930. [Google Scholar] [CrossRef]
- Cho, H.K.; Kee, C. Population-based glaucoma prevalence studies in Asians. Surv. Ophthalmol. 2014, 59, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Drance, S.M. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am. J. Ophthalmol. 1997, 124, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Zimmerman, M.B.; Podhajsky, P.; Alward, W.L. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am. J. Ophthalmol. 1994, 117, 603–624. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Łukasik, U.; Wróbel-Dudzińska, D.; Kocki, J.; Bartosińska, J.; Witczak, A.; Chodorowska, G.; Mosiewicz, J.; Żarnowski, T. Risk Factors for Normal and High-Tension Glaucoma in Poland in Connection with Polymorphisms of the Endothelial Nitric Oxide Synthase Gene. PLoS ONE. 2016, 11, e0147540. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.L.; Drance, S.M. Nocturnal hypotension: Role in glaucoma progression. Surv. Ophthalmol. 1999, 43 (Suppl. S1), S10–S16. [Google Scholar] [CrossRef]
- Lever, M.; Glaser, M.; Chen, Y.; Halfwassen, C.; Unterlauft, J.D.; Bechrakis, N.E.; Böhm, M.R.R. Microvascular and Structural Alterations of the Macula in Early to Moderate Glaucoma: An Optical Coherence Tomography-Angiography Study. J. Clin. Med. 2021, 10, 5017. [Google Scholar] [CrossRef]
- Lichter, P.R.; Musch, D.C.; Gillespie, B.W.; Guire, K.E.; Janz, N.K.; Wren, P.A.; Mills, R.P.; CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001, 108, 1943–1953. [Google Scholar] [CrossRef]
- Anderson, D.R.; Drance, S.M.; Schulzer, M.; Collaborative Normal-Tension Glaucoma Study Group. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am. J. Ophthalmol. 2003, 136, 820–829. [Google Scholar] [CrossRef]
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Jonas, J.B.; Wang, N. Cerebrospinal fluid pressure and glaucoma. J. Ophthalmic Vis. Res. 2013, 8, 257–263. [Google Scholar] [PubMed]
- Plange, N.; Remky, A.; Arend, O. Colour Doppler imaging and fluorescein filling defects of the optic disc in normal tension glaucoma. Br. J. Ophthalmol. 2003, 87, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.J.; Schoetzau, A.; Stümpfig, D.; Flammer, J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am. J. Ophthalmol. 1997, 123, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, J.E.; Piltz, J.; Hariprasad, S.M.; DuPont, J. Optic nerve and choroidal circulation in glaucoma. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2329–2336. [Google Scholar]
- Barbosa-Breda, J.; Van Keer, K.; Abegão-Pinto, L.; Nassiri, V.; Molenberghs, G.; Willekens, K.; Vandewalle, E.; Rocha-Sousa, A.; Stalmans, I. Improved discrimination between normal-tension and primary open-angle glaucoma with advanced vascular examinations—The Leuven Eye Study. Acta Ophthalmol. 2019, 97, e50–e56. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Bartosińska, J.; Łukasik, U.; Wróbel-Dudzińska, D.; Krasowska, D.; Chodorowska, G.; Żarnowski, T. Results of Nailfold Capillaroscopy in Patients with Normal-Tension Glaucoma. Curr. Eye Res. 2018, 43, 747–753. [Google Scholar] [CrossRef]
- Gasser, P.; Flammer, J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am. J. Ophthalmol. 1991, 111, 585–588. [Google Scholar] [CrossRef]
