Medical Treatment of Obstructive Sleep Apnea in Children
Abstract
:1. Introduction
2. Anti-Inflammatory Treatment (Nasal Steroids/Montelukast/Oral Steroids) and Antibiotics
3. Positive Airway Pressure
4. High-Flow Nasal Cannula Therapy
5. Positional Therapy
6. Myofunctional Therapy
7. Dental Procedures
8. Weight Loss
9. Hypoglossal Nerve Stimulation
10. Novel Pharmacotherapeutics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OSA | obstructive sleep apnea |
AHI | apnea–hypopnea index |
oAHI | obstructive apnea hypopnea index |
AT | adenotonsillectomy |
NCS | nasal corticosteroid |
LSAT | lowest oxygen saturation |
PAP | positive airway pressure |
CPAP | continuous positive airway pressure |
BPAP | bi-level positive airway pressure |
BPAP-ST | spontaneous-timed BPAP mode |
BPAP-S | spontaneous BPAP mode |
IPAP | inspiratory positive airway pressure |
EPAP | expiratory positive airway pressure |
VAPS | volume-assured pressure support |
HFNC | high-flow nasal cannula |
POSA | positional OSA |
PT | positional therapy |
MT | myofunctional therapy |
RME | rapid maxillary expansion |
SRME | semi-rapid maxillary expansion |
BMI | body mass index |
References
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Ward, S.D.; Sheldon, S.H.; Shiffman, R.N. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, 576–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; et al. Sleep Apnea: Types, Mechanisms, and Clinical Cardiovascular Consequences. J. Am. Coll. Cardiol. 2017, 69, 841–858. [Google Scholar] [CrossRef] [PubMed]
- Kaditis, A.G.; Alvarez, M.L.A.; Boudewyns, A.; Alexopoulos, E.I.; Ersu, R.; Joosten, K.; Larramona, H.; Miano, S.; Narang, I.; Trang, H.; et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: Diagnosis and management. Eur. Respir. J. 2015, 47, 69–94. [Google Scholar] [CrossRef] [Green Version]
- Lumeng, J.C.; Chervin, R.D. Epidemiology of Pediatric Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008, 5, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Hsueh, W.-Y.; Lin, M.-T.; Kang, K.-T. Prevalence of Obstructive Sleep Apnea in Children With Down Syndrome: A Meta-Analysis. J. Clin. Sleep Med. 2018, 14, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Arens, R.; Muzumdar, H.; Wootton, D.M.; Sin, S.; Luo, H.; Yazdani, A.; McDonough, J.M.; Wagshul, M.E.; Isasi, C.R. Childhood obesity and obstructive sleep apnea syndrome. J. Appl. Physiol. 2010, 108, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, W.G.; De Backer, W.A.; Verhulst, S.L. Correlation between the severity of sleep apnea and upper airway morphology in pediatric and adult patients. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 26–33. [Google Scholar] [CrossRef]
- Ersu, R.; Chen, M.L.; Ehsan, Z.; Ishman, S.L.; Redline, S.; Narang, I. Persistent obstructive sleep apnoea in children: Treatment options and management considerations. Lancet Respir. Med. 2022, 11, 283–296. [Google Scholar] [CrossRef]
- Gozal, D.; Kheirandish-Gozal, L. Childhood obesity and sleep: Relatives, partners, or both a critical perspective on the evidence. Ann. N. Y. Acad. Sci. 2012, 1264, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Au, C.T.; Zhang, J.; Cheung, J.Y.F.; Chan, K.C.C.; Wing, Y.K.; Li, A.M. Familial aggregation and heritability of obstructive sleep apnea using children probands. J. Clin. Sleep Med. 2019, 15, 1561–1570. [Google Scholar] [CrossRef]
- Kamal, M.; Tamana, S.K.; Smithson, L.; Ding, L.; Lau, A.; Chikuma, J.; Mariasine, J.; Lefebvre, D.L.; Subbarao, P.; Becker, A.B.; et al. Phenotypes of sleep-disordered breathing symptoms to two years of age based on age of onset and duration of symptoms. Sleep Med. 2018, 48, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Kaditis, A.G. Phenotypic variance in pediatric obstructive sleep apnea. Pediatr. Pulmonol. 2021, 56, 1754–1762. [Google Scholar] [CrossRef] [PubMed]
