Ventilation Targets for Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility and Study Selection
2.2. Search Strategy and Data Extraction
3. Results
3.1. Oxygenation Targets
3.1.1. Published Studies
- López et al., 2019 [6]
- Cheng et al., 2020 [7]
3.1.2. Ongoing Studies
- NBOL (NCT05039697) [8]
- OPENS2 (NCT04681651) [9]
- PROOF (NCT03500939) [10]
3.2. Carbon Dioxide Targets
3.2.1. Published Studies
- Takahashi et al., 2013 [11]
- Mundiyanapurath et al., 2016 [12]
- Athiraman et al., 2018 [13]
- Parr et al., 2022 [14]
3.2.2. Ongoing Studies
- COMET AIS (NCT05051397) [15]
- SEACOAST 1 (NCT03737786) [16]
4. Discussion
4.1. Oxygenation Targets
4.2. Carbon Dioxide Targets
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Campbell, B.C.; Donnan, G.A.; Lees, K.R.; Hacke, W.; Khatri, P.; Hill, M.D.; Goyal, M.; Mitchell, P.J.; Saver, J.L.; Diener, H.C.; et al. Endovascular stent thrombectomy: The new standard of care for large vessel ischaemic stroke. Lancet Neurol. 2015, 14, 846. [Google Scholar] [CrossRef]
- Tosello, R.; Riera, R.; Tosello, G.; Clezar, C.N.; Amorim, J.E.; Vasconcelos, V.; Joao, B.B.; Flumignan, R.L. Type of anaesthesia for acute ischaemic stroke endovascular treatment. Cochrane Database Syst. Rev. 2022, 7, CD013690. [Google Scholar] [CrossRef] [PubMed]
- Anadani, M.; Alawieh, A.; Chalhoub, R.; Jabbour, P.; Starke, R.M.; Arthur, A.; Goyal, N.; Wolfe, S.; Fargen, K.M.; Grossberg, J.A.; et al. Mechanical Thrombectomy for Distal Occlusions: Efficacy, Functional and Safety Outcomes: Insight from the STAR Collaboration. World Neurosurg. 2021, 151, e871–e879. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344. [Google Scholar]
- López, H.V.; Vivas, M.F.; Ruiz, R.N.; Martínez, J.R.; Navaridas, B.G.; Villa, M.G.; Lázaro, C.L.; Rubio, R.J.; Ortiz, A.M.; Lacal, L.A.; et al. Association between post-procedural hyperoxia and poor functional outcome after mechanical thrombectomy for ischemic stroke: An observational study. Ann. Intensive Care 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Geng, X.; Tong, Y.; Dornbos, D., 3rd; Hussain, M.; Rajah, G.B.; Gao, J.; Ma, L.; Li, F.; Du, H.; et al. Adjuvant High-Flow Normobaric Oxygen After Mechanical Thrombectomy for Anterior Circulation Stroke: A Randomized Clinical Trial. Neurotherapeutics 2021, 18, 1188–1197. [Google Scholar] [CrossRef]
- Ji, X. Normobaric Hyperoxia Combined with Endovascular Therapy in Patients with Stroke within 6 Hours of Onset: Longterm Outcome (NBOL). ClinicalTrials.gov Identifier: NCT05039697. Available online: https://clinicaltrials.gov/ct2/show/NCT05039697 (accessed on 18 May 2023).
- Ji, X. Normobaric Hyperoxia Combined with Endovascular Treatment in Acute Ischemic Stroke (OPENS-2). ClinicalTrials.gov Identifier: NCT04681651. Available online: https://clinicaltrials.gov/ct2/show/NCT04681651 (accessed on 18 May 2023).
- University Hospital Tuebingen. Penumbral Rescue by Normobaric O2 Administration in Patients with Ischemic Stroke and Target Mismatch ProFile (PROOF). ClinicalTrials.gov Identifier: NCT03500939. Available online: https://clinicaltrials.gov/ct2/show/NCT03500939 (accessed on 18 May 2023).