- Cousins, C.C.; Chou, J.C.; Greenstein, S.H.; Brauner, S.C.; Shen, L.; Turalba, A.V.; Houlihan, P.; Ritch, R.; Wiggs, J.L.; Knepper, P.A.; et al. Resting nailfold capillary blood flow in primary open-angle glaucoma. Br. J. Ophthalmol. 2019, 103, 203–207. [Google Scholar] [CrossRef]
- Park, D.Y.; Han, J.C.; Lee, E.J.; Kee, C. Relationship between peripheral vasospasm and visual field progression rates in patients with normal-tension glaucoma with low-teen intraocular pressure. PLoS ONE 2021, 16, e0250085. [Google Scholar] [CrossRef]
- Lu, P.; Xiao, H.; Liang, C.; Xu, Y.; Ye, D.; Huang, J. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma. Curr. Eye Res. 2020, 45, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.P.H.; Wang, Y.M.; Ho, K.; Wong, C.Y.K.; Chan, P.P.; Wong, M.O.M.; Chan, N.C.Y.; Tang, F.; Lam, A.; Leung, D.Y.L.; et al. Global assessment of arteriolar, venular and capillary changes in normal tension glaucoma. Sci. Rep. 2020, 10, 19222. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Moghimi, S.; Zangwill, L.M.; Shoji, T.; Ghahari, E.; Penteado, R.C.; Akagi, T.; Manalastas, P.I.C.; Weinreb, R.N. Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2019, 199, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Yoo, C.; Kim, Y.Y. Peripapillary Vessel Density in Young Patients with Open-Angle Glaucoma: Comparison between High-Tension and Normal-Tension Glaucoma. Sci. Rep. 2019, 9, 19160. [Google Scholar] [CrossRef]
- Scripsema, N.K.; Garcia, P.M.; Bavier, R.D.; Chui, T.Y.P.; Krawitz, B.D.; Mo, S.; Agemy, S.A.; Xu, L.; Lin, Y.B.; Panarelli, J.F.; et al. Optical Coherence Tomography Angiography Analysis of Perfused Peripapillary Capillaries in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT611–OCT620. [Google Scholar] [CrossRef]
- Xu, H.; Zhai, R.; Zong, Y.; Kong, X.; Jiang, C.; Sun, X.; He, Y.; Li, X. Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma: A quantitative optic coherence tomography angiographic study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1179–1186. [Google Scholar] [CrossRef]
- Bojikian, K.D.; Chen, C.L.; Wen, J.C.; Zhang, Q.; Xin, C.; Gupta, D.; Mudumbai, R.C.; Johnstone, M.A.; Wang, R.K.; Chen, P.P. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS ONE 2016, 11, e0154691. [Google Scholar] [CrossRef]
- Shen, R.; Wang, Y.M.; Cheung, C.Y.; Chan, P.P.; Tham, C.C. Comparison of optical coherence tomography angiography metrics in primary angle-closure glaucoma and normal-tension glaucoma. Sci. Rep. 2021, 11, 23136. [Google Scholar] [CrossRef]
- Leung, C.K.; Yu, M.; Weinreb, R.N.; Lai, G.; Xu, G.; Lam, D.S. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: Patterns of retinal nerve fiber layer progression. Ophthalmology 2012, 119, 1858–1866. [Google Scholar] [CrossRef]
- Yum, H.R.; Park, H.L.; Park, C.K. Characteristics of Normal-tension Glaucoma Patients with Temporal Retinal Nerve Fibre Defects. Sci. Rep. 2020, 10, 6362. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Łukasik, U.; Żarnowski, T. Ocular and Systemic Risk Factors of Different Morphologies of Scotoma in Patients with Normal-Tension Glaucoma. J. Ophthalmol. 2017, 2017, 1480746. [Google Scholar] [CrossRef]
- Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Łukasik, U.; Żarnowski, T. Disc haemorrhages in Polish Caucasian patients with normal tension glaucoma. Acta Ophthalmol. 2019, 97, 68–73. [Google Scholar] [CrossRef]