- Gaines, J.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Bixler, E.O. Obstructive sleep apnea and the metabolic syndrome: The road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med. Rev. 2018, 42, 211–219. [Google Scholar] [CrossRef]
- Abumuamar, A.M.; Chung, S.A.; Kadmon, G.; Shapiro, C.M. A comparison of two screening tools for paediatric obstructive sleep apnea. J. Sleep Res. 2017, 27, e12610. [Google Scholar] [CrossRef]
- Pabary, R.; Goubau, C.; Russo, K.; Laverty, A.; Abel, F.; Samuels, M. Screening for sleep-disordered breathing with Pediatric Sleep Questionnaire in children with underlying conditions. J. Sleep Res. 2018, 28, e12826. [Google Scholar] [CrossRef]
- Ioan, I.; Weick, D.; Schweitzer, C.; Guyon, A.; Coutier, L.; Franco, P. Feasibility of parent-attended ambulatory polysomnography in children with suspected obstructive sleep apnea. J. Clin. Sleep Med. 2020, 16, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Riha, R.L.; Celmina, M.; Cooper, B.; Hamutcu-Ersu, R.; Kaditis, A.; Morley, A.; Pataka, A.; Penzel, T.; Roberti, L.; Ruehland, W.; et al. ERS technical standards for using type III devices (limited channel studies) in the diagnosis of sleep disordered breathing in adults and children. Eur. Respir. J. 2023, 61, 2200422. [Google Scholar] [CrossRef] [PubMed]
- Trucco, F.; Rosenthal, M.; Bush, A.; Tan, H.-L. The McGill score as a screening test for obstructive sleep disordered breathing in children with co-morbidities. Sleep Med. 2019, 68, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.J.; Gozal, D.; Smith, D.L.; Philby, M.F.; Kaylegian, J.; Kheirandish-Gozal, L. Effect of Sleep-disordered Breathing Severity on Cognitive Performance Measures in a Large Community Cohort of Young School-aged Children. Am. J. Respir. Crit. Care Med. 2016, 194, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Narang, I.; McCrindle, B.W.; Manlhiot, C.; Lu, Z.; Al-Saleh, S.; Birken, C.S.; Hamilton, J. Intermittent nocturnal hypoxia and metabolic risk in obese adolescents with obstructive sleep apnea. Sleep Breath. 2018, 22, 1037–1044. [Google Scholar] [CrossRef]
- Baker-Smith, C.M.; Isaiah, A.; Melendres, M.C.; Mahgerefteh, J.; Lasso-Pirot, A.; Mayo, S.; Gooding, H.; Zachariah, J. Sleep-Disordered Breathing and Cardiovascular Disease in Children and Adolescents: A Scientific Statement From the American Heart Association. J. Am. Heart Assoc. 2021, 10, e022427. [Google Scholar] [CrossRef]
- Accardo, J.A.; Shults, J.; Leonard, M.B.; Traylor, J.; Marcus, C.L. Differences in Overnight Polysomnography Scores Using the Adult and Pediatric Criteria for Respiratory Events in Adolescents. Sleep 2010, 33, 1333–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.J.; Imamura, T.; Lee, J.; Wright, M.; Goldman, R.D. Continuous positive airway pressure for obstructive sleep apnea in children. Can. Fam. Physician 2021, 67, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.B.; Archer, S.M.; Ishman, S.L.; Rosenfeld, R.M.; Coles, S.; Finestone, S.A.; Friedman, N.R.; Giordano, T.; Hildrew, D.M.; Kim, T.W.; et al. Clinical Practice Guideline: Tonsillectomy in Children (Update). Otolaryngol. Head Neck Surg. 2019, 160 (Suppl. S1), S1–S42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redline, S.; Amin, R.; Beebe, D.; Chervin, R.D.; Garetz, S.L.; Giordani, B.; Marcus, C.L.; Moore, R.H.; Rosen, C.L.; Arens, R.; et al. The Childhood Adenotonsillectomy Trial (CHAT): Rationale, Design, and Challenges of a Randomized Controlled Trial Evaluating a Standard Surgical Procedure in a Pediatric Population. Sleep 2011, 34, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, R.; Kheirandish-Gozal, L.; Spruyt, K.; Mitchell, R.B.; Promchiarak, J.; Simakajornboon, N.; Kaditis, A.G.; Splaingard, D.; Splaingard, M.; Brooks, L.J.; et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: A multicenter retrospective study. Am. J. Respir. Crit. Care Med. 2010, 182, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Gozal, D.; Tan, H.