- Takahashi, C.E.; Brambrink, A.M.; Aziz, M.F.; Macri, E.; Raines, J.; Multani-Kohol, A.; Hinson, H.E.; Lutsep, H.L.; Clark, W.M.; Fields, J.D. Association of intraprocedural blood pressure and end tidal carbon dioxide with outcome after acute stroke intervention. Neurocrit. Care 2014, 20, 202–208. [Google Scholar] [CrossRef]
- Mundiyanapurath, S.; Stehr, A.; Wolf, M.; Kieser, M.; Möhlenbruch, M.; Bendszus, M.; Hacke, W.; Bösel, J. Pulmonary and circulatory parameter guided anesthesia in patients with ischemic stroke undergoing endovascular recanalization. J. Neurointerv. Surg. 2016, 8, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Athiraman, U.; Sultan-Qurraie, A.; Nair, B.; Tirschwell, D.L.; Ghodke, B.; Havenon, A.D.; Hallam, D.K.; Kim, L.J.; Becker, K.J.; Sharma, D. Endovascular Treatment of Acute Ischemic Stroke Under General Anesthesia: Predictors of Good Outcome. J. Neurosurg. Anesthesiol. 2018, 30, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Parr, M.S.; Salehani, A.; Ogilvie, M.; Ethan Tabibian, B.; Rahm, S.; Hale, A.T.; Tsemo, G.B.; Aluri, A.; Kim, J.; Mathru, M.; et al. The effect of procedural end-tidal CO2 on infarct expansion during anterior circulation thrombectomy. Interv. Neuroradiol. 2022, 4, 15910199221143175. [Google Scholar] [CrossRef] [PubMed]
- University Hospital, Clermont-Ferrand. CO2 Modulation in Endovascular Thrombectomy for Acute Ischemic Stroke (COMET-AIS). ClinicalTrials.gov Identifier: NCT05051397. Available online: https://clinicaltrials.gov/ct2/show/NCT05051397 (accessed on 18 May 2023).
- Raychev, R. SEACOAST 1- SEdAtion with COllAteral Support in Endovascular Therapy for Acute Ischemic Stroke (SEACOAST). ClinicalTrials.gov Identifier: NCT03737786. Available online: https://clinicaltrials.gov/ct2/show/NCT03737786 (accessed on 18 May 2023).
- Rowat, A.M.; Dennis, M.S.; Wardlaw, J.M. Hypoxaemia in acute stroke is frequent and worsens outcome. Cerebrovasc. Dis. 2006, 21, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Henninger, N.; Bouley, J.; Nelligan, J.M.; Sicard, K.M.; Fisher, M. Normobaric Hyperoxia Delays Perfusion/Diffusion Mismatch Evolution, Reduces Infarct Volume, and Differentially Affects Neuronal Cell Death Pathways after Suture Middle Cerebral Artery Occlusion in Rats. J. Cereb. Blood Flow Metab. 2007, 27, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.B.; Benner, T.; Roccatagliata, L.; Koroshetz, W.J.; Schaefer, P.W.; Lo, E.H.; Buonanno, F.S.; Gonzalez, R.G.; Sorensen, A.G. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke 2005, 36, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Padma, M.V.; Bhasin, A.; Bhatia, R.; Garg, A.; Singh, M.B.; Tripathi, M.; Prasad, K. Normobaric oxygen therapy in acute ischemic stroke: A pilot study in Indian patients. Ann. Indian Acad. Neurol. 2010, 13, 284–288. [Google Scholar] [CrossRef]
- Roffe, C.; Nevatte, T.; Sim, J.; Bishop, J.; Ives, N.; Ferdinand, P.; Gray, R.; Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative Group. Effect of Routine Low-Dose Oxygen Supplementation on Death and Disability in Adults With Acute Stroke: The Stroke Oxygen Study Randomized Clinical Trial. JAMA 2017, 318, 1125–1135. [Google Scholar] [CrossRef]
- Floyd, T.F.; Clark, J.M.; Gelfand, R.; Detre, J.A.; Ratcliffe, S.; Guvakov, D.; Lambertsen, C.J.; Eckenhoff, R.G. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J. Appl. Physiol. 2003, 95, 2453–2461. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A.; Massachusetts General Hospital; National Institute of Neurological Disorders and Stroke. Normobaric Oxygen Therapy in Acute Ischemic Stroke Trial. Available online: https://clinicaltrials.gov/ct2/show/NCT00414726 (accessed on 18 May 2023).