- Jo, Y.H.; Sung, K.R.; Shin, J.W. Peripapillary and Macular Vessel Density Measurement by Optical Coherence Tomography Angiography in Pseudoexfoliation and Primary Open-angle Glaucoma. J. Glaucoma 2020, 29, 381–385. [Google Scholar] [CrossRef]
- Abu-Amero, K.K.; Morales, J.; Bosley, T.M. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.K.; Kim, K.Y.; Lindsey, J.D.; Angert, M.; Duong-Polk, K.X.; Scott, R.T.; Kim, J.J.; Kukhmazov, I.; Ellisman, M.H.; Perkins, G.A.; et al. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4903–4911. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sheck, L.; Crowston, J.G.; Van Bergen, N.J.; O’Neill, E.C.; O’Hare, F.; Kong, Y.X.G.; Chrysostomou, V.; Vincent, A.L.; Trounce, I.A. Impaired complex-I-linked respiration and ATP synthesis in primary open-angle glaucoma patient lymphoblasts. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Jeoung, J.W.; Seong, M.W.; Park, S.S.; Kim, D.M.; Kim, S.H.; Park, K.H. Mitochondrial DNA variant discovery in normal-tension glaucoma patients by next-generation sequencing. Investig. Ophthalmol. Vis. Sci. 2014, 55, 986–992. [Google Scholar] [CrossRef]
- Piotrowska-Nowak, A.; Kosior-Jarecka, E.; Schab, A.; Wrobel-Dudzinska, D.; Bartnik, E.; Zarnowski, T.; Tonska, K. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Exp. Eye Res. 2019, 178, 186–197. [Google Scholar] [CrossRef]
- Milanowski, P.; Kosior-Jarecka, E.; Łukasik, U.; Wróbel-Dudzińska, D.; Milanowska, J.; Khor, C.C.; Aung, T.; Kocki, J.; Żarnowski, T. Associations between OPA1, MFN1, and MFN2 polymorphisms and primary open angle glaucoma in Polish participants of European ancestry. Ophthalmic Genet. 2022, 43, 42–47. [Google Scholar] [CrossRef]
- Prada, D.; Harris, A.; Guidoboni, G.; Siesky, B.; Huang, A.M.; Arciero, J. Autoregulation and neurovascular coupling in the optic nerve head. Surv. Ophthalmol. 2016, 61, 164–186. [Google Scholar] [CrossRef]
- Rong, X.; Cai, Y.; Li, M.; Chen, X.; Kang, L.; Yang, L. Relationship between nailfold capillary morphology and retinal thickness and retinal vessel density in primary open-angle and angle-closure glaucoma. Acta Ophthalmol. 2020, 98, e882–e887. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Chen, J.; Liu, S.; Zhuang, J.; Cai, J. Vessel Density and Structural Measurements in Primary Angle-Closure Suspect Glaucoma Using Optical Coherence Tomography Angiography. Biomed Res. Int. 2020, 2020, 7526185. [Google Scholar] [CrossRef]
- Łukasik, U.; Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Kustra, A.; Milanowski, P.; Żarnowski, T. Clinical Features of Pseudoexfoliative Glaucoma in Treated Polish Patients. Clin. Ophthalmol. 2020, 14, 1373–1381. [Google Scholar] [CrossRef]
- Wang, W.; He, M.; Zhou, M.; Zhang, X. Ocular pseudoexfoliation syndrome and vascular disease: A systematic review and meta-analysis. PLoS ONE 2014, 9, e92767. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Tanito, M.; Omura, T.; Kawasaki, R.; Kawasaki, Y.; Ohira, A. Comparisons of retinal vessel diameter and glaucomatous parameters between both eyes of subjects with clinically unilateral pseudoexfoliation syndrome. PLoS ONE 2017, 12, e0179663. [Google Scholar] [CrossRef] [PubMed]