-L.; Kheirandish-Gozal, L. Obstructive sleep apnea in children: A critical update. Nat. Sci. Sleep 2013, 5, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Goldbart, A.D.; Tal, A. Inflammation and sleep disordered breathing in children: A state-of-the-art review. Pediatr Pulmonol. 2008, 43, 1151–1160. [Google Scholar] [CrossRef]
- Dayyat, E.; Serpero, L.D.; Kheirandish-Gozal, L.; Goldman, J.L.; Snow, A.; Bhattacharjee, R.; Gozal, D. Leukotriene Pathways and In Vitro Adenotonsillar Cell Proliferation in Children With Obstructive Sleep Apnea. Chest 2009, 135, 1142–1149. [Google Scholar] [CrossRef] [Green Version]
- Berlucchi, M.; Salsi, D.; Valetti, L.; Parrinello, G.; Nicolai, P. The Role of Mometasone Furoate Aqueous Nasal Spray in the Treatment of Adenoidal Hypertrophy in the Pediatric Age Group: Preliminary Results of a Prospective, Randomized Study. Pediatrics 2007, 119, e1392–e1397. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Gozal, D. Intranasal Budesonide Treatment for Children With Mild Obstructive Sleep Apnea Syndrome. Pediatrics 2008, 122, e149–e155. [Google Scholar] [CrossRef] [PubMed]
- Tapia, I.E.; Shults, J.; Cielo, C.M.; Kelly, A.B.; Elden, L.M.; Spergel, J.M.; Bradford, R.M.; Cornaglia, M.A.; Sterni, L.M.; Radcliffe, J. A Trial of Intranasal Corticosteroids to Treat Childhood OSA Syndrome. Chest 2022, 162, 899–919. [Google Scholar] [CrossRef] [PubMed]
- Cielo, C.M.; Gungor, A. Treatment Options for Pediatric Obstructive Sleep Apnea. Curr. Probl. Pediatr. Adolesc. Health Care 2016, 46, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Bandla, H.P.R.; Gozal, D. Montelukast for Children with Obstructive Sleep Apnea: Results of a Double-blind Randomized Placebo-controlled Trial. Ann. Am. Thorac. Soc. 2016, 13, 1736–1741. [Google Scholar] [CrossRef]
- Liming, B.J.; Ryan, M.; Mack, D.; Ahmad, I.; Camacho, M. Montelukast and Nasal Corticosteroids to Treat Pediatric Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Otolaryngol. Neck Surg. 2018, 160, 594–602. [Google Scholar] [CrossRef]
- Aschenbrenner, D.S. New Boxed Warning for Singulair. AJN Am. J. Nurs. 2020, 120, 27. [Google Scholar] [CrossRef]
- Evangelisti, M.; Barreto, M.; Di Nardo, G.; Del Pozzo, M.; Parisi, P.; Villa, M.P. Systemic corticosteroids could be used as bridge treatment in children with obstructive sleep apnea syndrome waiting for surgery. Sleep Breath. 2021, 26, 879–885. [Google Scholar] [CrossRef]
- Don, D.M.; Goldstein, N.A.; Crockett, D.M.; Ward, S.D. Antimicrobial Therapy for Children With Adenotonsillar Hypertrophy and Obstructive Sleep Apnea: A Prospective Randomized Trial Comparing Azithromycin vs Placebo. Otolaryngol. Neck Surg. 2005, 133, 562–568. [Google Scholar] [CrossRef]
- Zuliani, G.; Carron, M.; Gurrola, J.; Coleman, C.; Haupert, M.; Berk, R.; Coticchia, J. Identification of adenoid biofilms in chronic rhinosinusitis. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1613–1617. [Google Scholar] [CrossRef]