- Kety, S.S.; Schmidt, C.F. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Investig. 1948, 27, 484–492. [Google Scholar] [CrossRef]
- Ito, H.; Kanno, I.; Ibaraki, M.; Hatazawa, J.; Miura, S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J. Cereb. Blood Flow Metab. 2003, 23, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Low, D.A.; Wingo, J.E.; Keller, D.M.; Davis, S.L.; Zhang, R.; Crandall, C.G. Cerebrovascular responsiveness to steady-state changes in end-tidal CO2 during passive heat stress. J. Appl. Physiol. 2008, 104, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Mariappan, R.; Mehta, J.; Chui, J.; Manninen, P.; Venkatraghavan, L. Cerebrovascular reactivity to carbon dioxide under anesthesia: A qualitative systematic review. J. Neurosurg. Anesthesiol. 2015, 27, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Vannucci, R.C.; Towfighi, J.; Heitjan, D.F.; Brucklacher, R.M. Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: An experimental study in the immature rat. Pediatrics 1995, 95, 868–874. [Google Scholar] [CrossRef]
- Curley, G.; Kavanagh, B.P.; Laffey, J.G. Hypocapnia and the injured brain: More harm than benefit. Crit. Care Med. 2010, 38, 1348–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, M.L.; Risgaard, B.; Baekgaard, J.S.; Rasmussen, L.S. Determining a safe upper limit of oxygen supplementation for adult patients: A systematic review. BMJ Open 2021, 11, e045057. [Google Scholar] [CrossRef]
- Singer, M.; Young, P.J.; Laffey, J.G.; Asfar, P.; Taccone, F.S.; Skrifvars, M.B.; Meyhoff, C.S.; Radermacher, P. Dangers of hyperoxia. Crit. Care 2021, 25, 440. [Google Scholar] [CrossRef] [PubMed]
First Author Year Reference | Study Design Number of Patients (N) | Primary Endpoint | Secondary Endpoint | Key Message |
---|---|---|---|---|
López et al. 2019 [6] | Prospective. N = 333 pO2 > 120 mmHg: n = 119 pO2 < 120 mmHg: n = 214 | mRS at 90 days | ICU length of stay and NIHSS at 24 h. | Higher mRS score and mortality after 90 days in the hyperoxia group. NIHSS values at 24 h and the length of stay in ICU were significantly higher in the hyperoxia group. |
Cheng et al. 2021 [7] | RCT. N = 175 NBO: n = 88 Control group: n = 87 | mRS score at 90 days | NIHSS at 24 h, infarct volume, mortality, symptomatic ICH, fatal ICH, pneumonia, urinary infection, seizures | Better functional outcomes at 90 days in NBO group than in the control group. The mortality at 90 days was lower in the NBO group than in the control group. Reduction of infarct volume in the NBO group. No differences in the rate of symptomatic ICH, pneumonia, urinary infection, and seizures between the groups. |
Takahashi et al. 2014 [11] | Retrospective. N = 86 | mRS at 90 days | Patients with better functional outcomes had higher EtCO2 at 60 and 90 min in comparison to those with unfavourable outcomes (mRS 4–6). There was no association between BP and functional outcomes at 90 days. | |
Mundiyanapurath et al. 2016 [12] | Observational study with retrospective and prospective phases N = 124 Retrospective group: n = 60 Prospective group: n = 64 | mRS at 90 days | Longer duration of EtCO2 values within 40–45 mmHg and a higher cumulative dose of norepinephrine were associated with an unfavorable outcome (mRS > 2). | |
Athiraman et al. 2018 [13] | Retrospective. N = 88 | mRS at discharge | mRS at 90 days | Patients with a higher mean maximum ETCO2 (49 ± 8 vs. 45 ± 7 mmHg) had good functional outcomes. Independent predictors of good outcomes were a higher maximum EtCO2 and extubation after MT. |
Parr et al. 2022 [14] | Retrospective. N = 88 | mRS at 90 days | Ischemic penumbra and infarct volume | Procedural ETCO2 exceeding 35 mmHg had better functional outcomes. No statistical significance in salvaging more penumbra and smaller final infarcts when ETCO2 exceeded 35 mmHg. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scudellari, A.; Dudek, P.; Marino, L.; Badenes, R.; Bilotta, F. Ventilation Targets for Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke: A Systematic Review. J. Clin. Med. 2023, 12, 4925. https://doi.org/10.3390/jcm12154925
Scudellari A, Dudek P, Marino L, Badenes R, Bilotta F. Ventilation Targets for Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke: A Systematic Review. Journal of Clinical Medicine. 2023; 12(15):4925. https://doi.org/10.3390/jcm12154925
Chicago/Turabian StyleScudellari, Alessandro, Paula Dudek, Luca Marino, Rafael Badenes, and Federico Bilotta. 2023. "Ventilation Targets for Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke: A Systematic Review" Journal of Clinical Medicine 12, no. 15: 4925. https://doi.org/10.3390/jcm12154925
APA StyleScudellari, A., Dudek, P., Marino, L., Badenes, R., & Bilotta, F. (2023). Ventilation Targets for Patients Undergoing Mechanical Thrombectomy for Acute Ischemic Stroke: A Systematic Review. Journal of Clinical Medicine, 12(15), 4925. https://doi.org/10.3390/jcm12154925