- Oruc, Y.; Kirgiz, A. Alteration of Retinal Vessel Diameter of the Patients with Pseudoexfoliation and Optical Coherence Tomography Images. Curr. Eye Res. 2019, 44, 1253–1257. [Google Scholar] [CrossRef]
- Yüksel, N.; Altintaş, O.; Celik, M.; Ozkan, B.; Cağlar, Y. Analysis of retinal nerve fiber layer thickness in patients with pseudoexfoliation syndrome using optical coherence tomography. Ophthalmologica 2007, 221, 299–304. [Google Scholar] [CrossRef]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Suh, M.H.; Manalastas, P.I.; Fatehee, N.; Yousefi, S.; Belghith, A.; Saunders, L.J.; Medeiros, F.A.; et al. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT451–OCT459. [Google Scholar] [CrossRef]
- Rao, H.L.; Pradhan, Z.S.; Weinreb, R.N.; Reddy, H.B.; Riyazuddin, M.; Dasari, S.; Palakurthy, M.; Puttaiah, N.K.; Rao, D.A.; Webers, C.A. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2016, 171, 75–83. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, C.; Girard, M.J.A.; Mari, J.M.; Kim, Y.Y. Peripapillary Vessel Density in Glaucomatous Eyes: Comparison Between Pseudoexfoliation Glaucoma and Primary Open-angle Glaucoma. J. Glaucoma 2018, 27, 1009–1016. [Google Scholar] [CrossRef]
- Pradhan, Z.S.; Rao, H.L.; Dixit, S.; Sreenivasaiah, S.; Reddy, P.G.; Venugopal, J.P.; Puttaiah, N.K.; Devi, S.; Weinreb, R.N.; Mansouri, K.; et al. Choroidal Microvascular Dropout in Pseudoexfoliation Glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2146–2151. [Google Scholar] [CrossRef]
- Mursch-Edlmayr, A.S.; Waser, K.; Podkowinski, D.; Bolz, M. Differences in swept-source OCT angiography of the macular capillary network in high tension and normal tension glaucoma. Curr. Eye Res. 2020, 45, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Etehad Tavakol, M.; Fatemi, A.; Karbalaie, A.; Emrani, Z.; Erlandsson, B.E. Nailfold Capillaroscopy in Rheumatic Diseases: Which Parameters Should Be Evaluated? Biomed. Res. Int. 2015, 2015, 974530. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekera, E.; An, D.; McAllister, I.L.; Yu, D.Y.; Balaratnasingam, C. Three-Dimensional Microscopy Demonstrates Series and Parallel Organization of Human Peripapillary Capillary Plexuses. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4327–4344. [Google Scholar] [CrossRef]
- Park, H.Y.; Park, S.H.; Oh, Y.S.; Park, C.K. Nail bed hemorrhage: A clinical marker of optic disc hemorrhage in patients with glaucoma. Arch. Ophthalmol. 2011, 129, 1299–1304. [Google Scholar] [CrossRef][Green Version]
- Pasquale, L.R.; Hanyuda, A.; Ren, A.; Giovingo, M.; Greenstein, S.H.; Cousins, C.; Patrianakos, T.; Tanna, A.P.; Wanderling, C.; Norkett, W.; et al. Nailfold Capillary Abnormalities in Primary Open-Angle Glaucoma: A Multisite Study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7021–7028. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cousins, C.C.; Kang, J.H.; Bovee, C.; Wang, J.; Greenstein, S.H.; Turalba, A.; Shen, L.Q.; Brauner, S.; Boumenna, T.; Blum, S.; et al. Nailfold capillary morphology in exfoliation syndrome. Eye 2017, 31, 698–707. [Google Scholar] [CrossRef]
- Łukasik, U.; Bartosińska, J.; Kosior-Jarecka, E.; Wróbel-Dudzińska, D.; Krasowska, D.; Żarnowski, T. Results of Nailfold Videocapillaroscopy in Patients with Pseudoexfoliative Glaucoma. Life 2023, 13, 967. [Google Scholar] [CrossRef]