- Nath, A.; Emani, J.; Suskind, D.L.; Baroody, F.M. Predictors of Persistent Sleep Apnea After Surgery in Children Younger Than 3 Years. JAMA Otolaryngol. Neck Surg. 2013, 139, 1002–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, T.C.; Vazifedan, T.; Baldassari, C.M. Adenotonsillectomy outcomes in obese adolescents with obstructive sleep apnea. J. Clin. Sleep Med. 2022, 18, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Guilleminault, C.; Chiu, H.Y.; Sullivan, S.S. Mouth breathing, “nasal disuse”, and pediatric sleep-disordered breathing. Sleep Breath. 2015, 19, 1257–1264. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Guilleminault, C. Pediatric Obstructive Sleep Apnea and the Critical Role of Oral-Facial Growth: Evidences. Front. Neurol. 2013, 3, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilleminault, C.; Huang, Y.S. From oral facial dysfunction to dysmorphism and the onset of pediatric OSA. Sleep Med. Rev. 2018, 40, 203–214. [Google Scholar] [CrossRef]
- Amin, R.; Al-Saleh, S.; Narang, I. Domiciliary noninvasive positive airway pressure therapy in children. Pediatr. Pulmonol. 2015, 51, 335–348. [Google Scholar] [CrossRef]
- Yui, M.S.; Tominaga, Q.; Lopes, B.C.P.; Eckeli, A.L.; Rabelo, F.A.W.; Küpper, D.S.; Valera, F.C.P. Nasal vs. oronasal mask during PAP treatment: A comparative DISE study. Sleep Breath. 2019, 24, 1129–1136. [Google Scholar] [CrossRef]
- Castro-Codesal, M.L.; Olmstead, D.L.; MacLean, J.E. Mask interfaces for home non-invasive ventilation in infants and children. Paediatr. Respir. Rev. 2019, 32, 66–72. [Google Scholar] [CrossRef]
- Ramirez, A.; Khirani, S.; Aloui, S.; Delord, V.; Borel, J.-C.; Pépin, J.-L.; Fauroux, B. Continuous positive airway pressure and noninvasive ventilation adherence in children. Sleep Med. 2013, 14, 1290–1294. [Google Scholar] [CrossRef]
- Atag, E.; Krivec, U.; Ersu, R. Non-invasive Ventilation for Children With Chronic Lung Disease. Front. Pediatr. 2020, 8, 561639. [Google Scholar] [CrossRef]
- Xanthopoulos, M.S.; Williamson, A.A.; Tapia, I.E. Positive airway pressure for the treatment of the childhood obstructive sleep apnea syndrome. Pediatr. Pulmonol. 2021, 57, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Baker, A.; Narang, I. Positive airway pressure in pediatric obstructive sleep apnea. Paediatr. Respir. Rev. 2019, 31, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Harsch, I.A.; Pour Schahin, S.; Radespiel-Tröger, M.; Weintz, O.; Jahreiß, H.; Fuchs, F.S.; Wiest, G.H.; Hahn, E.G.; Lohmann, T.; Konturek, P.C.; et al. Continuous Positive Airway Pressure Treatment Rapidly Improves Insulin Sensitivity in Patients with Obstructive Sleep Apnea Syndrome. Am. J. Respir. Crit. Care Med. 2004, 169, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.L.; MacLean, J.; Hoey, L.; Horwood, L.; Barrowman, N.; Foster, B.; Hadjiyannakis, S.; Legault, L.; Bendiak, G.N.; Kirk, V.G.; et al. Insulin Resistance and Hypertension in Obese Youth With Sleep-Disordered Breathing Treated With Positive Airway Pressure: A Prospective Multicenter Study. J. Clin. Sleep Med. 2017, 13, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, S.J.; Tardif, H.P.; Barry, R.J.; Sands, T. Nasal bilevel positive airway pressure therapy in children with a sleep-related breathing disorder and attention-deficit hyperactivity disorder: Effects on electrophysiological measures of brain function. Sleep Med. 2001, 2, 407–416. [Google Scholar] [CrossRef]
- Hady, K.K.; Okorie, C.U.A. Positive Airway Pressure Therapy for Pediatric Obstructive Sleep Apnea. Children 2021, 8, 979. [Google Scholar] [CrossRef]
- Oyegbile-Chidi, T. Continuous Positive Airway Pressure Use for Obstructive Sleep Apnea in Pediatric Patients. Sleep Med. Clin. 2022, 17, 629–638. [Google Scholar] [CrossRef]
- Nixon, G.M.; Mihai, R.; Verginis, N.; Davey, M.J. Patterns of Continuous Positive Airway Pressure Adherence during the First 3 Months of Treatment in Children. J. Pediatr. 2011, 159, 802–807. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Benjafield, A.V.; Armitstead, J.; Cistulli, P.A.; Nunez, C.M.; Pepin, J.-L.D.; Woehrle, H.; Yan, Y.; Malhotra, A. Adherence in children using positive airway pressure therapy: A big-data analysis. Lancet Digit. Health 2019, 2, e94–e101. [Google Scholar] [CrossRef] [Green Version]
- Watach, A.J.; Xanthopoulos, M.S.; Afolabi-Brown, O.; Saconi, B.; Fox, K.A.; Qiu, M.; Sawyer, A.M. Positive airway pressure adherence in pediatric obstructive sleep apnea: A systematic scoping review. Sleep Med. Rev. 2020, 51, 101273. [Google Scholar] [CrossRef]
- Mihai, R.; Vandeleur, M.; Pecoraro, S.; Davey, M.J.; Nixon, G.M. Autotitrating CPAP as a Tool for CPAP Initiation for Children. J. Clin. Sleep Med. 2017, 13, 713–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cielo, C.M.; Hernandez, P.; Ciampaglia, A.M.; Xanthopoulos, M.S.; Beck, S.E.; Tapia, I.E. Positive Airway Pressure for the Treatment of OSA in Infants. Chest 2020, 159, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.K.; Xanthopoulos, M.S.; Kim, J.Y.; Arevalo, C.; Shults, J.; Beck, S.E.; Marcus, C.L.; Tapia, I.E. Adherence to Positive Airway Pressure for the Treatment of Obstructive Sleep Apnea in Children With Developmental Disabilities. J. Clin. Sleep Med. 2019, 15, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.L.; Rosen, G.; Ward, S.L.D.; Halbower, A.C.; Sterni, L.; Lutz, J.; Stading, P.J.; Bolduc, D.; Gordon, N. Adherence to and Effectiveness of Positive Airway Pressure Therapy in Children With Obstructive Sleep Apnea. Pediatrics 2006, 117, e442–e451. [Google Scholar] [CrossRef] [Green Version]
- Bakker, J.P.; Weaver, T.E.; Parthasarathy, S.; Aloia, M.S. Adherence to CPAP: What should we be aiming for, and how can we get there? Chest 2019, 155, 1272–1287. [Google Scholar] [CrossRef]
- Sawunyavisuth, B.; Ngamjarus, C.; Sawanyawisuth, K. Any Effective Intervention to Improve CPAP Adherence in Children with Obstructive Sleep Apnea: A Systematic Review. Glob. Pediatr. Health 2021, 8, 2333794X211019884. [Google Scholar] [CrossRef]
- Mulholland, A.; Mihai, R.; Ellis, K.; Davey, M.J.; Nixon, G.M. Paediatric CPAP in the digital age. Sleep Med. 2021, 84, 352–355. [Google Scholar] [CrossRef]
- Gozal, D.; Tan, H.-L.; Kheirandish-Gozal, L. Treatment of Obstructive Sleep Apnea in Children: Handling the Unknown with Precision. J. Clin. Med. 2020, 9, 888. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, M.T.; Pierce, M.R.; Yoder, B.A.; DiGeronimo, R.J. High flow nasal cannula versus nasal CPAP for neonatal respiratory disease: A retrospective study. J. Perinatol. 2007, 27, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Dani, C.; Pratesi, S.; Migliori, C.; Bertini, G. High flow nasal cannula therapy as respiratory support in the preterm infant. Pediatr. Pulmonol. 2009, 44, 629–634. [Google Scholar] [CrossRef]
- Joseph, L.; Goldberg, S.; Shitrit, M.; Picard, E. High-Flow Nasal Cannula Therapy for Obstructive Sleep Apnea in Children. J. Clin. Sleep Med. 2015, 11, 1007–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, M. High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits, Indication, Clinical Benefits, and Adverse Effects. Respir. Care 2016, 61, 529–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narang, I.; Carberry, J.C.; Butler, J.E.; Gandevia, S.C.; Chiang, A.K.; Eckert, D.J. Physiological responses and perceived comfort to high-flow nasal cannula therapy in awake adults: Effects of flow magnitude and temperature. J. Appl. Physiol. 2021, 131, 1772–1782. [Google Scholar] [CrossRef] [PubMed]
- Kushida, C.A.; Halbower, A.C.; Kryger, M.H.; Pelayo, R.; Assalone, V.; Cardell, C.-Y.; Huston, S.; Willes, L.; Wimms, A.J.; Mendoza, J. Evaluation of a New Pediatric Positive Airway Pressure Mask. J. Clin. Sleep Med. 2014, 10, 979–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinley, B.M.; Patil, S.P.; Kirkness, J.P.; Smith, P.L.; Schwartz, A.R.; Schneider, H. A Nasal Cannula Can Be Used to Treat Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2007, 176, 194–200. [Google Scholar] [CrossRef] [Green Version]