- Philip, S.; Najafi, A.; Tantraworasin, A.; Pasquale, L.R.; Ritch, R. Nailfold Capillaroscopy of Resting Peripheral Blood Flow in Exfoliation Glaucoma and Primary Open-Angle Glaucoma. JAMA Ophthalmol. 2019, 137, 618–625. [Google Scholar] [CrossRef]
- Shoji, M.K.; Cousins, C.C.; Saini, C.; e Silva, R.N.; Wang, M.; Brauner, S.C.; Greenstein, S.H.; Pasquale, L.R.; Shen, L.Q. Paired Optic Nerve Microvasculature and Nailfold Capillary Measurements in Primary Open-Angle Glaucoma. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef]
- Van Melkebeke, L.; Barbosa-Breda, J.; Huygens, M.; Stalmans, I. Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res. 2018, 60, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.L.; Pradhan, Z.S.; Suh, M.H.; Moghimi, S.; Mansouri, K.; Weinreb, R.N. Optical Coherence Tomography Angiography in Glaucoma. J. Glaucoma 2020, 29, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Bazvand, F.; Mirshahi, R.; Fadakar, K.; Faghihi, H.; Sabour, S.; Ghassemi, F. The Quantitative Measurements of Vascular Density and Flow Area of Optic Nerve Head Using Optical Coherence Tomography Angiography. J. Glaucoma 2017, 26, 735–741. [Google Scholar] [CrossRef] [PubMed]
NTG | HTG | Control | p-Level NTG vs. HTG | p-Level NTG vs. Control | p-Level HTG vs. Control | |
---|---|---|---|---|---|---|
Number | 70 | 71 | 75 | X | ||
Age (years) | 71.15 ± 7.25 | 72.91 ± 12.34 | 71.56 ± 7.63 | 0.3334 | 0.9443 | 0.6578 |
Gender | 56F; 14M | 42F; 29M | 46F; 29M | 0.0122 * | 0.0179 | 0.2350 |
maxIOP (mmHg) | 17.10 ± 2.37 | 29.05 ± 5.43 | 18.43 ± 2.12 | 0.0001 * | 0.7852 | 0.0001 * |
VFI (%) | 87.43 ± 13.48 | 92.62 ± 12.30 | 98.32 ± 2.01 | 0.0219 * | 0.0000 * | 0.0001 * |
MD (dB) | −3.70 ± 2.09 | −3.51 ± 1.82 | −0.12 ± 1.64 | 0.5647 | 0.0000 * | 0000 * |
BCVA | 0.76 ± 0.23 | 0.74 ± 0.17 | 0.81 ± 0.11 | 0.7641 | 0.8634 | 0.4598 |
Spherical Equivalent (D) | −0.74 ± 1.46 | −0.58 ± 1.87 | −0.51 ± 1.11 | 0.7443 | 0.6532 | 0.8941 |
PARAMETER (mm) | NTG | HTG | Control | p-Level NTG vs. HTG | p-Level NTG vs. Control | p-Level HTG vs. Control |
---|---|---|---|---|---|---|
Mean RNFL | 74.15 ± 11.31 | 73.48 ± 12.73 | 93.28 ± 10.27 | 0.7489 | 0.0000 * | 0.0000 * |
Superior RNFL | 91.05 ± 18.23 | 87.19 ± 18.74 | 112.89 ± 17.42 | 0.2342 | 0.0001 * | 0.0000 * |
Inferior RNFL | 85.50 ± 21.17 | 85.32 ± 25.90 | 119.61 ± 23.27 | 0.9659 | 0.0000 * | 0.0000 * |
Temporal RNFL | 53.94 ± 11.72 | 59.94 ± 13.35 | 66.88 ± 11.24 | 0.0071 * | 0.0000 * | 0.0005 * |
Nasal RNFL | 66.17 ± 10.93 | 63.36 ± 9.15 | 73.50 ± 10.31 | 0.1153 | 0.0000 * | 0.0000 * |
PARAMETER | NTG | HTG | p-Level |
---|---|---|---|
Central VD | 8.98 ± 4.34 | 8.78 ± 4.10 | 0.7748 |
Inner-ring VD | 16.22 ± 3.63 | 16.08 ± 3.17 | 0.8151 |
Outer-ring VD | 15.70 ± 3.33 | 16.05 ± 3.14 | 0.5223 |
Whole en face VD | 15.62 ± 3.30 | 15.86 ± 3.02 | 0.6626 |
Central PD | 20.06 ± 9.95 | 19.84 ± 10.27 | 0.8983 |
Inner-ring PD | 38.00 ± 9.34 | 37.74 ± 8.74 | 0.3300 |
Outer-ring PD | 39.15 ± 8.91 | 40.28 ± 8.46 | 0.4463 |
Whole en face PD | 38.63 ± 8.73 | 39.39 ± 8.10 | 0.5965 |
FAZ area | 0.37 ± 0.80 | 0.24 ± 0.19 | 0.2170 |
FAZ perimeter | 2.15 ± 1.04 | 2.05 ± 1.14 | 0.6157 |
FAZ circularity | 0.86 ± 1.36 | 1.05 ± 2.03 | 0.7787 |
NTG | HTG | Control | p-Level NTG vs. HTG | p-Level NTG vs. Control | p-Level HTG vs. Control | |