- McGinley, B.; Halbower, A.; Schwartz, A.R.; Smith, P.L.; Patil, S.P.; Schneider, H. Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children. Pediatrics 2009, 124, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Fishman, H.; Al-Shamli, N.; Sunkonkit, K.; Maguire, B.; Selvadurai, S.; Baker, A.; Amin, R.; Propst, E.J.; Wolter, N.E.; Eckert, D.J.; et al. Heated humidified high flow nasal cannula therapy in children with obstructive sleep apnea: A randomized cross-over trial. Sleep Med. 2023, 107, 81–88. [Google Scholar] [CrossRef]
- Hawkins, S.; Huston, S.; Campbell, K.; Halbower, A. High-Flow, Heated, Humidified Air Via Nasal Cannula Treats CPAP-Intolerant Children With Obstructive Sleep Apnea. J. Clin. Sleep Med. 2017, 13, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Ignatiuk, D.; Schaer, B.; McGinley, B. High flow nasal cannula treatment for obstructive sleep apnea in infants and young children. Pediatr. Pulmonol. 2020, 55, 2791–2798. [Google Scholar] [CrossRef]
- Verhelst, E.; Clinck, I.; Deboutte, I.; Vanderveken, O.; Verhulst, S.; Boudewyns, A. Positional obstructive sleep apnea in children: Prevalence and risk factors. Sleep Breath. 2019, 23, 1323–1330. [Google Scholar] [CrossRef]
- Selvadurai, S.; Voutsas, G.; Massicotte, C.; Kassner, A.; Katz, S.L.; Propst, E.J.; Narang, I. Positional obstructive sleep apnea in an obese pediatric population. J. Clin. Sleep Med. 2020, 16, 1295–1301. [Google Scholar] [CrossRef]
- Menon, A.; Kumar, M. Influence of body position on severity of obstructive sleep apnea: A systematic review. ISRN Otolaryngol. 2013, 2013, 670381. [Google Scholar] [CrossRef] [Green Version]
- Saigusa, H.; Suzuki, M.; Higurashi, N.; Kodera, K. Three-dimensional Morphological Analyses of Positional Dependence in Patients with Obstructive Sleep Apnea Syndrome. Anesthesiology 2009, 110, 885–890. [Google Scholar] [CrossRef] [Green Version]
- Squier, S.B.; Patil, S.P.; Schneider, H.; Kirkness, J.P.; Smith, P.L.; Schwartz, A.R.; Lambeth, C.; Kolevski, B.; Kairaitis, K.; Amatoury, J.; et al. Effect of end-expiratory lung volume on upper airway collapsibility in sleeping men and women. J. Appl. Physiol. 2010, 109, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Ono, T.; Ishiwata, Y.; Kuroda, T. Effect of changes in the breathing mode and body position on tongue pressure with respiratory-related oscillations. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 239–246. [Google Scholar] [CrossRef]
- Xiao, L.; Baker, A.; Voutsas, G.; Massicotte, C.; Wolter, N.E.; Propst, E.J.; Narang, I. Positional device therapy for the treatment of positional obstructive sleep apnea in children: A pilot study. Sleep Med. 2021, 85, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, K.C.; Drager, L.F.; Genta, P.R.; Marcondes, B.F.; Lorenzi-Filho, G. Effects of Oropharyngeal Exercises on Patients with Moderate Obstructive Sleep Apnea Syndrome. Am. J. Respir. Crit. Care Med. 2009, 179, 962–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, M.P.; Evangelisti, M.; Martella, S.; Barreto, M.; Del Pozzo, M. Can myofunctional therapy increase tongue tone and reduce symptoms in children with sleep-disordered breathing? Sleep Breath. 2017, 21, 1025–1032. [Google Scholar] [CrossRef]
- Sutherland, K.; Weichard, A.J.; Davey, M.J.; Horne, R.S.; Cistulli, P.A.; Nixon, G.M. Craniofacial photography and association with sleep-disordered breathing severity in children. Sleep Breath. 2019, 24, 1173–1179. [Google Scholar] [CrossRef]
- Fagundes, N.C.F.; Gianoni-Capenakas, S.; Heo, G.; Flores-Mir, C. Craniofacial features in children with obstructive sleep apnea: A systematic review and meta-analysis. J. Clin. Sleep Med. 2022, 18, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.; Chang, E.T.; Song, S.A.; Abdullatif, J.; Zaghi, S.; Pirelli, P.; Certal, V.; Guilleminault, C. Rapid maxillary expansion for pediatric obstructive sleep apnea: A systematic review and meta-analysis. Laryngoscope 2017, 127, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, S.; Kaya-Sezginer, E.; Bakar-Ates, F.; Köktürk, O.; Toygar-Memikoğlu, U. Effect of semi-rapid maxillary expansion in children with obstructive sleep apnea syndrome: 5-month follow-up study. Sleep Breath. 2018, 22, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barriales, M.; de Mendoza, I.L.-I.; Pacheco, J.J.A.-F.; Aguirre-Urizar, J.M. Rapid maxillary expansion versus watchful waiting in pediatric OSA: A systematic review. Sleep Med. Rev. 2022, 62, 101609. [Google Scholar] [CrossRef]
- Jacobs, S.; Mylemans, E.; Ysebaert, M.; Vermeiren, E.; De Guchtenaere, A.; Heuten, H.; Bruyndonckx, L.; De Winter, B.Y.; Van Hoorenbeeck, K.; Verhulst, S.L.; et al. The impact of obstructive sleep apnea on endothelial function during weight loss in an obese pediatric population. Sleep Med. 2021, 86, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, S.L.; Van Gaal, L.; De Backer, W.; Desager, K. The prevalence, anatomical correlates and treatment of sleep-disordered breathing in obese children and adolescents. Sleep Med. Rev. 2008, 12, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Van de Perck, E.; Van Hoorenbeeck, K.; Verhulst, S.; Saldien, V.; Vanderveken, O.; Boudewyns, A. Effect of body weight on upper airway findings and treatment outcome in children with obstructive sleep apnea. Sleep Med. 2020, 79, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Van Eyck, A.; De Guchtenaere, A.; Van Gaal, L.; De Backer, W.; Verhulst, S.L.; Van Hoorenbeeck, K. Clinical Predictors of Residual Sleep Apnea after Weight Loss Therapy in Obese Adolescents. J. Pediatr. 2018, 196, 189–193.e1. [Google Scholar] [CrossRef]
- Roche, J.; Isacco, L.; Masurier, J.; Pereira, B.; Mougin, F.; Chaput, J.-P.; Thivel, D. Are obstructive sleep apnea and sleep improved in response to multidisciplinary weight loss interventions in youth with obesity? A systematic review and meta-analysis. Int. J. Obes. 2020, 44, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.S.; Auerbach, P.; Barrientos-Perez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar] [CrossRef]
- Dhillon, S. Phentermine/Topiramate: Pediatric First Approval. Pediatr. Drugs 2022, 24, 715–720. [Google Scholar] [CrossRef]
- Furbetta, N.; Gragnani, F.; Cervelli, R.; Guidi, F.; Furbetta, F. Teenagers with obesity: Long-term results of laparoscopic adjustable gastric banding. J. Pediatr. Surg. 2020, 55, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Mashaqi, S.; Patel, S.I.; Combs, D.; Estep, L.; Helmick, S.; Machamer, J.; Parthasarathy, S. The Hypoglossal Nerve Stimulation as a Novel Therapy for Treating Obstructive Sleep Apnea—A Literature Review. Int. J. Environ. Res. Public Health 2021, 18, 1642. [Google Scholar] [CrossRef] [PubMed]
- Skotko, B.G.; Macklin, E.A.; Muselli, M.; Voelz, L.; McDonough, M.E.; Davidson, E.; Allareddy, V.; Jayaratne, Y.S.N.; Bruun, R.; Ching, N.; et al. A predictive model for obstructive sleep apnea and Down syndrome. Am. J. Med. Genet. Part A 2017, 173, 889–896. [Google Scholar] [CrossRef]
- Liu, P.; Kong, W.; Fang, C.; Zhu, K.; Dai, X.; Meng, X. Hypoglossal nerve stimulation in adolescents with down syndrome and obstructive sleep apnea: A systematic review and meta-analysis. Front. Neurol. 2022, 25, 1037926. [Google Scholar] [CrossRef] [PubMed]