---|---|---|---|---|---|---|
Central VD | 9.18 ± 4.00 | 9.53 ± 4.16 | 7.38 ± 3.48 | 0.6100 | 0.0052 * | 0.0030 * |
Inner-ring VD | 19.19 ± 3.70 | 18.85 ± 3.32 | 17.38 ± 3.17 | 0.5683 | 0.0041 * | 0.0196 * |
Whole en face VD | 18.08 ± 3.47 | 17.81 ± 3.24 | 16.25 ± 3.23 | 0.6325 | 0.0023 * | 0.0111 * |
Central PD | 16.80 ± 7.01 | 17.50 ± 7.66 | 13.06 ± 7.13 | 0.5759 | 0.0013 * | 0.0008 * |
Inner-ring PD | 35.85 ± 6.48 | 35.10 ± 6.30 | 32.50 ± 6.12 | 0.4915 | 0.0023 * | 0.0209 * |
Whole en face PD | 33.65 ± 6.00 | 33.50 ± 5.71 | 30.29 ± 5.34 | 0.8772 | 0.0013 * | 0.0033 * |
FAZ Area | 0.26 ± 0.13 | 0.24 ± 0.11 | 0.25 ± 0.11 | 0.3383 | 0.3327 | 0.7998 |
FAZ perimeter | 2.26 ± 0.85 | 2.18 ± 0.65 | 2.12 ± 0.73 | 0.5624 | 0.4015 | 0.4441 |
Faz circularity | 0.60 ± 0.14 | 0.62 ± 0.09 | 0.61 ± 0.11 | 0.3334 | 0.3177 | 0.9111 |
NTG | HTG | Control | p-Level NTG vs. HTG | p-Level NTG vs. Control | p-Level HTG vs. Control | |
---|---|---|---|---|---|---|
Circumpapillary perfusion (in %) | ||||||
Average ONH | 42.90 ± 2.87 | 42.95 ± 3.39 | 44.66 ± 2.43 | 0.9354 | 0.0000 * | 0.0001 * |
Superior | 41.43 ± 4.26 | 41.10 ± 6.44 | 42.74 ± 5.76 | 0.7301 | 0.0362 * | 0.0216 * |
Inferior | 40.59 ± 4.48 | 40.23 ± 7.53 | 44.89 ± 4.83 | 0.7403 | 0.0000 * | 0.0000 * |
Temporal | 45.57 ± 2.89 | 45.27 ± 4.10 | 47.07 ± 2.32 | 0.3216 | 0.0035 * | 0.3060 |
Nasal | 43.68 ± 3.32 | 43.35 ± 4.78 | 43.72 ± 2.67 | 0.6529 | 0.9981 | 0.3772 |
Circumpapillary flux (%) | ||||||
ONH Flux index | 0.37 ± 0.04 | 0.38 ± 0.05 | 0.41 ± 0.04 | 0.8432 | 0.0000 * | 0.0000 * |
Superior flux | 0.37 ± 0.04 | 0.37 ± 0.05 | 0.40 ± 0.04 | 0.6548 | 0.0001 * | 0.0001 * |
Inferior flux | 0.37 ± 0.04 | 0.37 ± 0.05 | 0.40 ± 0.05 | 0.3580 | 0.0000 * | 0.0000 * |
Temporal flux | 0.39 ± 0.05 | 0.39 ± 0.05 | 0.42 ± 0.05 | 0.7800 | 0.0000 * | 0.0001 * |
Nasal Flux | 0.37 ± 0.05 | 0.38 ± 0.05 | 0.40 ± 0.05 | 0.8049 | 0.0001 * | 0.0002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukasik, U.; Wróbel-Dudzińska, D.; Jarecki, J.; Gasińska, K.; Żarnowski, T.; Święch, A.; Kosior-Jarecka, E. The Differences in the Pattern of OCT and OCTA Examinations between Early Normal- and High-Tension Pseudoexfoliative Glaucoma. J. Clin. Med. 2023, 12, 4899. https://doi.org/10.3390/jcm12154899
Łukasik U, Wróbel-Dudzińska D, Jarecki J, Gasińska K, Żarnowski T, Święch A, Kosior-Jarecka E. The Differences in the Pattern of OCT and OCTA Examinations between Early Normal- and High-Tension Pseudoexfoliative Glaucoma. Journal of Clinical Medicine. 2023; 12(15):4899. https://doi.org/10.3390/jcm12154899
Chicago/Turabian StyleŁukasik, Urszula, Dominika Wróbel-Dudzińska, Jaromir Jarecki, Karolina Gasińska, Tomasz Żarnowski, Anna Święch, and Ewa Kosior-Jarecka. 2023. "The Differences in the Pattern of OCT and OCTA Examinations between Early Normal- and High-Tension Pseudoexfoliative Glaucoma" Journal of Clinical Medicine 12, no. 15: 4899. https://doi.org/10.3390/jcm12154899
APA StyleŁukasik, U., Wróbel-Dudzińska, D., Jarecki, J., Gasińska, K., Żarnowski, T., Święch, A., & Kosior-Jarecka, E. (2023). The Differences in the Pattern of OCT and OCTA Examinations between Early Normal- and High-Tension Pseudoexfoliative Glaucoma. Journal of Clinical Medicine, 12(15), 4899. https://doi.org/10.3390/jcm12154899