- Cielo, C.M.; Tapia, I.E. What’s New in Pediatric Obstructive Sleep Apnea? Sleep Med. Clin. 2023, 18, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Stenerson, M.E.; Yu, P.K.; Kinane, T.B.; Skotko, B.G.; Hartnick, C.J. Long-term stability of hypoglossal nerve stimulation for the treatment of obstructive sleep apnea in children with Down syndrome. Int. J. Pediatr. Otorhinolaryngol. 2021, 149, 110868. [Google Scholar] [CrossRef]
- Taranto-Montemurro, L.; Edwards, B.A.; Sands, S.A.; Marques, M.; Eckert, D.J.; White, D.P.; Wellman, A. Desipramine Increases Genioglossus Activity and Reduces Upper Airway Collapsibility during Non-REM Sleep in Healthy Subjects. Am. J. Respir. Crit. Care Med. 2016, 194, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Sood, S.; Liu, H.; Horner, R.L. Opposing muscarinic and nicotinic modulation of hypoglossal motor output to genioglossus muscle in rats in vivo. J. Physiol. 2005, 565, 965–980. [Google Scholar] [CrossRef] [PubMed]
Indications and Benefits | Challenges | |
---|---|---|
Anti-inflammatory treatment Nasal steroids/oral montelukast/oral steroids | Children with symptoms of allergic or non-allergic rhinitis may benefit. Anti-inflammatory medications may decrease the size of adenotonsillar tissue, leading to improvement in OSA. | Follow up is necessary Efficacy has to be evaluated due to variety in responses Nasal irritation and bleeding may occur with nasal steroids Montelukast can have adverse effects on behavior and mood |
Antibiotics | Currently not recommended | Larger studies are needed to determine the role of antibiotics in the treatment of OSA |
Positive airway pressure therapy | Children with moderate to severe OSA who are not candidates for surgery and children with persistent OSA after surgical intervention may benefit | Requires all-night and long-term use Low adherence rates It may be associated with midface hypoplasia |
High-flow nasal cannula therapy | Children who cannot tolerate CPAP may benefit from HFNC treatment | Rarely covered by health insurance in many countries No home units recording adherence and no proper alarms |
Positional therapy | Can be considered in children with persistent OSA Can be a simple, cheap, and low-risk treatment option | Requires all-night and chronic use Larger studies are needed to demonstrate its effectiveness No adherence data |
Myofunctional therapy | Currently not routinely recommended | Requires training and daily exercises |
Dental procedures | Recommended in children with narrow transversal maxillary arch, who collaborate in the expansion by turning screws to widen the airway and improve OSA | Effects not clear Long treatment duration Mostly not covered by insurance companies |
Weight loss | Efficacious in treating OSA associated with obesity in children If medical treatment of obesity is not achieved, surgical options can be considered | Other treatment modalities should be initiated until enough weight loss has been achieved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergenekon, A.P.; Gokdemir, Y.; Ersu, R. Medical Treatment of Obstructive Sleep Apnea in Children. J. Clin. Med. 2023, 12, 5022. https://doi.org/10.3390/jcm12155022
Ergenekon AP, Gokdemir Y, Ersu R. Medical Treatment of Obstructive Sleep Apnea in Children. Journal of Clinical Medicine. 2023; 12(15):5022. https://doi.org/10.3390/jcm12155022
Chicago/Turabian StyleErgenekon, Almala Pinar, Yasemin Gokdemir, and Refika Ersu. 2023. "Medical Treatment of Obstructive Sleep Apnea in Children" Journal of Clinical Medicine 12, no. 15: 5022. https://doi.org/10.3390/jcm12155022
APA StyleErgenekon, A. P., Gokdemir, Y., & Ersu, R. (2023). Medical Treatment of Obstructive Sleep Apnea in Children. Journal of Clinical Medicine, 12(15), 5022. https://doi.org/10.3390/jcm12155022